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Abstract: Colorectal cancer (CRC) has been ranked as the third most prevalent cancer worldwide.
Indeed, it represents 10.2% of all cancer cases. It is also the second most common cause of cancer
mortality, and accounted for about 9.2% of all cancer deaths in 2018. Early detection together with
a correct diagnosis and staging remains the most effective clinical strategy in terms of disease recovery.
Thanks to advances in diagnostic techniques, and improvements of surgical adjuvant and palliative
therapies, the mortality rate of CRC has decreased by more than 20% in the last decade. Cancer
biomarkers for the early detection of CRC, its management, treatment and follow-up have contributed
to the decrease in CRC mortality. Herein, we provide an overview of molecular biomarkers from
tumor tissues and liquid biopsies that are approved for use in the CRC clinical setting for early
detection, follow-up, and precision therapy, and of biomarkers that have not yet been officially
validated and are, nowadays, under investigation.

Keywords: colorectal cancer; molecular biomarkers; cancer prevention; early cancer detection;
precision therapy

1. Introduction

Colorectal cancer (CRC) is the second most common cause of cancer death, with 881,000 new
deaths in 2018, and is the third most prevalent cancer worldwide, with about 1.8 million new cases in
2018. According to the GLOBOCAN 2018 database, the incidence rate of colon cancer is high in parts
of Europe, while it tends to be low in most regions of Africa and Southern Asia. Notably, the incidence
of CRC varies greatly between countries depending on their economic development. Arnold et al. [1]
defined CRC a “socioeconomic development marker”. In fact, they divided countries into three groups
based on CRC incidence and mortality: group 1, constituted by countries with a high CRC incidence
and mortality, namely populations in Eastern Europe, Latin America, and Asia; group 2 constituted
by countries with a high CRC incidence and a low mortality, namely European countries, Canada,
and Singapore; and group 3, constituted by countries with a low CRC incidence and mortality, namely
Australia, Iceland, New Zealand, and Japan, all of which have a high Human Development Index [2].
Overall, despite the increase in the incidence of CRC over the last 20 years, the incidence of CRC
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mortality has decreased in many countries probably due to prevention strategies, early detection and
improvements in treatment [1].

Colorectal carcinogenesis is characterized by genetic and epigenetic alterations that transform
normal cells into cancer cells. A characteristic of CRC is high inter- and intra-tumor heterogeneity at
both clinical and molecular level. Intra-tumor variability refers to changes in distinct regions of a tumor,
while temporal heterogeneity refers to changes observed overtime between the primary tumor and its
matched metastases. Chromosomal instability, microsatellite instability, aberrant DNA methylation
and DNA repair defects are all mechanisms that generate tumor genetic variability during colorectal
epithelial cell transformation that, in turns, are responsible for patient prognosis and response to
specific therapy. In the era of biological personalized care, precise molecular characterization of the
tumor is crucial in defining the therapeutic plan. Consequently, the identification and standardization
of cancer prognostic and predictive molecular biomarkers is becoming increasingly more relevant [3,4].
Herein we provide an overview on the approved and promising molecular biomarkers currently
available for CRC. We also try to shed light on the molecular basis of CRC onset and progression,
its epidemiology and principal approved therapeutic regimens in the attempt to understand the role of
molecular biomarkers in the management of CRC.

In this review, we summarize bibliographic sources to analyze, interpret and critically evaluate
the data available. We searched the literature related to our topic using PubMed and the PubMed
Central database of the MEDLINE database, and the U.S. National Library of Medicine® (NLM,
Rockville Pike, Bethesda, Maryland) database. The key-words used were: “Colorectal cancer (and
CRC) onset”, “Colorectal cancer (and CRC) progression”, “Colorectal Cancer (and CRC) Molecular
Biomarkers”, “Colorectal cancer (and CRC) diagnostic Biomarkers”, ”Colorectal cancer (and CRC)
prognostic biomarkers”, “Colorectal cancer (and CRC) predictive biomarkers”, and “Colorectal cancer
(and CRC) biomarkers and therapy”. We first scrutinized the most relevant papers by the abstract,
journal ranking and years of publication. We also checked the reference lists of the selected papers
to identify relevant publications not found using our key-words, while also taking care to avoid
duplicate citations.

2. Colorectal Cancer: An Overview

About 75% of CRC cases are sporadic, while only about 10% are hereditary; the remaining 10–20%
are familial cases, defined as a familial cluster of CRC patients in which the genetic mechanism
of onset remains unclear [5]. Usually, this group of patients, in which the disease is probably
associated with low-penetrance DNA variants, does not show Mendelian inheritance, but rather
high-phenotypic heterogeneity. Notably, CRC onset and progression are characterized by the
well-known adenoma-carcinoma sequence.

