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The enteron Escherichia coli is equipped with a branched electron transfer chain that
mediates chemiosmotic electron transfer, that drives ATP synthesis. The components
of this electron transfer chain couple the oxidation of available electron donors from
cellular metabolism (e.g., NADH, succinate, lactate, formate, etc.) to the reduction
of electron acceptors like oxygen, nitrate, fumarate, di-methyl-sulfoxide, etc. Three
different quinones, i.e., ubiquinone, demethyl-menaquinone and menaquinone, couple
the transfer of electrons between the dehydrogenases and reductases/oxidases that
constitute this electron transfer chain, whereas, the two-component regulation system
ArcB/A regulates gene expression, to allow the organism to adapt itself to the ambient
conditions of available electron donors and acceptors. Here, we report that E. coli can
grow and adjust well to transitions in the availability of oxygen, with any of the three
quinones as its single quinone. In all three ‘single-quinone’ E. coli strains transitions in the
activity of ArcB are observed, as evidenced by changes in the level of phosphorylation
of the response regulator ArcA, upon depletion/readmission of oxygen. These results
lead us to conclude that all quinol species of E. coli can reduce (i.e., activate) the sensor
ArcB and all three quinones oxidize (i.e., de-activate) it. These results also confirm our
earlier conclusion that demethyl-menaquinone can function in aerobic respiration.

Keywords: ubiquinone, menaquinol, naphtoquinones, phos-tag electrophoresis, single-quinone producing
mutants, ubiE

INTRODUCTION

Redox- and phosphoryl-transfer reactions, with coupled chemi-osmotic components, form the
core of cellular energetics (Hellingwerf and Konings, 1985). The stepwise release of redox potential
in a central electron-transfer system (‘chain’) is fundamental to the vast majority of living cells
(Nicholls and Ferguson, 2013). On the other hand (oxygen) radical formation, catalyzed as a side
reaction by the same system, is one of the most important causes of damage to the cell (Messner
and Imlay, 1999). Therefore, cellular redox reactions need to be tightly regulated. Escherichia coli
is a facultative (an)aerobic bacterium and it therefore needs to be able to adapt its metabolism,
and respiration, to varying oxygen concentrations. Under aerobic conditions, oxygen acts as the
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preferred terminal electron acceptor (Madigan and Martinko,
2014). When the supply of oxygen becomes limiting, chemically
reduced metabolites and electron carriers in their reduced form
may accumulate. This ultimately can inhibit growth by oxidative
damage (Messner and Imlay, 1999). Under fully anaerobic
conditions, alternative terminal electron acceptors, such as nitrate
and dimethylsulfoxide (DMSO) may be used to substitute for the
role of O2 (Table 1), and if all of these are absent, the cell may
switch to fermentation as a last resort.

Accordingly, under both aerobic and anaerobic conditions,
E. coli manages to proliferate. Anaerobically, a variety of
terminal electron acceptors can be used to re-oxidize the NADH
pool, generated by the upstream part of central metabolism.
The midpoint potential, however, of these alternative electron
acceptors is less positive than of the oxygen/water pair (Table 1).
When requiring alternative electron acceptors, the cell needs to
change gears with respect to the respiratory chain and use fewer
or smaller steps of redox potential to channel electrons from
NADH to the terminal electron acceptor, for the generation of
a proton motive force and coupled ATP synthesis, be it that
also the magnitude of the proton gradient itself may decrease
(Hellingwerf et al., 1981; Tran and Unden, 1998).

The respiratory chain of E. coli contains considerable
redundancy with respect to the components required for each
step of electron transfer from NADH to the terminal electron
acceptor (Unden and Bongaerts, 1997). This presumably enables
the cell to adjust the metabolic yield of this electron transfer
to the needs of the cell, when operating in different metabolic
modes. Wild type E. coli (including strain MG1655 used in this
study) contains several dehydrogenases that oxidize cytoplasmic
electron donors, like NADH, and donate electrons to the
quinones embedded in the membrane (or quinols when they
are present in their reduced form (Sharma et al., 2012). Under
aerobic conditions the quinols are then oxidized by any of
three terminal oxidases, which transfer electrons to the terminal
electron acceptor with slight preference (Sharma et al., 2012).
This electron transfer chain has been studied extensively during
the past decades, both by others and by ourselves (Van Der Plas
et al., 1983; Visser et al., 1984; van Schie et al., 1985; Poole and
Cook, 2000; Bekker et al., 2009; Sharma et al., 2012; Steinsiek
et al., 2014).

TABLE 1 | Midpoint potential of various redox couples relevant for this
study.

Chemical moiety Midpoint
potential (mV)

Reference

NAD/NADH2 −320 Unden and Bongaerts, 1997

MK/MKH2 −72 Unden and Bongaerts, 1997

ArcB −41 Alvarez et al., 2013

Fumarate/succinate 30 Unden and Bongaerts, 1997

DMK/DMKH2 36 Unden and Bongaerts, 1997

UQ/UQH2 110 Unden and Bongaerts, 1997

Dimethylsulfoxide /DMS∗ 160 Unden and Bongaerts, 1997

O2/H2O 820 Unden and Bongaerts, 1997

∗Dimethyl sulfide.

