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and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Ingenuity pathway
analysis (IPA) was carried out using online IPA software. Weighted gene co-expression
network analysis (WGCNA) was performed using the WGCNA R package. By integrating
DEGs and genes from the top 1 phenotype-gene associated module, we determined
the hub gene. We next tested the hub gene, VCAN, in the GSE30122 dataset. We
also validated the versican levels in human kidney tissues, explored immune cell type
enrichment using an online database xCell, and investigated the correlation between
cell types and VCAN expression.

Results: A total of 563 DEGs was identified. A large number of pathways were involved
in the immune response process according to the results of GO, KEGG, and IPA.
Using WGCNA, we selected the lightcyan module in which genes showed the strongest
correlation with the phenotype and smallest P-value. We also identified VCAN as a hub
gene by integrating DEG analysis and WGCNA. Versican expression was upregulated
in human diabetic kidney tissue. Moreover, versican was speculated to play a role in
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immune injury according to the enrichment of functions and signaling pathways. VCAN
transcript levels correlate with the assembly of immune cells in the kidney.

Conclusion: Immune processes played an essential role in DKD tubulointerstitium
injury. The hub gene VCAN contributed to this process.

Keywords: bioinformatics analysis, VCAN, tubulointerstium, immune injury, diabetic kidney disease

INTRODUCTION

Diabetic kidney disease (DKD) has been a leading cause
of chronic kidney disease (CKD) since 2011, surpassing
glomerulonephritis in China (Zhang et al, 2016). Diabetes
accounts for 30-50 % of all CKD cases and affects 285 million
(6.4%) adults worldwide (Webster et al., 2017). Furthermore, the
number of patients suffering from DKD has been increasing.

Given the mortality and morbidity of DKD, numerous
studies have sought to determine the pathogenesis of DKD
and promote pharmaceutical development aiming to slow and
even reverse the progression of DKD. It is widely acknowledged
that hemodynamic alterations, metabolic derangement, immune
dysregulation, and filtration barrier damage cause kidney damage
in DKD (Bonner et al., 2020). Furthermore, increasing evidence
has shown that the renal tubulointerstitium acts as an initiator
and major determinant of DKD pathogenesis (Nath, 1992; Tang
et al, 2011; Tang and Lai, 2012; Gilbert, 2017; Zeni et al,
2017). As a consequence of decreased O, delivery, mitochondrial
dysfunction, increased O, consumption, and non-ischemic
pathways, renal tubule cells and the interstitium are damaged
by apoptosis and fibrosis (Gilbert, 2017). Accordingly, some
clinical trials, including the use of ARB/ACEI (IDNT (Rodby
et al., 2000), RENAAL (Brenner et al., 2001)), SGLT-2 inhibitor
(EMPAREG (Zinman et al., 2015), CANVAS (Neal et al., 2017),
and CREDENCE (Perkovic et al, 2019), and GLP-1 analogs
LEADER (Marso et al., 2016), REWIND (Gerstein et al., 2019)
have demonstrated the effectiveness of slowing the progression of
DKD. The role of inflammation in DKD progression has received
wide attention in recent years (Yang and Mou, 2017; Hickey and
Martin, 2018; Matoba et al., 2019; Tang and Yiu, 2020). However,
no major clinical trials have targeted immune disorders in DKD
because the underlying mechanisms are not well-understood.

Currently, the development of high-throughput technologies
and online bioinformatics databases has enabled researchers to
explore disease-related genes and the underlying mechanisms
of diseases. As a widely used bioinformatics analysis method,
weighted gene co-expression network analysis (WGCNA)
clustered genes with similar expression patterns and provided
trait-related gene information relying on expression data
values. Although many studies have focused on exploring
the genome expression of DKD, none has focused on the
tubulointerstitium of DKD samples, and most bioinformatics
studies lacked verification.

Abbreviations: CKD, chronic kidney disease; DKD, diabetic kidney disease; LD,
living doner; DEG, differentially expressed gene; WGCNA, weighted gene co-
expression network analysis; GO, gene ontology; KEGG, Kyoto encyclopedia of
genes and genomes; IPA, ingenuity pathway analysis; GS, gene significance; MM,
module membership; CS, chondroitin sulfate; Tem cells, T effector memory cells.