Figure 1 shows a schematic representation of CRC onset and progression. It has been hypothesized
that only cancer stem cells are able to trigger neoplastic transformation and promote tumor
progression [6,7]. Epithelial cells of colorectal mucosa are organized along the crypt villus axis.
At the base of the crypt are the colon stem cells, which are the more undifferentiated cells that have
self-renewal and pluripotency capacity. An oncogenic hit in these cells generates a cancer stem cell,
which can give rise to a cancer. An oncogenic hit in a trans-amplifying differentiated cell does not
produce a cancer. However, several factors, including microenvironment factors, could induce cell
de-differentiation thereby generating stem-like cells from trans-amplifying cells. An oncogenic hit in
these stem-like cells could also give rise to neoplastic transformation [8].
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Figure 1. Colorectal cancer tumorigenesis. During tumor progression, epithelial cancer cells undergo
the epithelial-to mesenchymal-transition (EMT) program that is characterized by acquisition of
mesenchymal and stem-like cell properties consequent to which the cancer cells can invade the
extracellular matrix and migrate into the surrounding tissues. They then join the endothelial cells from
vessels and arrive in the lumen in a process known as ‘intravasation’. These cells can survive in the
vessel lumen, then exit the vases (i.e., ‘extravasation’), disseminate into the adjacent organs, and colonize
them to generate micrometastases. Chemo-radiotherapy often kills differentiated cancer cells, while the
mesenchymal, stem-like cells are treatment-resistant and can give rise to a treatment-resistant tumor.

The epithelial-to mesenchymal-transition (EMT) is a physiological process typical of epithelial
cells by which the latter lose their epithelial features and acquire mesenchymal characteristics, namely
motility, resistance to programmed cell death, self-renewal capability and all the features of stem
cells. Mesenchymal cancer cells can alter the basement membrane components and the extracellular
matrix and so trigger a metastatic process. These findings suggested that the EMT is a mechanism that
generates a pool of stem-like cells that enable cancer progression, and represents a common biological
mechanism that could be a target for therapeutic intervention. Ultimately, it is the combined effect of
the EMT and the mesenchymal–epithelial transition (MET), that enables the metastatic progression
of CRC: the EMT enables primary tumor escape and spread by way of mesenchymal intermediates,
and the MET restores the CRC highly-proliferative epithelial stem cell phenotype [8]. It would be
interesting to evaluate whether genes involved in the EMT and cell plasticity could serve as molecular
markers in CRC follow-up and for the early detection of metastatic disease.

The main mechanisms involved in the accumulation of tumor alterations underlying cancer
progression are chromosomal instability (CIN), microsatellite instability (MSI), aberrant DNA
methylation (i.e., the CpG island methylator phenotype [CIMP]), and DNA repair defects [9–12].
The CIN phenotype, which is characterized by chromosome alterations, represents about 60% of
all CRCs [10]. MSI, namely, the variations in the numbers of repetitive units in each microsatellite
sequence, results from inactivation of the mismatch repair (MMR) system caused by mutations hitting
one of the DNA MMR genes (i.e., MLH1, MSH2, MSH6, PMS1, PMS2) [13–16]. MSI accounts for
only about 15–22% of sporadic CRCs, while it is a characteristic of the tumor in patients with Lynch
syndrome. MSI phenotypes are distinguished based on the degree of instability: MSI-high (MSI-H)
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and MSI-low (MSI-L); or microsatellite stable (MSS) [9,17,18]. When the percentage of altered mono-
and di-nucleotide microsatellite markers exceeds 20%, the instability is defined “High” (MSI-High).
MSI is usually associated to alterations in MMR function mainly in the MSH2 or MLH1 proteins.
Microsatellite alterations below 20%, which are usually found only in dinucleotide markers are referred
to as “MSI-Low” [11,19,20]. Alterations of tri- and tetra-nucleotides have been associated with MSH3
dysfunction [19,20]. This kind of alteration is called “elevated microsatellite alterations at selected
tetra-nucleotide repeats” (EMAST) [19,21–24]. Genes that are more often altered consequent to MMR
inactivation, are the TGF-β tumor suppressor gene [25], the TGF-β type II receptor (TGF-βR2), BAX,
caspase 5 apoptotic regulator [26,27], and the tumor suppressor gene TCF4 (which has been implicated
in deregulation of the Wnt/β-catenin/TCF signaling pathway) [28]. Sporadic and hereditary CRCs
have different mechanisms of MMR inactivation, that mostly consist in point mutations of the hMLH1
or hMSH2 genes in the case of hereditary CRC, and in promoter hyper-methylation of the hMLH1
gene in sporadic CRC [29]. Sporadic MSI CRCs are a consequent of epigenetic silencing induced by
the BRAF V600E mutation [30]. Therefore, the latter is a diagnostic marker with which to distinguish
sporadic from hereditary MSI CRC [31]. Finally, a tumor is defined “CIMP” if it shows methylation of
at least three of the following markers: CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 [32].