In E. coli, there are two primary NADH dehydrogenases
(NDH-I and NDH-II) that are part of the standard respiratory
chain and that may transfer electrons to any of the three
endogenous quinones. In addition, formate dehydrogenase,
lactate dehydrogenase, and succinate dehydrogenase may also
donate electrons to the quinone pool, thereby oxidizing their
respective substrate. The quinone pool of E. coli consists
of three quinone types, the benzoquinone ubiquinone (UQ)
and the naphtoquinones demethylmenaquinone (DMK) and
menaquinone (MK); for reviews, see (Unden and Bongaerts,
1997; Sharma et al., 2012), with on average a prenyl side-
chain length of 8 (Meganathan, 2001b). Ubiquinone is primarily
used during aerobic respiration and nitrite respiration (be it,
together with MK; Sharma et al., 2012). Menaquinone is the
primary quinone under anaerobic conditions. It is amongst
others specifically required for formate dehydrogenase activity
and for DMSO (dimethylsulfoxide) reduction (Wissenbach et al.,
1990). In agreement with this it has been observed that the total
level (i.e., oxidized plus reduced) of the ubiquinones increases,
and the total level of the menaquinones decreases, when
aerobiosis is gradually increased from 0 to 100% (Bekker et al.,
2010). DMK has a rather broad specificity regarding its ability
to react with dehydrogenases and reductases/oxidases (Unden
and Bongaerts, 1997; Sharma et al., 2012). The three terminal
oxidases of E. coli, cytochrome bo oxidase, cytochrome bd I
oxidase and cytochrome bd II oxidase (Bekker et al., 2009), are
somewhat specific in terms of the quinol electron donor that they
prefer, one of the determining factors being their mutual redox
midpoint potential (Unden and Bongaerts, 1997), but all three
can oxidize both ubiquinol and demethylmenaquinol (Sharma
et al., 2012). Other terminal electron acceptors use dedicated
enzymes such as nitrate (NarGHI), fumarate (FrdABCD), DMSO
(DmsABC), TMAO (trimethylamine N-oxide; TorCDA), and
nitrite (NrfABCD), each with their own quinone specificity
(Unden and Bongaerts, 1997). A final complicating factor in
understanding specificity in electron transfer reactions in the
electron transfer chain of E. coli are the reactions between
reduced and oxidized species of the different quinones. Although
very little solid data on this aspect is available, our previous
studies indicated that this aspect cannot be ignored (Bekker et al.,
2010).

For any E. coli cell living in the ambient environment, the
transition from anaerobic to aerobic conditions and vice versa
is one of the most thoroughgoing transitions. Going through
this transition requires alteration of the functional activity of
a large number of metabolic- and respiratory pathways, to
the extent that the transcription of some 200 genes has to be
adjusted in this transition (Salmon et al., 2005). A large part
of this transcriptional regulation is carried out by the Anoxic
Redox Control (Arc) two-component system, that functions
complementary to three additional systems: FNR, SoxRS, and
OxyR (for a review see Iuchi and Weiner, 1996). The Arc two-
component system consists of the classical response regulator
ArcA, and the redox-sensitive, membrane-embedded kinase,
ArcB. ArcA can both be phosphorylated (leading to formation
of the transcriptionally active state) and dephosphorylated (its
inactive state) by ArcB.
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The signal-induced switching of the activity of ArcB, between
its kinase- and phosphatase function, is the subject of this study.
After an early consensus that it could not be molecular oxygen
that is the signal for ArcB, Georgellis et al. (2001) convincingly
showed that in vitro, UQ0 inhibits the autophosphorylation
of ArcB – and by inference its kinase activity – and UQ0H2
actives it. With Alexeeva et al. (2002) we introduced a system
that allows titration of the rate of electron transfer to oxygen
in chemostat-grown cells of E. coli – the aerobiosis system.
If it would be only the redox state of the ubiquinone pool
that would regulate the activity of the ArcB sensor one would
predict that in this aerobiosis system a sigmoidal relation
would be obtained between ArcB activity and the degree of
aerobiosis (reflecting the gradual transition of predominance of
ubiquinol/ubiquinone). We did observe, however, a relation that
was more complex (Alexeeva et al., 2002; Bekker et al., 2010),
and interpreted this result as a consequence of the fact that not
only ubiquinol but also (dimethyl)menaquinol would be able to
reduce, and hence activate, ArcB. Conversely, other authors have
found different relations between aerobiosis and ArcB activity
(e.g., Rolfe et al., 2011; Alvarez et al., 2013; Steinsiek et al.,
2014)