In this study, we selected a subset of microarray gene
expression profiles from GSE104954, which was uploaded to
the Gene Expression Omnibus database in a previous study
(Grayson et al., 2018). Using WGCNA-based methods, we first
identified VCAN as a hub gene with an essential role in the
immune response during DKD progression. We then validated
that versican was differentially expressed in kidney tissues from
patients with DKD and in kidney living donors (LDs).,

MATERIALS AND METHODS

Data Download and Preprocessing

The microarray gene expression profiles of renal
tubulointerstitium were downloaded from the Gene Expression
Omnibus database'. Data from GSE104954, including the data
of seven patients with DKD (GSM2811029-GSM2811035)
and eighteen LDs (GSM2811043-GSM2811060), were used as
query arrays. Data from GSE30122 were used for validation.
Raw data were downloaded, and analysis was conducted using
the affy package in R version 3.6.2. Before being included
in the analysis, the data were evaluated by the normalized
unscaled standard error (NUSE), RNA degradation, relative
log expression (RLE), probe level models (PLM), principal
component analysis (PCA), and sample clustering, and, finally,
the GSM20811043 was discarded.

Identification of Differentially Expressed
Genes (DEGs)

DEGs were analyzed using the limma package. The cutoff criteria
of DEGs were as follows: adjusted P-value < 0.05 and |log, fold-
change| > 1. Volcano plots and heatmaps were created using the
ggplot2 package in R.

Function Analysis

An online database, g:Profiler?, was used for functional profiling
of the DEGs. The top 10 ranked from four sub-databases,
including molecular function, cellular component, biological
process, and KEGG, were demonstrated separately in bubble
plots using the ggplot2 package. Ingenuity Pathway Analysis
(IPA) software (Qiagen, Hilden, Germany) was also used to
explore the pathways involved. The top 30 canonical pathways
and top network were determined.

"https://www.ncbi.nlm.nih.gov/geo/
Zhttps://biit.cs.ut.ee/gprofiler/gost
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WGCNA

Gene expression valuation and hierarchical cluster analysis
were carried out using the WGCNA R package (version
1.61°). Gene expression array from GSE104954 was used for
analysis. The main processes used in WGCNA were co-
expression network construction and module identification,
identification of disease-associated modules, and enrichment
analysis of key modules. Module- and phenotype-associated
genes were screened under the following conditions: gene
significance (GS) > 0.2 and module membership (MM) > 0.8.
These genes were further imported into Cytoscape 3.7.2
(Shannon et al., 2003) to identify the hub genes. Hub
genes were ranked using cytohubba (Chin et al, 2014)
by several topological algorithms including degree, edge
percolated component, maximum neighborhood component,
density of maximum neighborhood component, maximal clique
centrality, and centralities based on shortest paths, such as
bottleneck, eccentricity, closeness, radiality, betweenness, and
stress. Subsequently, hub genes intersected with the DEGs.

Validation of Hub Gene

GSE30122 was utilized as a validation array to further verify the
hub gene. Paraffin-embedded kidney sections were collected from
6 healthy living transplant doners and 6 DKD patients who were
diagnosed with pathology in 2021. The experiment protocols
were approved by the Research Ethics Committee of The First
Affiliated Hospital, College of Medicine, Zhejiang University.
Kidney paraffin sections from patients with DKD and LDs were
stained with versican. Briefly, paraffin-embedded sections were
dewaxed, incubated in citrate buffer at 95-98°C for 10 min for
antigen retrieval, followed by in 0.3% H,O, for 30 min at room
temperature to block endogenous peroxidase in blocking buffer
(5% bovine serum albumin) for 30 min to block non-specific
binding, and then incubated with anti-versican antibody (Abcam,
Cambridge, United Kingdom, ab19345, 1:150) overnight at 4°C,
followed by incubation with secondary antibody for 30 min at
room temperature. The DAB substrate solution was applied to
visualize the color of primary antibody staining. The sections

3https://cran.r-project.org/web/packages/ WGCNA/index.html

were counterstained with hematoxylin, dehydrated, vitrified, and
sealed with neutral balsam.

Gene Function Prediction

Gene expression data were uploaded to the xCell database®* for
cell type enrichment analysis. Furthermore, correlation analysis
between the VCAN gene and cell types was conducted using SPSS
software (version 23; SPSS, Inc., Chicago, IL, United States).