The microenvironment, including the immune system and the extracellular matrix, also affects
tumor heterogeneity and determines different behavior of apparently similar tumors [33,34]. Dendritic
cells, tumor-associated macrophages (TAMs) and tumor infiltrating lymphocytes (TILs) are the main
immunological cells involved in the host immune response to cancer cells and they have recently been
identified as prognostic markers and potential targets for adjuvant therapy [35,36]. Dendritic cells are
antigen-presenting cells that generate the adaptive immune response. TAMs produce components
of the immunosuppressive tumor microenvironment, namely cytokines, chemokines, growth factors,
and trigger T-cell activity by releasing inhibitory immune checkpoint proteins. They affect tumor
progression and response to chemo-radiotherapy by acting on tumor microenvironment features [37].
Finally, TILs kill tumor cells and have thus been associated with disease outcomes [38].

Various factors contribute to the incidence of CRC. Sporadic CRCs arise consequent to somatic
mutations while germline-inactivating mutations in oncogenes or tumor suppressor genes cause
hereditary CRC. First-degree relatives of CRC patients have a threefold greater risk of developing CRC
than individuals without familial predisposition. Patients with inflammatory bowel diseases are also
at an increased risk of CRC [39]. The prognosis of CRC depends largely on the cancer stage at the time
of diagnosis. The five-year survival of patients with stage I CRC is about 90% versus 10% in patients at
stage IV [40].

Surgery plays a pivotal role in the treatment of patients diagnosed at an early stage of cancer.
However, many patients are diagnosed at an advanced stage of disease, and sometimes have
distant metastases. Adjuvant therapy may be effective in such cases, although drug resistance
may affect response and concur to recurrent disease [41]. The chemotherapy approved for CRC
is a combination of 5-fluorouracil and leucovorin (e.g., oxaliplatin–FOLFOX, irinotecan–FOLFIRI).
In addition, two monoclonal antibodies against the epidermal growth factor receptor (cetuximab and
panitumumab) are used in combination with well-established treatment regimens [42–44]. Biological
chemotherapy also includes the vascular endothelial growth factor (VEGF)-A-targeted antibodies
bevacizumab and aflibercept, which are recombinant proteins that target VEGF-A, VEGF-B and placental
growth factor (PlGF) [3]. Immunotherapy results in a good response in several types of solid tumors,
including CRCs. The monoclonal antibodies pembrolizumab and nivolumab, which block programmed
cell death 1 (PD1), are approved by the USA Food and Drug Administration for the treatment
of mismatch-repair-deficient (dMMR) and microsatellite instability-high (dMMR–MSI-H) mCRC.
However, mismatch-repair-proficient (pMMR) and microsatellite instability-low (pMMR–MSI-L) CRC
do not response to the immune checkpoint target therapy.
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3. Role of Molecular Biomarkers in CRC Management

Biomarkers are defined as a multitude of biological features, such as imaging or radiomic
alterations, and biological molecules found in blood and in other body fluids and tissues that are
a sign of a normal or disease condition. DNA, RNA, microRNA, antibodies, and epigenetic changes
are examples of biomarkers. Biomarkers play an important role in the management of CRC, indeed,
they can reveal predisposition for the disease and detect the disease at an early stage. They are also
useful for monitoring the efficacy of treatment, neo-adjuvant therapy, follow-up, and disease recurrence.
They can also help to select the most appropriate chemotherapeutic drug across a broad spectrum of
patients [41].

As we discussed previously [3], the tumor-node-metastases staging, tumor budding,
and immunoscore are the best means with which to classify colon cancer and they are a guide
in CRC follow-up and in therapy decision-making. With the advent of immunotherapy, CRCs are also
classified based on mismatch-repair-deficiency or proficiency and the level of microsatellite instability,
(dMMR–MSI-H; pMMR–MSI-L). It is now known that dMMR–MSI-H CRC is associated with a high
tumor mutation burden and immune cell infiltration [45,46].

Although surgery is the gold standard treatment for early CRC, in which it can be curative,
most CRC patients are diagnosed at an advanced stage [47]. The five-year survival rate after surgery
of early stage (I/II) CRC patients exceeds 90% [48]. However, stage III and stage IV CRCs are
characterized by local lymph node invasion and distance metastases and a very low overall survival,
respectively [49,50]. This is probably because early stages of the disease are often asymptomatic and
most people refuse colonoscopy and the fecal occult blood test [51]. In this scenario, it is important to
identify new diagnostic and prognostic molecular biomarkers to detect the disease at an early stage to
predict therapeutic response.

4. Molecular Features of Hereditary Colorectal Cancer

Hereditary CRC syndromes are rare diseases usually caused by germline mutations in oncogenes
or in tumor suppressor genes that are crucial in such processes and events, namely colorectal mucosa
turnover, cell division, cell cycle, and programmed cell death. The incidence of hereditary CRC
syndromes now account for about 10% of all CRCs [52]. Notably, the prevalence of germline mutations
is highest (about 16–33%) in CRC patients diagnosed before the age of 50 [53–55]. People with hereditary
CRC syndromes show higher risk of CRC than unaffected people. They also show symptoms in other
organs that are typical of each specific syndrome, often including an increased risk of extra intestinal
cancer during their lifetime. The molecular diagnosis, which currently consists in the identification
of pathogenic genetic variants in genes associated with both a high- and low-penetrance cancer risk,
is an essential tool for cancer prevention, follow-up, counseling and survival and represents the gold
standard approach in the management of these syndromes.