Although, meanwhile we have provided more evidence
supporting our interpretation (Sharma et al., 2013), Alvarez
et al. (2013) have published an updated model for the regulation
of ArcB activity by the quinone pool of E. coli, based on an
in vivo determination of the redox midpoint potential of the
redox-sensitive active site cysteine(s) residue of ArcB. Using the
system of cysteine/cystine redox buffers a value of −41 mV
was obtained for one (or both) of the critical cysteines that
have been assigned to this role. They went then on to argue
that it would be logical to assume that ubiquinone (with a
midpoint potential of +100 mV) can only inactivate ArcB (and
by inference: ubiquinol cannot activate it), although we have
clearly demonstrated (amongst others through the use of so-
called UQ-only mutants) that both ubiquinol and menaquinol
can both activate ArcB in E. coli (Bekker et al., 2010; Sharma
et al., 2012). Nevertheless, Alvarez et al. (2013) postulate their
‘yin and yang’ model for ArcB regulation: exclusive activation of
ArcB by menaquinol (midpoint potential:−74 mV) and exclusive
inactivation by ubiquinone.

The laws of thermodynamics, however, hold that whether or
not two redox active molecules will react – besides chemical
specificity – is not so much dictated by their redox midpoint
potential, but rather by the actual redox potential of the two
couples involved (Berg et al., 2002). Therefore, there is no
compelling a priori reason to assume that high concentrations
of ubiquinol would not be able to activate ArcB, nor high
concentrations of menaquinone to de-activate it, particularly
if activation of a subset of ArcB molecules would suffice to
increase the net phosphorylation level of ArcA. Therefore,
we have constructed three mutants of E. coli that contain a
single quinone type only, and studied ArcB regulation in these
strains. Consistent with our previous observations, here we
report that all three ‘single-quinone’ mutants display the ArcB
activation/deactivation cycle.

For the construction of the menaquinone-only mutant we
cloned the ubiE homolog menH from Bacillus subtilis in E. coli.
The resulting mutant strain turned out to convert essentially all
its demethylmenaquinone/ol into menaquinone/ol.

MATERIALS AND METHODS

Strains Used in this Investigation
All strains used in this study are derived from the E. coli K12
wild type strain MG1655 (Table 2). This strain contains all
three biologically active quinones that are known to be present
in E. coli. The deletion mutants AV34 and AV36, containing
only UQ and only DMK, respectively, were obtained from
our own strain collection (Sharma et al., 2013). The DMK-
only and MK-only strains were constructed using the Gene
Doctoring system (Lee et al., 2009). Plasmids were designed and
constructed based on pDOC-K, to delete ubiCA or introduce ubiE
or menHBsu and combinations of these, using a spectinomycin
resistance cassette (-S) from pDG1661 (Guérout-Fleury et al.,
1996) instead of the kanamycin resistance cassette (-K). The ubiE
gene or its homolog menH from B. subtilis were genomically
integrated in the yoeG locus, which we assumed to be a neutral
site, by using pDOC-K-yoeG-ParaMenH [note that yoeG is
annotated as the defective integrase of the CP4-44 prophage
(Wang et al., 2010)]. For all plasmids, 250 bp of the 3′ and
5′ ends of the target locus were cloned into the pDOC vector,
to allow homologous replacement with the resistance cassette
(and additional genes when present). The arabinose inducible
promotor used (Para) was PCR amplified from pACBSCE and
fused to the downstream gene with an overlap-extension PCR.
For overexpression of menHBsu, 0.1% arabinose (w/v) was
used.

It is important to note that selection of MK-only E. coli
mutants was successful only (in our hands) when LB-agar plates,
containing 20 mM glucose and 0.2 mM UQ0, were used under
strict anaerobic conditions, in an anaerobic jar flushed with N2
and containing an AnaeroGen pack (Oxoid, Thermo Scientific)
to eliminate remaining traces of O2. When cultured under
(micro)aerobic conditions for longer periods of time, multiple

TABLE 2 | Strain and plasmids used in this study.

Name Genotype Reference

E. coli MG1655 K-12 wild type Lab stock

E. coli AV34 1menA::kan Sharma et al., 2013

E. coli AV36 1ubiE::kan Sharma et al., 2013

E. coli DMK-only 1ubiE::kan 1ubiCA::Spc This study

E. coli MK-only 1ubiCA::Spc 1yoeG:: Kan
Para-menHBsu

This study

pACBSCE [see reference] Lee et al., 2009

pDOC-K [see reference] Lee et al., 2009

pDOC-K-yoeG-
ParaMenH

See text, Supplementary
Figure S1A

This study

pDOC-S-ubiCA See text, Supplementary
Figure S1B

This study
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revertant mutants could be picked up, containing DMK only or
DMK + MK, which in liquid cultures outcompete the MK-only
strain.