RESULTS
Identification of DEGs

After integrating quality evaluation of all transcriptome data
from DKD and LD samples (Supplementary Figure 1), we
omitted GSM2811043. Therefore, kidney transcriptome data
from seven patients with DKD and seventeen LDs were included
for further analysis. We identified 563 DEGs between the DKD
and LD groups. These DEGs were defined based on adjusted
P-values < 0.05 and log, fold-change > 1. Among the DEGs,
316 genes were upregulated, and 247 genes were downregulated.
All genes are displayed in Figure 1, and DEGs are listed in
Supplementary Table 1. The top 30 DEGs ranked in order oflog,
fold-change are listed in Table 1. Additionally, the top 10 ranked
in order of log, fold-change were annotated in a volcano plot.

Functional Enrichment Analysis of DEGs

DEGs were uploaded to g:Profiler to identify GO and KEGG. As
shown in Figure 2A, the most involved process or component
in GO included immune system process, response to an external
stimulus, immune response (biological process), external
space, external region (cell component), glycosaminoglycan
binding, signaling receptor binding, and identical protein
binding (molecular function). The significantly enriched
KEGG pathways were involved in rheumatoid arthritis,
cytokine-cytokine receptor interaction, and Staphylococcus
aureus infection. Additionally, DEGs were analyzed using
IPA software. The canonical pathways were enriched in
various aspects, including LXR/RXR activation, acute phase

*https://xcell.ucst.edu/

* Down-regulated DEGs
* Not DEGs
Up-regulated DEGs

log2 fold change

annotated. (B) Heatmap of DEGs identified.

FIGURE 1 | DEGs between seven patients with DKD and seventeen LDs from GSE104954. (A) Volcano plot of all genes in GSE104954 and top 10 DEGs were
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TABLE 1 | Top 30 DEGs identified in gene expression microarray analysis of seven
patients with DKD and seventeen LDs.

Gene Log, P-value  Adj. P-Value Change
fold-change

NPHS2 —4.90159 5.06E—16 9.84E—-12 Downregulated
CXCL6 4.751296 2.16E—12 3.60E—09 Upregulated
LTF 4.244363 1.88E—09 1.02E-06 Upregulated
PCOLCE2 —4.22857 3.20E—15 1.73E-11 Downregulated
BRE-AS1 —3.7554 2.91E-10 2.34E-07 Downregulated
FGF1 —3.73582 9.72E—-15 4.21E-11 Downregulated
NDNF —3.65415 3.42E—-12 5.28E-09 Downregulated
LYz —3.499337 2.79E—-06 0.000161 Upregulated
UsP2 —3.46439 2.86E—10 2.34E-07 Downregulated
CLIC5 —3.4096 5.40E—14 1.68E—10 Downregulated
PDK4 —3.25144 9.09E—16 9.84E—12 Downregulated
CTHRCH1 3.165899 3.56E—10 2.70E-07 Upregulated
DUSP1 —-3.1202 5.43E-14 1.68E—10 Downregulated
VCAN 3.11024 5.16E—08 1.04E-05 Upregulated
CPA3 3.090068 3.49E-08 8.05E—06 Upregulated
ALB —2.99175 0.000588 0.005989 Downregulated
PSPH —2.91351 6.92E—06 0.000289 Downregulated
FCER1A 2.848281 2.97E-08 7.15E—-06 Upregulated
TACA 2.838673 2.03E-08 5.49E-06 Upregulated
ST6GALNAC3 —2.82394 1.41E-13 3.81E-10 Downregulated
PODXL —2.72476 9.63E—13 2.09E—-09 Downregulated
SIK1 —2.66836 5.81E—10 3.82E-07 Downregulated
CYP27B1 —2.6602 6.25E—06 0.000271 Downregulated
ALOX5 2.658193 8.53E—09 2.80E—06 Upregulated
ZBTB16 —2.568168 2.69E-05 0.000708 Downregulated
ERRFI1 —2.56073 4.99E—-09 1.86E—06 Downregulated
CX3CR1 2.508004 2.22E-08 5.80E—06 Upregulated
SOST —2.48456 4.88E—-06 0.000229 Downregulated
IPEK3 —2.48175 3.85E-08 8.51E-06 Downregulated
WT1 —2.47762 2.33E—10 2.02E-07 Downregulated

response signaling, and the complement system (Figure 2B).
We also determined the top network involved in connective
tissue disorders, dermatological diseases and conditions, and
developmental disorder (Figure 2C).