The hereditary syndromes predisposing to CRC are listed in Table 1. Specific genetic variants
are associated with each syndrome, each with its typical onset age and responsiveness to drugs.
The advent of genetic predisposition markers open the way to the prevention of cancer onset in at
risk subjects, and to early cancer detection as well as to precision therapy. Interestingly, effects of
NSAIDS and aspirin have long been studied to treat familial adenomatous polyposis (FAP) patients.
A recent placebo-controlled randomized trial showed that treatment with a combination of sulindac
and erlotinib resulted in a significant decrease of colorectal polyp onset in FAP patients after six
months of treatment versus placebo [56]. The molecular identification of specific pathogenic APC gene
variants in FAP patients revealed people with inherited disease in at-risk families, who must undergo
follow-up. On the other hand, the absence of a disease-causing variant reduces the risk of CRC to that
of the general population, and endoscopic surveillance could become less burdensome. Endoscopic
surveillance is advisable in FAP patients without a pathogenic mutation in the APC gene or in one
of the other genes responsible for CRC. Children carriers of an APC pathogenic variant should also
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undergo ultrasonography and alpha-fetoprotein screening protocols each 5–10 years, beginning at birth,
because of the risk of hepatoblastoma is approximately 800-fold that of the general population [57].

Table 1. Features of hereditary colorectal cancers.

Syndrome Genes Inheritance Recomended Age of
Screening Tumor Molecular Features

Adenomatous Polyposis Syndromes

FAP/AFAP APC Autosomal dominant 20/10–12 years CIN, APC mutations [58].

PPAP POLE, POLD1 Autosomal dominant none Controversial percentage of G >
T/C > A transversions [59].

MAP MUTYH Autosomal recessive 30–50 years [60] KRAS, p53, APC mutations [57].

NAP NTHL1 [61] Autosomal recessive none none relevant

MSH3
polyposis MSH3 Autosomal recessive none EMAST, MSI-L [62].

Amartomatous Polyposis Syndromes

PJS STK11 Autosomal dominant 10–15 years [60] none relevant

PHTS PTEN Autosomal dominant none none relevant

JPS BMPR1A,
SMAD4 Autosomal dominant 15 years or earlier [63] none relevant

Mixed Polyposis

HMPS GREM1, BRAF Autosomal dominant none BRAF and KRAS mutations,
MSI [64].

Serrated Adenomas

SPS RNF43 Autosomal dominant none

BRAF V600E and KRAS (codons
12 and 13) mutations, MLH1

methylation, MGMT methylation,
CIMP [65].

Nonpolyposis CRC

LYNCH
MSH2, MLH1,
MSH6, MSH3,

PMS2, EPCAM
Autosomal dominant

20–25 (ten years earlier
than the youngest age

of colon cancer
diagnosis in the family)

MSI-H, MSI-L, EMAST V600E
BRAF wt [66].

NONPOLYPOSIS
CRC-MSS RPS20 Autosomal dominant none MSI-BRAF mutations LINE-1

methylation, V600E BRAF wt [67].

FAP: familial adenomatous polyposis; PPAP: polymerase proofreading-associated polyposis; MAP: MUTYH
associated polyposis; NAP: NTHL1-associated polyposis; PJS: Peuts–Jeghers syndrome; PHTS: PTEN hamartoma
tumor syndrome; JPS: juvenile polyposis syndrome; HMPS: hereditary mixed polyposis syndrome; SPS: serrated
polyposis syndrome.

5. Role of Molecular Biomarkers in the Surgical Approach to Hereditary Colorectal Cancers

Surgical options for patients with hereditary non polyposis colorectal cancer (HNPCC) range
from segmental colectomy to total abdominal colectomy with ileorectal anastomosis to restorative
proctocolectomy as well as to all the possible procedures for rectal cancer [68]. Identification of the
specific pathogenic variants in the MMR genes that confirm the clinical diagnosis of Lynch syndrome
could help to guide surgical decision-making. Total abdominal colectomy is considered because
of the elevated risk of metachronous lesions. Patients, especially postmenopausal women, should
be offered the option of prophylactically extended surgery (hysterectomy and oophorectomy) [69].
Patients with polyposis syndromes are usually offered prophylactic colectomy to prevent cancer [70].
A crucial issue is rectal sparing procedures in patients with limited rectal polyposis. Polypectomy or
limited resection can be considered for patients with amartomatous polyposis syndromes. In general,
surgical decision-making is based on risk factors, age of the patient, and acceptation of an intensive
follow-up policy.

To our knowledge, there is no consensus as to whether genetics and molecular biomarkers could
improve surgical options offered to patients with hereditary forms of CRC. The relationship between
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APC mutations, genotype and the severity of polyposis along the colon and in the rectum of FAP
patients, has led to the hypothesis of a schematic surgical strategy, especially in terms of rectum saving
procedures. Nieuwenhuis et al. showed that, despite no difference in cancer risk, the risk of deferred
proctectomy after ileorectal anastomosis is increasingly higher in patients with severe polyposis [71].
However, according to Dodaro et al. [72], the decision regarding type, extension and timing of surgery
should take into consideration the patient’s genotype together with her/his clinical data. The use of
minimally invasive surgery has dramatically improved perioperative and long-term results [73].