Growth of the E. coli Strains in Batch
Culture
All strains were inoculated from single colonies and pre-cultured
in LB medium containing 20 mM glucose and 50 mM DMSO
(dimethylsulfoxide) at 37◦C under continuous agitation with
anaerobic conditions in a jar flushed with nitrogen gas. This
culture was used as a 0.1% inoculum for 25 ml cell cultures
which were grown as anaerobic batch culture at 37◦C using
Evans’ salt medium with nitrilo-acetic acid (2 mM) and sodium
phosphate buffer (100 mM, pH 7) to increase buffering capacity
(Evans et al., 1970; Sharma et al., 2013). Glucose (20 mM)
was used as carbon source and 50 mM DMSO was used as
terminal electron acceptor. For anaerobic transition experiments,
the contents of these were then transferred to a batch fermenter
containing 500 ml of Evans’ medium containing 20 mM glucose,
no extra DMSO and continuous nitrogen gas sparging at a
flow rate of 50–80 ml/min to maintain anaerobic conditions.
These anaerobic cultures, were used for the anaerobic/aerobic
transition experiments, keeping all the other conditions the same.
All strains were assessed in at least three biologically independent
replicates.

Quinone Extraction and Analysis
The extraction and analysis of quinones was carried out
essentially as described by Bekker et al. (2007). Briefly, at each
time point a 2 ml sample was taken in 6 ml of a 1:1 (v/v)
mixture of ice-cold methanol and petroleum ether (evaporation
temperature 40–60◦C). The mixture then was vortexed for
1 min and centrifuged at 3,000 rpm for 1 min. Then the
upper petroleum ether phase was transferred to a glass tube
under a nitrogen atmosphere and containing 80 µl 1-hexanol.
After evaporation of the petroleum ether (20–30 min), the
1-hexanol was transferred to a glass high-performance liquid
chromatography (HPLC) vial and stored at −20◦C until analysis
within 48 h.

The samples were fractionated with HPLC using a
reversed-phase Lichrosorb (Chrompack, Bergen op Zoom, The
Netherlands) RP10 C18 column (size, 4.6 mm; internal diameter,
250 mm). The column was equilibrated with pure methanol as
the mobile phase at the flow rate of 2 ml/min. Detection of the
quinones was performed using a UV/Vis absorption detector at
290 nm for ubiquinone (UQ) and at 248 nm for naphtoquinones
(DMK and MK). All reduced quinone species were also detected
with an Agilent 1200 series fluorescence detector, coupled in
series with a UV/Vis detector, using 238 and 375 nm as the
excitation- and emission wavelength, respectively, with the
photomultiplier gain set to 12. The amount of each quinone
species was calculated from the relevant area under the peak.

Standards of all (oxidized) quinone species were prepared
by isolating relevant fractions from the HPLC and re-extracting
these as described above. Concentrated and purified quinones
were analyzed on a UV/Vis spectrophotometer and based on their

respective extinction coefficient (White, 1965; Holländer, 1976),
their concentrations were determined. The UQ8 used in some
experiments to assist the respiratory chain of the MK only strain
were obtained as described above, from cultures of E. coli AV34.

Measurement of ArcA Phosphorylation
with Phos-tag Electrophoresis
Relative ArcA phosphorylation levels were measured with
Phos-tagTM-acrylamide gel electrophoresis and Western
immunoblotting as described by Rolfe et al. (2011). The purified
ArcA and antibodies were obtained as described (Bekker et al.,
2010). In vitro phosphorylation was achieved by incubation of
ArcA in 30 mM HEPES pH 7.5, 10 mM MgCl2, 25 mM acetyl
phosphate and 10% glycerol. All samples were taken from at least
three biologically independent replicates, sampled in technical
duplicates.

Metabolite Analysis
Samples from each time point were processed for HPLC
analysis essentially as described before (Sharma et al., 2012); a
1 ml sample was mixed with 100 µl 35% perchloric acid and
subsequently 55 µl 7 M KOH was added. Filtered supernatants
were analyzed for glucose consumption and fermentation
products. Glucose, pyruvate, lactate, formate, acetate, succinate,
and ethanol contents were determined by HPLC (LKB and
Pharmacia, Oregon City, OR, USA) using a REZEX organic
acid analysis column (Phenomenex, Torrance, CA, USA) at
45◦C, with 7.2 mm H2SO4 as the eluent, using an RI 1530
refractive index detector (Jasco, Easton, MD, USA) and AZUR
chromatography software (St. Martin D’Heres, France) for data
analysis.

RESULTS

Construction of Three ‘Single Quinone’
E. coli Strains
To characterize the role of the various quinones of E. coli in the
regulation of the activity of two-component kinase/phosphatase
ArcB, we set out to construct a set of E. coli strains that have
only one single quinone species. In E. coli, three dominant
quinone types are found that are active in facilitating electron
transfer in the respiratory chain (Sharma et al., 2012). These are
the benzoquinone ubiquinone (UQ) and two naphtoquinones,
demethylmenaquinone (DMK) and menaquinone (MK; see also
Figure 1). From a batch culture of wild type E. coli MG1655,
both the oxidized and reduced form of all three types of quinone
can be identified, as is shown in Figure 2A. We note, however,
that without specific precautions the oxidized/reduced (ox/red)
ratio observed in such samples for the menaquinones does
not accurately reflect their in vivo ox/red ratio because of the
rapid spontaneous auto-oxidation, in contrast to the observations
made with ubiquinone (Bekker et al., 2010; Sharma et al., 2013).
Furthermore, for optimal quantification of these six species three
different detector settings are required, for absorption at 248 and
at 290 nm and for fluorescence emission, respectively.
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FIGURE 1 | Biosynthesis routes of the quinones of Escherichia coli, starting from chorismate. Dashed arrows indicate enzymes deleted in mutants used in
this study. The double arrow symbolizes the action of the introduced heterologous MenHBsu. The underlined intermediate C1-demethyl-C6-demethoxy-Q8
(DDMQ8) may accumulate in a ubiE mutant strain (for references: see text). Established bio-active quinones are indicated via their abbreviation. UQ, ubiquinone;
DMK, demethylmenaquinone; MK, menaquinone; R, isoprenoid sidechain.

