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Abstract Pseudouridine (W) is the most prevalent post-transcriptional RNA modification and is

widespread in small cellular RNAs and mRNAs. However, the functions, mechanisms, and precise

distribution of Ws (especially in mRNAs) still remain largely unclear. The landscape of Ws across

the transcriptome has not yet been fully delineated. Here, we present a highly effective model based

on a convolutional neural network (CNN), called PseudoUridyLation Site Estimator (PULSE), to

analyze large-scale profiling data of W sites and characterize the contextual sequence features of

pseudouridylation. PULSE, consisting of two alternatively-stacked convolution and pooling layers

followed by a fully-connected neural network, can automatically learn the hidden patterns of pseu-

douridylation from the local sequence information. Extensive validation tests demonstrated that

PULSE can outperform other state-of-the-art prediction methods and achieve high prediction accu-

racy, thus enabling us to further characterize the transcriptome-wide landscape of W sites. We fur-

ther showed that the prediction results derived from PULSE can provide novel insights into

understanding the functional roles of pseudouridylation, such as the regulations of RNA secondary
ion and

ciences /
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structure, codon usage, translation, and RNA stability, and the connection to single nucleotide vari-

ants. The source code and final model for PULSE are available at https://github.com/mlcb-thu/

PULSE.
Introduction

Pseudouridine (W) is known as the most abundant and earliest
discovered modified ribonucleoside among more than 100

types of RNA post-transcriptional modifications that have
been identified so far [1–3]. Because of its prevalence in cellular
RNAs, it has also been considered as the fifth ribonucleoside
[1]. The properties, chemical structure, and distribution of a

W are quite different from those of its parental base (i.e., uri-
dine) [4]. Compared to a uridine, the chemical conformation
of a W allows the formation of an extra hydrogen bond at

its non-Waston-Crick edge [5]. This fact indicates that a W
can form a more stable base stacking conformation [6], which
is believed to play an important role in stabilizing RNA struc-

ture [7]. In ribosomal RNAs (rRNAs), it has been found that
Ws are required for the maintenance of ribosome–ligand inter-
actions and translational fidelity [8]. In addition, Ws in transfer

RNAs (tRNAs) can reduce the conformational mobility of the
structural elements around the modified sites and thus affect
the amino acid transfer efficiency [9]. Such a stabilization func-
tion of Ws in anticodon stem-loop of tRNALys,3 has also been

validated by Nuclear Magnetic Resonance (NMR) spec-
troscopy [10]. Moreover, Ws in spliceosomal RNAs can be
involved in the ribonucleoprotein (RNP) assembling and pre-

mRNA splicing processes [11]. The aforementioned findings
indicate that most likely Ws are tightly related to RNA struc-
ture stabilization, translation process, and RNA stability.

Despite these observations, the underlying mechanisms of
pseudouridylation in the aforementioned processes still remain
to be further explored.

The conversion from a uridine to a W is catalyzed by W
synthases (PUSs) through two distinct processes, including
RNA-dependent and RNA-independent operations [12]. The
RNA-dependent pseudouridylation process relies on the box

H/ACA RNPs, which consist of a small box H/ACA RNA
and four core proteins, including centromere-binding factor 5
(Cbf5; also known as dyskerin in mammals), non-histone

protein 2 (Nhp2), glycine-arginine-rich protein 1 (Gar1), and
nucleolar protein 10 (Nop10), to form a pseudouridylation
pocket for substrate recognition and catalytic activity [13]. In

the RNA-independent pseudouridylation process, a single syn-
thase protein, such as PUS7, is responsible for both substrate
recognition and pseudouridylation catalysis [12]. So far, about
13 types of PUSs in human have been identified, and generally

it is difficult to unveil the consensus catalytic laws of pseu-
douridylation [14]. Moreover, it has been shown that pseu-
douridylation in RNAs is highly dynamic and inducible [12],

which makes it even harder to characterize the properties of
pseudouridylation. On the other hand, RNA modification is
mostly a sequence pattern recognition process, as it is heavily

dependent on the sequence binding preferences of catalytic
proteins [15]. From this point of view, it is reasonable to spec-
ulate that RNA pseudouridylation is determined by the

sequence contexts of the sites being modified.
To characterize the intrinsic properties of Ws, we need to

develop efficient methods to accurately identify W sites at
single-base resolution and obtain a transcriptome-wide map

of Ws. Traditional W detection methods are mainly based on
the N3-CMC labeling and gel electrophoresis experiments
[16], which are often laborious and time-consuming. Recently,

several high-throughput profiling techniques, including
Pseudo-seq [17], W-seq [18], pseudouridine site identification
sequencing (PSI-seq) [19], and N3-CMC-enriched pseu-
douridine sequencing (CeU-seq) [20], have been proposed to

map RNA W sites to reference transcriptomes. These high-
throughput experiments typically combine CMC derivatives
with next-generation sequencing or deep sequencing tech-

niques to detect W sites on a transcriptome-wide scale. How-
ever, these experiments are generally costly and often require
tremendous time and effort in deriving the positions of W sites.