6. Predictive Biomarkers in CRC Therapy and Prognosis

The first target of 5-FU is the thymidylate synthase (TS) protein, which is encoded by the
TYMS gene. As expected, the response to 5-FU depends on the expression of the TS protein and of
the TYMS gene that therefore have significant prognostic value in overall survival prediction after
chemotherapy [74,75]. Moreover, the expression of molecules involved in the metabolism of 5-FU,
namely thymidine phosphorylase (TP), uridine phosphorylase (UP), orotate phosphoribosyl transferase
and dihydropyrimidine dehydrogenase (DPD), have been associated with the response to drugs [41].
Capecitabine is an oral drug that is converted to 5-FU consequent to the activity of the TP enzyme.
Therefore, TP has prognostic value in predicting the response to capecitabine. Patients with high
TP expression have a better response than patients with low TP expression, and loss of TP function
causes capecitabine-resistance [76,77]. Similarly, metabolic intermediates involved in the uptake and
metabolism of irinotecan, such as carboxylesterases, uridine diphosphate glucuronosyltransferase,
the hepatic cytochrome P-450 enzymes CYP3A, β-glucuronidase, and the ATP-binding cassette
transporter protein, are prognostic markers of response to this drug. Resistance to oxaliplatin is
correlated to the expression of the nucleotide excision repair pathway [78,79].

As discussed above, the EMT and stemness confer resistance to programmed cell death to CRC
cells, thereby giving rise to tumors resistant to chemoradiotherapy (Figure 1). Accordingly, stemness
surface markers, such as CD133, EphB2high, EpCAMhigh, and CD44+ have been suggested as
markers of colon cancer aggressiveness and resistance to therapy [80,81]. The anti-EGFR antibodies,
cetuximab and panitumumab, inhibit the EGF signaling pathways thereby regulating cell proliferation.
The CRYSTAL trial demonstrated the efficacy of cetuximab, in combination with a FOLFOX or
FOLFIRI regimen, only in patients with CRC negative for KRAS or NRAS mutations [44,80,82]
The RAS mutation is also a negative predictive marker for panitimumab biological therapy [83],
except in the case of the G13D KRAS mutation, which has been associated with a positive response
to the anti-EGFR antibody, comparable to that of patients with a KRAS wild-type tumor [84,85].
However, the prospective ICECREAM (Irinotecan Cetuximab Evaluation and Cetuximab Response
Evaluation Among Patients with a G13D Mutation) study demonstrated that in patients with KRAS
G13D-mutated chemotherapy-refractory mCRC, neithercetuximab monotherapy nor cetuximab plus
irinotecan resulted in a statistically significant improvement in terms of two-year overall survival [86].
Similarly, in a meta-analysis, Rowland et al. [87] did not find any significant difference between KRAS
G13D and other KRAS mutated tumors in mCRC patients treated with anti-EGFR mAbs biological
therapy. Several studies have investigated the role of mutations in other genes of the EGFR pathway,
namely, PI3K, BRAF and the quantitative expression of the PTEN protein. However, due to insufficient
and/or discordant findings, those mutations are not recommended as predictive therapeutic biomarkers
in clinical practice [69]. Monoclonal antibodies against vascular endothelial growth factor (VEGF) are
also approved for mCRC therapy; however, their survival benefit is limited to a few months due to
acquired resistance [88]. Although there are no validated predictive biomarkers relating to the use of
anti-angiogenic drugs, VEGF itself has prognostic value. Indeed, high VEGF expression is associated
to a poor prognosis for CRC patients, a low response to preoperative radiotherapy, and relapses.
Furthermore, VEGF-C could be a prognostic biomarker in rectal cancer [89].