Strains were available from previous studies that contain as
their sole quinone either ubiquinone (i.e., AV34) or demethyl-
menaquinone (AV36; Sharma et al., 2013). DMK is the direct
precursor of MK and its methylation is catalyzed by UbiE (Lee
et al., 1997). A knock-out of only ubiE, however, would lead
to accumulation of C1-demethyl-C6-demethoxy-Q8 (DDMQ;
see Figure 1). DDMQ most probably is redox-active (our
unpublished results and Aussel et al., 2014) and might substitute
for UQ, together with DMK in electron transfer reactions in
the electron transfer chain. Therefore a 1ubiE strain would not
be suitable for proper analysis of the role of DMK. Instead,
it is important to use a 1ubiE 1ubiCA double mutant for
such experiments. Such a mutant strain was constructed by
knocking out ubiCA in AV36 (1ubiE). This was achieved via
the use of plasmid pDOC-S-ubiCA and the resulting strain is
referred to as the ‘DMK only’ strain in the remainder of this
communication.

An E. coli strain with MK as its sole quinone cannot be created
by a gene knock-out only. The alternative approach that we
initially selected, i.e., overexpression of ubiE in a 1ubiCA mutant
strain (i.e., a strain that does not contain ubiquinone) did not
result in complete conversion of DMK to MK (our unpublished
results). The Gram-positive soil-dwelling bacterium B. subtilis
uses MK as the sole quinone in its respiratory chain. Because the
biosynthesis pathway of MK in B. subtilis is very similar to that of
E. coli, we decided to overexpress the UbiE homolog MenH from
B. subtilis in E. coli MG1655 and in its 1ubiCA derivative strain.

As can be seen in Figure 2B, induced expression of a genome-
integrated copy of menH completely eliminated the presence of
DMK in the mutant strain. Subsequent long term cultivation

of this MK-only strain under aerobic conditions resulted in the
emergence of revertant strains that readily out-competed the
original mutants via a mutation that altered expression of one or
both of the methyltransferases (i.e., giving rise to a DMK plus
MK- or even DMK-only phenotype; our unpublished results).
However, anaerobic cultivation with DMSO as the terminal
electron acceptor resulted in dense cultures within 48 h with a
stable, MK-only phenotype (Figure 2B). Figure 2B also confirms
the phenotype of the other two single quinone strains. The
components visible in the MK only strain eluting at 22 min, and
the fluorescent component in MG1655 eluting at 17 min. have
not been further identified.

The Phosphorylation State of ArcA
We next carried out a series of (an)aerobic transition experiments
with the wild type strain and the three single quinone strains
(Figure 3). The strains were pre-cultured under anaerobic
conditions in Evans’ medium, with glucose as the carbon and
energy source, and subsequently transferred to shake-flasks and
flushed with N2. After a few hours of growth, the cultures were
switched from sparging with N2 to sparging with compressed
air (60 min), and then back to N2 (60 min), during which
samples were taken. It can be seen that the growth rate of
all three single quinone strains is reduced compared to that
of the wild type strain. Cells sampled from these cultures
were then assessed for the phosphorylation state of ArcA
(Figure 4) and the redox state of their (ubi)quinone pool
(Supplementary Figure S2).

The anaerobic- to aerobic shift assay with MG1655 shows
that both kinase as well as phosphatase activity of ArcB can
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FIGURE 2 | Separation and quantification of the main quinone types of
E. coli. (A) High-performance liquid chromatography (HPLC) trace of E. coli
MG1655 with the eluate analyzed with A248, A290 and fluorescence. The
identified quinones are indicated. UQ, ubiquinone; DMK,
demethylmenaquinone; MK, menaquinone. Note that UQ is not fluorescent at
these wavelengths and that the peak in the fluorescence channel at
approximately 17 min. does not correspond to UQ. (B) HPLC traces recorded
at 248 nm of E. coli strains AV34, DMK-only (AV36), MK-only (i.e., E. coli
1ubiCA complemented with menH from Bacillus subtilis. UQ, ubiquinone;
DMK, demethylmenaquinone; MK, menaquinone.

be observed (Figure 4A). However, during the first 40 min
of the experiment generally a lower level of ArcA∼P was
observed than the level shortly after switching back to anoxic
conditions. This is consistent with earlier experiments which
showed highest UQH2/UQ ratios immediately upon anaerobiosis
(Bekker et al., 2007). The UQ-only strain AV34 had a far stronger
ArcA∼P signal under anoxic conditions and this signal quickly
disappeared when the cells were exposed to oxygen (Figure 4B).
This shows that ubiquinone is able to facilitate the transition of
ArcB’s activity in both directions, i.e., UQH2 can activate and
UQ can inactivate ArcB, contrasting the claim that UQH2 cannot
activate this kinase because of presumed incompatibility of the
respective midpoint potential values.