In addition, although recent high-throughput sequencing tech-
niques, such as W-seq and CeU-seq, have been able to identify
large-scale W sites in mRNAs, they may still miss numerous

modification sites due to their intrinsic limitations (e.g., the
incompleteness of CMC-labeling or the read mappability
issue). Therefore, efficient computational approaches to iden-
tify Ws accurately are especially needed to complement these

experimental methods and facilitate the studies of pseu-
douridylation. The computational prediction of
transcriptome-wide W sites and characterization of their

sequence contexts may also provide important hints in under-
standing the functional roles of pseudouridylation in RNA
regulation. Although several computational approaches and

web servers, such as PPUS [21] and iRNA-PseU [22], have
been developed to predict novel W sites, they either can only
be applied to predict PUS-specific sites (i.e., can only predict

PUS4-specific sites for human) or need to use the handcrafted
features derived from the chemical properties of nucleotides.

Recently, deep learning techniques, especially convolu-
tional neural networks (CNNs), have been widely used in

genomic data analyses for extracting accurate sequence fea-
tures [23–25]. CNNs were first developed for handwriting
recognition and face identification [26], and have become one

of the most famous and powerful learning models in the fields
of computer vision, speech recognition, and natural language
processing [27–29]. Despite its powerful predictive capacity,

it remains unknown whether a CNN model can be used to
effectively capture the contextual sequence features of pseu-
douridylation and accurately predict new W sites.

In this study, we have developed a computational frame-

work, called PseudoUridyLation Site Estimator (PULSE), to
predict novel W sites from large-scale profiling data of Ws
based on the sequence contexts of target sites. To our

knowledge, our study is the first deep learning-based attempt
to characterize the contextual sequence features of pseu-
douridylation by fully exploiting the currently available

large-scale profiling data of Ws. PULSE employs a CNN
model, which contains two alternately-stacked convolution
and pooling layers responsible for local feature extraction from

the input contextual sequences and two fully-connected layers
responsible for feature integration and estimation of the
pseudouridylation potential of a candidate site. Tests on both

https://github.com/mlcb-thu/PULSE
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human and mouse data have demonstrated that PULSE can
achieve high prediction accuracy and significantly outperform
other state-of-the-art prediction approaches. The new

sequence features captured by PULSE are not only consistent
with the recognized motifs of known PUSs, but also match the
binding patterns of several nucleotide-binding proteins, which

may provide useful hints for discovering new potential PUSs
or associating proteins. In addition, the underlying sequence
contexts of Ws detected by PULSE offer an effective indicator

to investigate the functional effects of single nucleotide vari-
ants (SNVs) on pseudouridylation, which may help reveal pos-
sible associations between pseudouridylation and complex
diseases. Moreover, the trained PULSE model allows us to

unveil the transcriptome-level characteristics of pseudouridyla-
tion. The prediction results of PULSE provide several new
insights about the functional roles of pseudouridylation. For

example, pseudouridylation is codon biased and rare codons
are more likely to be pseudouridylated to achieve optimal
mRNA translation. Also, our integrative analysis of ribosome

profiling data demonstrated that pseudouridylation is involved
in modulating the translation initiation and elongation pro-
cesses. These results indicated that the predictions of PULSE

may shed light on the underlying mechanisms and functional
roles of pseudouridylation in post-transcriptional regulation.

Method

Data collection and pre-processing

The W modification site data were downloaded from the
RMBase database [30] which includes the high-throughput

profiling data of Ws collected from three recent experimental
studies [17,18,20]. All the labeled W sites were separated into
a human dataset and a mouse dataset. In addition, the overlap
between human and mouse datasets which represents the con-

servedW sites was considered as a relatively reliable dataset for
further model validation. Moreover, the W sites which were
identified by SCARLET from the recent experimental study

[20] were also used for assessing the prediction accuracy of
PULSE. All of the aforementioned modification sites were
mapped to the reference genome (human: hg19; mouse:

mm10) and those that cannot be mapped to thymines were dis-
carded. A sequence of 101-nt length that covers the W site and
has a 50-nt window flanking on its both sides was labeled as a

positive sample, while the sequence of the same length that is
centered at a thymine that is closest to a corresponding W site
and does not have any overlap with any positive sample was
labeled as a negative sample. In the end, we collected 7720

and 6166 samples in total for human and mouse, respectively.
The ratio of positive and negative samples was close to 1
(human: 3901 positive samples vs. 3819 negative samples;

mouse: 3057 positive samples vs. 3109 negative samples). The
sequence samples were then encoded into binary matrices as
the input to our model using the one-hot encoding scheme.