With regard to immunotherapy that targets the immune checkpoint, dMMR–MSI-H status
is the only CRC that responds to this treatment. In this context, MMR and MSI are important
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predictive biomarkers for therapeutic decision-making in case of CRC, and have entered into clinical
practice [90]. Interestingly, TAM infiltration is associated with a better prognosis in CRC than in other
solid tumors, in which, on the contrary, TAMs have been associated with a poor prognosis [91–93].
Furthermore, Malesci et al. [94] observed that TAMs are positive prognostic factors for 5-FU response
in stage III CRC patients. Indeed, TAM infiltration has a clear beneficial effect in patients treated
with 5-FU, which has not observed in untreated patients [95–100]. Tumor infiltrating lymphocytes,
and specifically the density of memory T cells (CD45RO+) in tumors, has been associated with improved
survival [101]. Furthermore, in accordance with previous data showing a relationship between MSI
and TILs, a high-frequency of MSI correlated with higher CD45RO+ cell density [102–104]. It has been
suggested that MSI causes immunogenicity of tumor cells by improving the synthesis of truncated
peptides [102] thereby stimulating the adaptive immune responses of mCRC. In a phase II clinical
trial, the observation that the number of TILs was higher in MSI tumors than in microsatellite stable
(MSS) tumors is in accordance with this hypothesis [99,105,106]. As expected, MSI-H is an important
predictive biomarker with which to select patients who may benefit from immunotherapy. Indeed,
treatment with pembrolizumab (anti-PD-1) and nivolumab (anti-PD-L1) resulted in a better objective
response, stable disease, and progression-free survival in MSI-H patients, but not in MSS mCRC
patients. In addition, the levels of PD-1 and PD-L1 were significantly higher in dMMR tumors than in
proficient MMR (pMMR) tumors. These observations led to the approval of immunotherapy for these
MSI patients [107]. Furthermore, measurement of the tumor mutation burden in the primary tumor
and/or in blood samples from melanoma or lung cancer patients has been suggested as a biomarker of
therapeutic efficacy of the immune checkpoint inhibitors [108,109]. The presence of a high number of
tumor-associated neoantigens could improve the identification of cancer cells by the immune system.
In this respect, MSI-H CRCs are correlated with increased infiltration of TILs, such as the CD8+

cytotoxic lymphocytes, which are Th1-activated cells that produces IFNγ, and CD45 RO+ T memory
cells, which, in turn, are also correlated with a better survival versus MSS CRC [110–113].

7. Future Perspectives in the Field of Cancer Biomarkers

7.1. Molecular Subtypes

Next-generation sequencing spurred a broad spectrum of data regarding the molecular
characterization of solid tumors, including CRC. The CRC Subtyping Consortium classified CRC into
subgroups based on a common molecular “core signature” [114]. They identified four consensus
molecular subtypes (CMS) and defined the biological features of each subtype. The features of CMS1
are hypermutated phenotype, MSI and CIMP phenotype with BRAF mutations, immune infiltration,
and shorter post-relapse survival. CMS1 has been defined “MSI-immune” and accounts for about
14% of CRCs. Conversely, CMS2, CMS3, and CMS4 show high CIN phenotype. CMS2, which is the
canonical subtype, represents about 37% of all CRC cases and is characterized by high somatic copy
number alterations (SCNAs) and by activation of the WNT and p53 pathways. CMS3, the metabolic
subtype, accounts for about of 13% of all CRCs and is characterized by metabolic deregulations,
KRAS mutations, a mixed MSI status, SCNA and CIMP low. Finally, CMS4, which is the mesenchymal
subtype, represents about 13% of all CRCs and is characterized by TGF-beta activation, angiogenesis,
stromal infiltration, high SCNA, and worse relapse-free and overall survival [114].

Notably, the CMS classification has been proposed as a predictive factor for chemotherapy
response in mCRC. Indeed, in a retrospective study, both progression-free and overall survival were
better in CMS4 patients treated with an irinotecan regimen in first-line therapy than in those treated
with oxaliplatin chemotherapy. On the other hand, in CRC patients undergoing EGFR treatment,
the worse progression-free and overall survival occurred in CMS1 and the best in CMS2 patients [115].
Similarly, in an in vitro study, 5-FU induced high apoptosis in cancer cell lines belonging to CMS
subtypes 1 to 3, and low or no apoptosis in CMS4 cells [116]. Furthermore, the response to oxaliplatin
was poor or absent in CMS4 cells, and the best in CMS2 cells [117].
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Another CRC classification is based on the CRC intrinsic subtype (CRIS) that consists in the features
own of the patient’s colon cancer cells, not affected by their non-neoplastic tissue components, primarily
cancer-associated fibroblasts (CAFs), that are a strong indicator of tumor aggressiveness [118,119].

The authors defined its role as a prognostic and predictive biomarker. In accordance with this
classification, the CRIS-A subtype is constituted by BRAF-mutated-MSI and KRAS-mutated-MSS
tumors. Although these tumors are unresponsiveness to the therapy now available, it is conceivable
that they could respond to anti-metabolic therapies that are now under investigation because they have
strong glycolytic/hypoxic features [120]. CRIS-B tumors are characterized by activation of TGF-beta
signaling and EMT program and by high invasiveness and a poor prognosis. However, they are
unrelated to the CMS4 mesenchymal subtype, which has the same features, but is of stromal origin.
The CRIS-C subtype is constituted by tumors with elevated EGFR signaling and sensitivity to EGFR
inhibitors, independently of all known gene mutations. The CRIS-D subtype is constituted by tumors
that activate the WNT pathway and in which IGF2 is overexpressed, which probably induces resistance
to biological therapy with EGFR antibody [121]. Finally, CRIS-E is constituted by tumors with high
WNT pathway activation, a Paneth cell-like phenotype and KRAS mutations, and are thus resistant to
anti-EGFR antibody treatment. The CRIS components -C, -D, and -E are characterized by high WNT
pathway activity, which suggests they could benefit from drugs targeting this pathway [122,123].