In the DMK-only strain, ArcA∼P could also be detected.
However, the level of phosphorylated ArcA in this strain is
lower than in the wild type and in AV34 (the UQ-only strain),
but here too, a clear trend during the anarobiosis/aerobiosis
transition could be observed (Figure 4C). This is possibly due

FIGURE 3 | Growth of wild type E. coli and the three single quinone
strains in (an)aerobic transition experiments. The last three data points
correspond to anaerobic growth, except the MK-only strain for which the last
two points are anaerobic. The bar above each panel indicates sparging with
N2 (gray) or air (white). Data represent the average of three biologically
independent replicates, error bars indicate the standard deviation.

to ArcB’s preference for ubi- rather than menaquinols, and the
lower midpoint potential of DMK compared to UQ, which may
decrease the rate of electron transfer from DMKH2 to ArcB.
A similar observation was made in the MK-only strain, where
very little ArcA∼P was observed in our anaerobic/aerobic shift
assay (Figure 4D).

The MK-only strain showed the lowest level of ArcA∼P, but
the anaerobic/aerobic/anaerobic trend is clearly visible. These
results demonstrate that all three quinone species are able to
control the activity or ArcB.

The Redox State/Potential of the
(Ubi)quinone Pool
The quinone pool redox state is considered to be the main
regulatory input signal for ArcB-kinase activity, by regulating its
switching between kinase and phosphatase activity. In order to
link the Q-pool redox state with the ArcA phosphorylation state
directly, the Q-pool redox state was measured using an HPLC
setup as described before (Bekker et al., 2007; Sharma et al., 2013).
Reduced UQ and DMK appeared to be quite stable in hexanol
at room temperature for the time period necessary to extract
and isolate these quinones. However, MKH2 (auto)oxidized
very rapidly. The data presented here on the MK redox state
(Supplementary Figure S2) can therefore not be considered to
represent the in vivo state.

In the wild type organism, the UQ/UQH2 ratio seems to
follow the anaerobic/aerobic shift reasonably well, being more
reduced under anaerobic conditions and becoming oxidized
when oxygen is present (Supplementary Figure S2A). Both DMK
and MK are more reduced under initial anaerobic conditions,
but as these pools are more rapidly oxidized and less rapidly
reduced, no clear peaks are seen with the later samples (e.g.,
Supplementary Figure S2B). Strikingly, under aerobic conditions,
the level of MK dropped below the detection limit in some
samples. As soon as anaerobic conditions returned, MK levels
rose again.
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FIGURE 4 | All quinones of E. coli can both reduce (activate) and oxidize (inactivate) ArcAB/A. ArcA∼P Phos-Tag Western Blot of E. coli strain used in this
study. The lower band represents ArcA while the upper band represents ArcA∼P, which is slowed down by the Phos-Tag gel during electorphoresis. The first two
lanes are reserved for the ArcA standard, and in-vitro phosphorylated ArcA, respectively. P indicates the pre-culture and the other lanes the sampling time (min). The
bar on top of (A–D) indicates N2 (gray) or air (white) sparging. (A) E. coli MG1655, (B) E. coli AV34 (UQ-only), (C) E. coli DMK-only, (D) E. coli MK-only, (E) Graph of
the phosphorylation level of ArcA in the different strains used in this study. The bar graphs shows the results of densitometric quantitation of the ArcA∼P/ArcA ratio.
Data represent the average of three biologically independent replicates, error bars indicate the standard deviation.
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Effect of the Quinone Composition on
the Pattern of Fermentation Products
Formed in the Three Single- Quinone
Mutants during (An)aerobic Transitions
Because metabolic end-products reflect the cell’s physiology,
the remaining extracellular glucose and several additional exo-
metabolites were analyzed quantitatively with HPLC. As the
phosphorylation state of ArcA modulates the expression of
several of the respiratory chain components and TCA-cycle
enzymes, the degree of activation (i.e., phosphorylation state)
of this response regulator might also be inferred from the
composition of these metabolic end products.

During anaerobic growth (and also in the pre-culture; data
not shown), considerably more formic acid is formed by all
three single quinone strains, as compared to the wild type
organism (Supplementary Figure S3). This formic acid is rapidly
consumed in both MG1655 and AV34 (the UQ only strain)
under aerobic conditions. When these strains are switched back
to anaerobiosis, formic acid production only slowly resumes. The
two menaquinone containing strains, under aerobic conditions,
do not appear to catabolize the formic acid produced.