Construction of Weighted Co-expressed
Network and Identification of

Trait-Related Module

One samples were discarded (GSM2811043) (Supplementary
Figure 1), the left 7 DKD and LD kidney samples were clustered
(Figure 3A). We chose a power value of 6 as the closest
value of the scale-free topological fit index of 0.8 (Figure 3B).
We analyzed the correlation between genes and modules and
between different genes (Figures 3C,D) and then determined
the relationship between modules and traits (Figure 3E). The
lightcyan module was the most positively correlated with DKD
(Pearson correlation ratio, 0.73) with the lowest P-value (5e—5).
Furthermore, genes in the lightcyan module showed a strong
correlation with module membership (Figure 3F).

Identification of Hub Genes

In the lightcyan module, we used GS > 0.2 and MM > 0.8 as
cutoffs. We acquired a set of 773 module member significantly
related genes. These genes were analyzed in Cytoscape by using
cytohubba to explore hub genes (Figure 4B). After integrating the
results of WGCNA and DEGs, we identified 8 hub genes, namely
VCAN, PTPRC, RASSF5, CASP1, PLAC8, COROI1A, MARCKS,
and MPEG]I (Figures 4A,C), among which VCAN showed the
most significant change.

Hub Gene Validation

To further evaluate the consistent change in VCAN in DKD,
we performed DEG analysis of GSE30122 (Figure 5A). VCAN
was included in the top 10 DEGs. The relative mRNA
content of VCAN between DKD and LD was significant
(P < 0.0001). Additionally, immunohistochemical staining of
kidney tissue revealed a higher level of versican expression
in the tubulointerstitium from DKD kidney tissue than from
LD (Figure 5B).

Cell Type Enrichment Analysis

xCell is used for cell type enrichment analysis from gene
expression data for 64 immune and stromal cell types. Our
data revealed that the DKD group had higher immune scores,
microenvironment scores, and stroma scores than the LD group.
Of the 64 cell types, scores of 35 types of cells were differentially
expressed between DKD and LD, including immune cells, such
as monocytes, Tregs, dendritic cells, mast cells, Th2 cells, and
CD8™ Tem (Figure 6A) cells. Among these 35 cell types, 32 types
of cells showed a correlation with VCAN expression to varying
degrees (Figure 6B).

DISCUSSION

DKD poses great burdens to the national health system because
of its high morbidity and major expenditure. Once it has
progressed to the dominant albuminuria stage, DKD continues
to progress to end-stage renal disease inexorably. Furthermore,
because of the global increase in CKD caused by diabetes mellitus
each year, we examined the pathogenesis of DKD through
bioinformatics analysis.

To better understand the pathogenesis of DKD, we compared
the transcriptome profiles between DKD and LD. Overall,
563 DEGs were identified. According to GO and KEGG
analysis, these genes were mostly enriched in immune-
related biological processes, such as immune system process,
immune response, defense response, and complement and
coagulation cascades. These processes may be relevant to
various infections and were deduced from enrichment analysis
of pathways, such as viral protein interaction with cytokine
and cytokine receptor, Staphylococcus aureus infection, and
pertussis malaria. Most processes occur extracellularly and
on the cell surface from adhesion interactions, such as cell
adhesion, biological adhesion, signaling receptor binding, cell
adhesion molecules, and cytokine-cytokine receptor interaction.
Additionally, some vesicle-relevant processes are involved in the
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FIGURE 2 | Function profiing of DEGs between seven patients with DKD and seventeen LDs from GSE104954. (A) Bobble plots of GO and KEGG. (B) Top 30
canonical pathways according to IPA. (C) Top 1 network according to IPA.

progression of DKD, such as the phagosome and extracellular
exosome. IPA showed that some immune-relevant pathways
were activated, including acute phase response signaling,
complement system, and the role of pattern recognition
receptors, such as in recognition of bacteria and viruses, leukocyte
extravasation signaling, dendritic cell maturation, systemic
lupus erythematosus in B cell signaling pathway, interleukin-8
signaling, and the Th1 and Th2 pathways.

The immune response exerted a major influence on
the progression of DKD. This result agrees with studies
reporting the involvement of immune system components
in DKD progression. A wide range of proinflammatory
molecules, including cytokines, receptors, chemokines, cell
adhesive molecules, and transcription factors, participate in the
progression of DKD (Navarro-Gonzalez et al., 2011). Infiltration
of a large quantity of immune cells also accelerates the
progression; these cells include macrophages, dendritic cells, T

lymphocytes, B lymphocytes, neutrophils, and mast cells (Nguyen
etal., 2006; Tesch, 2010; Zheng et al., 2012; Yang and Mou, 2017).
Thus, immune cell infiltration, proinflammatory cytokines,
inflammasome activation, immune complex formation, and
complement activation function together to induce kidney injury
(Hickey and Martin, 2018). Additionally, some pharmaceuticals
developed for DKD targeting inflammatory mediators have been
reported as effective to varying degrees (Pichler et al., 2017).