However, the CRIS tumor categorization classifies the tumor taking into account only the specific
features of cancer cells, whereas the relevance of the stromal compartment is well-known in cancer
aggressiveness, progression, and response to therapy. Thus, the integration of stromal signatures,
mainly CAF infiltration and CRIS traits results in a tumor classification more powerful in terms
of prognosis and prediction than CRIS traits or CAFs alone. For example, patients with low CAF
infiltration and non-CRIS-B subtype have a good prognosis and do not require adjuvant chemotherapy,
while, patients with low CAF infiltration and CRIS-B subtype have a poor prognosis and are predicted
to be unresponsive to traditional chemotherapy. However, it is conceivable that patients in this group
could benefit from drugs that target the TGF-β pathway and that are now under investigation [124].

In our opinion, the classification of CRC molecular subtypes can easily be applied in clinical
practice. Moreover, confirmation and validation of these concepts and findings will lead to a more
precise understanding of the role and power of each molecular subtype as a prognostic and predictive
tool for the management of CRC.

7.2. Circulating Biomarkers

The term “liquid biopsy”, initially referred to the detection of circulating tumor cells (CTCs) [125],
whereas it now refers to the detection of many tumor traits in the peripheral blood of patients [126–128].
Circulating tumor DNA (ctDNA), CTCs, exosomes, and microRNAs present in the bloodstream
of patients are considered promising biomarkers for the management of CRC. Circulating cell-free
DNA (cfDNA) present in blood and other body fluids are produced from cellular apoptosis, necrosis,
phagocytosis, and active secretion [129]. ctDNA is the fraction of cfDNA that originates from tumor
cells; it can easily be quantified by digital PCR on small volumes of plasma, and can rapidly identify
somatic tumor mutations [130–132]. It has been suggested that the increased levels of ctDNA in
the blood of advanced and metastatic cancer patients versus the ctDNA level observed in early
stage cancer patients [133], may account for the tumor burden [134,135]. The presence of ctDNA
in the peripheral blood of patients can be used to determine genotypic changes that occur during
systemic treatment, and that can render such therapy ineffective [136]. In this context, serial ctDNA
measurements can reveal the response of mCRC patients to treatment, which suggests that ctDNA
could be an early predictor of treatment response, to complement the standard Response Evaluation
Criteria In Solid Tumors-based disease assessment [137], and a guide for anti-EGFR therapy [138].
Moreover, the presence of ctDNA in the peripheral blood of CRC patients, negatively impacts on their
survival and it has been considered a prognostic factor in clinical studies [139,140].
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CTCs are cells that, after undergoing the EMT, have detached from the primary tumor and are shed
daily into bloodstream at a rate of approximately 10 million cells per tumor gram [141,142]. However,
due to platelet cloaks or coagulation factors that surround CTCs, a fraction of cells elude detection and
are found in a low concentration in peripheral blood [143]. Although many CTC detection methods
have been described, only the Cell Search System (Veridex LLC, Raritan, NJ) has been approved by the
US Food and Drug Administration for CRC and for breast and prostate cancer [144]. As described
for ctDNA, peripheral blood CTCs were reported to be of considerable importance in early stage
and metastatic cancer. CTC evaluation is a non-invasive procedure with which to diagnose cancer at
an early stage [145] and a useful prognostic factor for cancer progression and survival [126]. Notably,
CTCs proved to be a prognostic marker in cases of mCRC, in which levels of CEA and other markers
were not measurable [141]. Moreover, elevated CTC levels were associated with worse clinical outcome
parameters, overall survival and progression-free survival in CRC patients [141,146,147].

Exosomes are small cellular vesicles, spontaneously released by many cell types. They contain
protein and nucleic acid and are involved in both physiological and pathological processes. Exosomes
derived from CRCs have been implicated in such tumor processes as EMT [148], migration [149],
and metastasis [150]. In recent years, many attempts have been made to identify diagnostic, prognostic,
and treatment response biomarkers in CRC exosomes. Some studies focused on isolating miRNAs from
tumor exosomes as potential biomarkers for the detection of CRC disease [151]. Other studies have been
conducted on serum miRNAs, which however seem to be less stable than the exosomal miRNA [152].
Ogata-Kawata and colleagues [153] showed that serum levels of seven miRNAs (let-7a, miR-1229,
miR-1246, miR150, miR-21, miR-223, and miR-23a) were significantly higher in CRC patients than in
healthy controls, which indicates that these miRNAs may detect CRCs. In addition, the sensitivity of
miR23a and miR-1246 was much higher than that of the CA19-9 and CEA markers for stage I CRC,
which again suggests that these miRNAs are potential biomarkers for the detection of early stage
CRC [153].

8. Conclusions

Colorectal cancer is a heterogeneous disease, characterized by inter- and intra-tumor variability.
Molecular alterations accumulate in the colorectal mucosa via various mechanisms, i.e., MMR gene
alterations, chromosomal instability, and CpG island methylation alterations, which, in turn, lead to
cancer onset and progression. All these mechanisms confer specific features to each tumor in terms of
malignancy, aggressiveness, invasion and response to therapy. Notwithstanding the increase in CRC,
its mortality has decreased probably due to prevention approaches, early detection and improvements
in therapeutic strategies. Precision therapy, based on the tumor’s molecular features, is often combined
with chemoradiotherapy. In this context, molecular biomarkers, defined as biological molecules that
are a sign of a normal or tumor condition, and also of tumor predisposition, play a crucial role.