Besides this, MG1655 and AV34 mainly secrete acetate as a
result of overflow metabolism (Supplementary Figures S3A,B).
Strain AV34 (UQ-only) secretes predominantly acetate under
glucose-excess conditions. Strikingly in the two naphtoquinone-
only producing strains, i.e., DMK-only, but especially the MK-
only strain, fermentation is mostly directed toward lactate
production, thus preventing NAD+ depletion.

DISCUSSION

Construction of the
Single-Naphtoquinone Containing
Strains of E. coli
We set out to investigate the signals inducing transitions of the
activity of ArcB, between its kinase- and phosphatase function.
Rather than modulating the concentration of all six quinone
species in wild type strains (see Figure 2A) we choose to
construct mutants that contain the oxidized and reduced form
of a single quinone only. From previous work both a UQ
only (AV34) and a ‘DMK only’ strain (AV36) were available
(Sharma et al., 2013). The latter, however, was constructed
in such a way that there was considerable risk that a redox-
active intermediate, C1-demethyl-C6-demethoxy-Q8 (DDMQ),
with a midpoint potential likely more positive than UQ) would
accumulate, which then also might become involved in the
(de)activation of ArcB. We therefore constructed an improved
version of the DMK only strain and a strain containing
exclusively MK as its quinone.

For construction of this latter strain it is relevant to know that,
in contrast to E. coli, B. subtilis uses only MK in its respiratory
chain, and that this organism also possesses a cytochrome c
oxidase branch in addition to its quinone oxidase branch (Poole
and Cook, 2000; Winstedt and von Wachenfeldt, 2000) in its
electron transfer chain. Intriguingly, B. subtilis has a stronger

preference for aerobic conditions than E. coli does (Nakano and
Zuber, 1998). Despite the fact that the route of synthesis of MK
is similar in both organisms, no DMK has been observed to be
present in B. subtilis, nor is this naphtoquinone assumed to have
a biological function in this Gram-positive organism (Kröger and
Dadák, 1969; Taber et al., 1981). This prompted us to try the
B. subtilis homolog of UbiE, MenHBsu, to convert DMK to MK
in E. coli (Lee et al., 1997). This resulted indeed in very efficient
conversion of DMK, which fully depleted the DMK-pool of E. coli
and allowed the construction of an MK-only E. coli strain, as
was shown by analysis of its quinone complement (Figure 2B).
The latter figure also confirms the phenotype of the DMK only
strain.

The observation that this improved DMK only strain (i.e.,
a strain in which DDMQ no longer can accumulate), grows
reasonably well also aerobically (see Figure 3 and JWAvB
and KJH, unpublished observations) is also relevant because
of “the classic view associating ubiquinone to aerobic growth
and menaquinone to anaerobic growth” (Aussel et al., 2014):
Presumably at least one of the three terminal oxidases of E. coli
has significant affinity for demethyl-menaquinol. Whether or not
the same holds for menaquinol cannot be concluded because of
the high frequency with which suppressor mutants appear (see
Construction of Three ‘Single Quinone’ E. coli Strains) under
the conditions tested. This mutation frequency might decrease
micro-aerobically, as it is possible that reactive oxygen species
(ROS) are formed under aerobic conditions that can cause DNA
damage (Iuchi and Weiner, 1996).

Quinone Specificity of Signal Input into
the Two-Component Sensor ArcB
It is now generally accepted that ubiquinone inhibits the kinase
activity of ArcB and therefore activates its phosphatase function
(10). However, whether the other quinones of E. coli are capable
of doing so has been debated. Based on the relation between the
rate of oxygen consumption and ArcB/A activity we proposed
in 2010 that besides ubiquinone, also a naphtoquinone must be
able to switch ArcB into its phosphatase function (Sharma et al.,
2012).

Although, meanwhile we have provided more evidence
supporting our interpretation (Sharma et al., 2013), Georgellis
et al. have published an updated model for the regulation
of ArcB activity by the quinone pools of E. coli, based on
an in vivo determination of the redox midpoint potential
of the redox-sensitive active site cysteine(s) residue of ArcB
(Alvarez et al., 2013). They propose that ubiquinone (with a
midpoint potential of +100 mV) can only inactivate ArcB,
because ubiquinol would not be able to transfer electrons to
the cysteines of ArcB. This latter conclusion was presumably
also proposed based on earlier work in which it was shown
that UQ0H2 and menadione in vitro cannot activate ArcB (for
review see Malpica et al., 2006). According to their interpretation
only the two naphtoquinols can activate ArcB (13). However,
through the use of a so-called single quinone mutants we had
shown that both ubiquinol and presumably also menaquinol
can activate ArcB in E. coli (Bekker et al., 2010; Sharma et al.,
2012).
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We here show that all three types of E. coli cells with a
linear respiratory chain at the quinone level are capable of
regulating (i.e., activating and deactivating) the activity ArcB,
that is, in all three single-quinone strains, the ArcA/ArcA∼P
ratio responds to modulation of the redox state of the respective
quinone pool through variation of oxygen availability. For
both naphtoquinone-containing strains this is new evidence;
for the DMK only strain because we can now exclude that
the biosynthetic intermediate C1-demethyl-C6-demethoxy-Q8
might have been responsible for modulation of ArcB activity in
this strain instead (see also above).