To further examine the relationship between traits and gene
expression, we performed WGCNA. The lightcyan module was
selected to further study the module with the highest correlation
between traits and gene expression. After integrating genes from
DEG analysis and WGCNA, we selected several hub genes with
high fold-changes and high trait relevance. Among them, VCAN
showed the largest difference between the DKD and LD groups.

Versican, translated from the VCAN gene, is a component
of the extracellular matrix and plays a role in modulating
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cell adhesion, proliferation, migration, apoptosis, and ECM
assembly. It also functions in inflammation modulation through
its interaction with immune cell receptors and chemokines. It
exists in four isoforms, namely VO, V1, V2, and V3. These
isoforms differ in two alternative splicing glycosaminoglycan
domains, which are the chondroitin sulfate (CS) attachment
domain (Foulcer et al., 2014). VO, V1, and V3 are found in
most tissues. VO and V1 are major isoforms that accumulate
in disease tissues, and it appears that these two isoforms play
a role in the inflammation process. V3 is thought to inhibit
the pro-inflammatory function of V0/V1 because of its lack of
CS domains. V2 is only expressed in the central neuron system
(Wight et al., 2014a,b; Wight, 2017). In previous studies of CKD,
versican has been discovered as a predictor of disease progression,
but there is no study focusing on the influence of versican on

DKD tubulointerstitium (Rudnicki et al., 2012; Han et al., 2019;
Taylor et al., 2020).

Versican exerts its proinflammatory influence by affecting
the adhesion of myeloid and lymphoid cells (Gill et al., 2010;
Wight et al, 2014a,b). Adhesion of leukocytes, including
activated T-lymphocytes and monocytes, is modulated by
versican (Potter-Perigo et al., 2010; Evanko et al, 2012).
Moreover, versican participates in extracellular matrix
assembly and remodeling. Versican interacts with various
other molecules, including hyaluronic acid, tenascin-R,
fibulin-1, and fibrillin (LeBaron et al, 1992; Aspberg et al.,
1999; Isogai et al, 2002). By controlling extracellular matrix
molecule organization, versican modulates cell invasion.
Therefore, versican can modulate inflammation cell infiltration
in disease tissues. Versican also influences inflammation
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by modulating cytokine release, such as by inducing the
secretion of tumor necrosis factor-a and interleukin-6 in
macrophages (Wight et al, 2014a). A pro-inflammatory
phenotype is prone to tubulointerstitial remodeling and fibrosis
(Hijmans et al., 2017).

We then perform correlation analysis between DEGs and
immune cell types as well as between VCAN transcription data
and immune cell types. Immune scores in the DKD group were
markedly higher than those in the LD group. From another
perspective, proinflammatory cells, such as monocytes, dendritic
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cells, and CD8' Tem (T effector memory) cells increased,
whereas anti-inflammation cells, such as Tregs, decreased.
Among cells showing differential expression between DKD and
LD, the transcription levels of VCAN demonstrated a high
correlation with proinflammatory cells, such as classical dendritic
cells, natural killer cells, mast cells, monocytes, and CD8™
Tem cells. Therefore, versican may reveal inflammation states
by indicating immune cell infiltration in DKD. Furthermore,
versican may mediate DKD inflammatory injury by influencing
the distribution of these immune cells.

There were several limitations to our study. First, our
analysis was restricted by the number of samples enrolled, as
transcriptome data on DKD tubulointerstitium were limited, and
most were tested using different platforms. Therefore, it was
difficult to integrate these data. Second, as mentioned above,
the transcriptional level of VCAN is related to pro-immune cell
expression in DKD tissue; however, it was difficult to draw the
conclusion that versican modulated immune cell infiltration, and
we will work on these issues in our future studies.

CONCLUSION

We identified VCAN as a hub gene in DKD tubulointerstitial
injury by integrating DEG analysis and WGCNA. This result was
further validated in kidney tissue from patients with DKD and
LDs. Moreover, versican was predicted to play a role in immune
injury according to the enrichment of functions and signaling
pathways. The level of versican was correlated with the assembly
of immune cells in the kidney during DKD progression.
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