An overview of diagnostic, prognostic, and predictive biomarkers that could be used in the
management of CRC is provided in Table 2.

Several molecular biomarkers have been approved for use in clinical practice and are essential tools
that support therapeutic decisions. This is the case of KRAS mutations, BRAF mutations and MSI/MSS
status. On the other hand, germline genetic variants in specific disease-causing genes are associated to
hereditary CRC syndrome, which strongly suggests tumor predisposition. High throughput screening
technology has produced a large quantity of data. The classification of these data is shedding light on
the nature of tumors, and could, in the near future, upturn the clinical and therapeutic approaches
to CRC. This applies also to the classification of molecular subtypes. A better classification and
validation of molecular subtypes could help to improve the outcome of precision therapy by providing
information about the cancer that single molecular biomarkers alone could not provide.
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Table 2. Diagnostic, prognostic and predictive biomarkers in CRC management.

Biomarkers Diagnostic Value Prognostic Value Predictive Value

CIN phenotype APC mutated sporadic
and hereditary CRC marker of poor prognosis

Identify high-risk patients with stage II
CRC who might benefit from adjuvant

chemotherapy [9,154]

CIMP Specific of serrated
adenomas Marker of poor prognosis conflicting data exsist [155]

MSI

Lynch syndrome [14]
Sporadic MSI tumor in

combination with
BRAF V600E mutation

MSI-H is associated with
better prognosis and survival
versus MSI-L and MSS [112]

MSI-H is associated with worse response to
5-Flurouracil-based chemotherapy
compared to MSI-L and MSS [112];

dMMR–MSI-H is associated with good
renponse to immunotherapy [107].

BRAF V600E
mutation

Sporadic MSI CRC [27];
serrated polyposis

syndrome [63]
none suggested none suggested

KRAS mutation none suggested marker of poor prognosis. Identify patients resistant to anti-EGFR
antibody treatment [82].

VEGF none suggested marker of poor prognosis

TAMs none suggested marker of good prognosis [69] Identify patients who can benefit from
treatment with 5-FU [91–96].

TILs none suggested marker of good prognosis and
survival [100]

Identify patients who can benefit from
immunotherapy [96,101,105].

CAFs none suggested
marker of tumor and

aggressivenes and poor
prognosis in untreated CRC

none suggested

TS protein and
TYMS gene
expression

none suggested
High TS and TYMS expression

correlates with good overall
survival after chemotherapy

High TS and TYMS expression are
associated with good response to 5-FU

[76,77].

TP protein none suggested none suggested
High TP expression is associated with good
response to capecitabine; loss of TP function

causes capecitabine-resistance [76,77].

CMS1
(MSI-Immune) none suggested none suggested

Identify patients with poor progression-free
and overall survival after EGFR treatment
[115]; good response to 5-FU treatment is

suggested by in vitro study [116].

CMS2 (canonical
subtype) none suggested none suggested

Identify patients with poor progression-free
and overall survival after EGFR treatment
[115]; good response to 5-FU treatment is
suggested by in vitro study [116]; Identify

patients with the best responce to
oxaliplatin [117].

CMS3 (metabolic
subtype) none suggested none suggested good response to 5-FU treatment is

suggested by in vitro study [116].

CMS4
(mesenchymal

subtype)
none suggested none suggested

Identify patients with better
progression-free and overall survival with
an irinotecan regimen than with oxaliplatin

chemotherapy [115]; poor or absent
responce to oxaliplatin [117].

ctDNA

Allows identification of
genotypic changes that
occur during systemic

treatment [136]

Marker of poor
survival [139,140]

serial ctDNA measurements could be
an early predictor of treatment

response [139,140].

CTCs
Marker of both early
stage and metastatic

cancer [145]

Marker of worse clinical
outcome parameters, overall
survival and progression-free

survival [141,147,148]

none suggested

Circulating
exosomal miRNAs

Marker of early
detection [153] none suggested none suggested

CIN: chromosomal instability; CIMP: the CpG island methylator phenotype; MSI: microsatellite instability; VEGF:
vascular endothelial growth factor; TAMs: tumor-associated macrophages; TILs: tumor infiltrating lymphocytes;
CAFs: cancer-associated fibroblasts; TS: thymidylate synthase; TP: thymidine phosphorylase; CMS: consensus
molecular subtypes; ctDNA: Circulating tumor DNA; CTCs: circulating tumor cells.
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Finally, molecular circulating biomarkers are promising tools in the management of CRC. Liquid
biopsies can be used in cancer screening, and to determine the tumor burden and residual disease.
They are also prognostic and predictive biomarkers, not all of which have been approved for clinical
practice. Consequently, given the large body of evidence of the efficacy of these biomarkers, a concerted
effort should be made to validate them for the benefit of patients.
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