In our anaerobic/aerobic transition experiments, low levels
of ArcA∼P were found in the (D)MK-only strains. Presumably,
residual amounts of oxygen and/or DMSO are still being
reduced, which helps to keep the respective quinone pool
in a partially oxidized state. Here, it is also relevant to
note that SixA may inhibit the kinase activity of ArcB
when alternative electron acceptors are available (Matsubara
and Mizuno, 2000). Nevertheless, also long-term anaerobic
incubation showed clearly that the ArcB/A system is functional
and ArcA can be phosphorylated in vivo in these strains (our
unpublished results). These results re-enforce the interpretations
made in our earlier studies (6, 8). In these interpretations
the first-order assumption would be that all three quinols
activate ArcB with the same rate. At this stage it seems
that this assumption does not fully hold. But then again of
course rates of ArcB activation are not only determined by
quinol specificity, but also by their concentration which are
partly determined via the redox potential of the respective
pools.

Effect of Single Quinone Mutations on
the Fermentation Products Produced
during (An)aerobic Transitions in Batch
Cultures of E. coli
Several notable effects can be observed in the pattern of formation
of fermentation products in the wild type and in the three single
quinone mutants in batch cultures undergoing (an)aerobiosis
transitions (Supplementary Figure S3). Glucose is indeed much
faster consumed in the wild type than in the three mutants,
consistent with the growth rate of the four strains (Figure 3),
be it that a significant part of it is converted into acetate
and ethanol via overflow metabolism (Liao and Farmer, 1997;
Picon et al., 2005). Succinate production is considerably lowered
in the two naphtoquinone-only mutants, as compared to the
wild type strain, consistent with the fact that the fumarate
reductase enzyme is specific for menaquinone (Wallace and
Young, 1977). However, this lowered succinate production
is also observed in the UQ only mutant (Supplementary
Figure S3B). Formate does not appear to be degraded by
the DMK and MK–only strains, in agreement with earlier
reports (Wallace and Young, 1977). The most striking difference
between the four strains is the high rate of lactate formation,
which goes at the cost of formation of the other fermentation
products, in the two mutants that cannot make ubiquinone.
This might confirm that the respiratory lactate dehydrogenase

(LdhA) is highly specific for ubiquinone as the electron
acceptor, as it would produce D-lactate (Futai, 1973; Wallace
and Young, 1977; Matsushita and Kaback, 1986). However,
the methylglyoxal pathway could produce significant amounts
of lactate (L+D), which would bypass central metabolism
completely. To what extent this shunt is used is beyond the
scope of this investigation. There has been speculation in the
literature that specific fermentation products, e.g., D-lactate,
might also modulate the activity of ArcB (Georgellis et al.,
1999; Rodriguez et al., 2004), without, however, proposing a
mechanism for this. We think that the current results do not
provide incentives to try and propose such a mechanism (Malpica
et al., 2006).

Measurement of the Redox State of the
Pools of the Naphtoquinones
In experiments with Bacillus megaterium, the menaquinone pool
has been observed to be in a highly reduced state (up to
85% reduced) when cells were grown anaerobically, while in
the same cells under aerobic conditions this pool was found
to be only 10% reduced (Kröger et al., 1971). However, to
obtain these results an approach is required that uses specialized
equipment; and this approach is only suitable for species with
a single type of quinone. DMK too has been assessed in a
similar fashion, in Hemophilus parainfluenzae (White, 1965).
These levels for MK and DMK are not very different from
what has been observed in E. coli for UQ (Bekker et al.,
2007). It would be very interesting to find out whether DMK
and MK can be reduced to a similarly high level in E. coli,
but such experiments are technically very challenging. It is
relevant to note that with a similar procedure as the one used
here, plus extra precautions for very rapid analysis, it was
possible to analyze the in vivo redox state of plastoquinone in
Synechocystis sp. PCC6803 (Schuurmans et al., 2014). We do
anticipate, however, that the data on the in vivo amount of
reduced naphtoquinones reported in this contribution represent
a gross underestimate due to the rapid autooxidation of these
quinones.

Outlook
To understand the modulation of the activity of ArcB in even
more detail multi-omics analyses will be necessary, similar to
the ones recently published for glucose repression (Borirak
et al., 2015). That approach provides a more detailed picture
of the metabolic consequences of ArcB (de)activation, and
also an independent and complementary way to assay this via
transcript profiling (e.g., Wareham et al., 2016). In such future
experiments it will be an asset to be able to modulate the size
of the proton motive force independently and orthogonally,
e.g., with a light-dependent proton pump like proteorhodopsin,
because of the recent report that that will allow an independent
modulation of the rate of formation of ROS (see Na et al., 2015).
Such an approach would then also allow for an independent
test whether the size of the proton motive force and ROS
formation can or cannot directly modulate the activity of ArcB
(Bogachev et al., 1995; Iuchi and Weiner, 1996; Malpica et al.,
2004).
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