For the imbalanced testing datasets with 1:n positive-to-
negative ratio (PNR), the positive samples were collected using
the same way as we described above, while the negative
samples were collected from the nearest n thymine sites that

have no overlap with any positive samples.
Model design

We have designed a computational pipeline to fully character-
ize pseudouridylation (Figure 1A). To encode the contextual
sequence features of a potential W site of interest, we first

extend the target site both upstream and downstream by
50 nt and then use a simple four-dimensional binary vector
to encode each nucleotide (Figure 1A; File S1). Then, the
encoded matrix of an input contextual sequence is fed into a

particularly-designed CNN model to capture the latent fea-
tures of the potential sequence determinants of a W site. Our
CNN model consists of two alternately-stacked convolution

and pooling layers followed by a two-layer fully-connected
network (Figure 1B; File S1). In particular, the convolution
kernels from the convolution layers scan the input matrix that

encodes the input sequence profiles and capture intrinsic hid-
den features about the local contextual patterns of the target
site. The last fully-connected layer (also called the output

layer) employs a softmax function to perform the classification
task.

Overall, for a given sequence l, the information flow of
PULSE can be abstracted into the following equation:

lPPS(l) = softmax(net2(acti3(net1(pool2(acti2(conv2

(pool1(acti1(conv1(l))))))))))

where lPPS(l) represents the final prediction score of the tar-
get site, convi(), actii(), pooli(), and neti() stand for the i-th
convolution, neuron activation, pooling, and full-connection

operations, respectively. In our framework, the length of the
input sequence l is set to 101, as we extend the target site both
upstream and downstream by 50 nt. We used grid search with
a cross-validation procedure [31] to calibrate the hyperpara-

meters of our CNN model (see the ‘‘Training procedure and
model evaluation” section).

Training procedure and model evaluation

The core of PULSE is a CNN consists of two alternately-
stacked convolution and pooling layers and two fully-

connected layers. During convolution, the input matrices of
dimension L � 4 (where L stands for the length of the input
sequences) are first cross-correlated with several convolution

filters and then the convolved outputs are rectified by a Para-
metric Rectified Linear Unit (PReLU) activation function [32].
In the pooling stage, the pooling operators are applied to the
previous convolution and activation results for further motif

extraction. After that, the pooled results are flattened to a vec-
tor which is then fed to a fully-connected neural network for
final classification. In the final setting of PULSE, the sizes of

the first and the second convolution layers are set to 4 � 8
and 1 � 8, respectively, and the sizes of both pooling layers
are set to 1 � 2. The numbers of convolution operators in

the first and second layers are set to 64 and 32, respectively,
and the numbers of units in the hidden layers of the fully-
connected neural network are set to 64-64-1. We apply a 10-
fold cross-validation strategy to determine the best values of

hyperparameters, including the filter sizes, the filter numbers,
the learning rate, the dropout probability, and the number of
training epoches, and evaluate the prediction performance of



Figure 1 Overview of the PULSE pipeline

A. The schematic flow diagram of PULSE. The W sites can be experimentally profiled by high-throughput sequencing techniques, such as

CeU-seq, Pseudo-seq, W-seq, and PSI-seq. PULSE first extracts the sequence profiles of a potential W site (i.e., the region within 50 nt

upstream and downstream of the target site) and encodes them into binary features, which are then fed as input data to a particularly

designed CNN model. After parameter learning, the trained model is used for downstream analyses, such as detecting the W sites of a

given RNA sequence, estimating the distribution of W sites on a transcript, and elucidating the transcriptome-wide landscape of

pseudouridylation. B. The CNN architecture used in PULSE. Two convolution layers and two pooling layers are first alternately-stacked

and used for feature detection, and then a fully-connected network with two hidden layers is added for global feature evaluation and W
potential estimation. Given a uridine site of interest and its sequence context, PULSE outputs a W potential score which basically

represents the likelihood of pseudouridylation for this target site. PULSE, PseudoUridyLation Site Estimator; W, pseudouridine; CeU-

seq, N3-CMC-enriched pseudouridine sequencing; PSI-seq, pseudouridine site identification sequencing; CNN, convolutional neural

network.
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our model. In particular, we first randomly separate entire
data into 10 folds. For each fold, the held-out 1/10 dataset is

used as testing data and the remaining 9/10 is used as training
data. Meanwhile, in each fold, we further divide the training
data into 10 subfolds, and run another (nested) 10-fold

cross-validation procedure to choose the optimal settings of
hyperparameters based on the trained model over 9/10 subsets
and the evaluation result on the held-out 1/10 subset of the

training data. After the optimal hyperparameters are deter-
mined using this nested cross-validation procedure, all the
training data are merged and used to train the model and then

evaluate the prediction performance on the held-out testing
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data in each fold. All the hyperparameters except the number
of training epoches are computed through grid search. The
prediction results over the 10 folds are collected together as

the final prediction results. The human and mouse datasets
are used independently to train two separate PULSE models
(i.e., hPULSE and mPULSE). In our model, the hyperpara-

meters of hPULSE and mPULSE are almost the same except
the number of training epoches.

PULSE is implemented based on the Keras library (https://

keras.io) in Python. Back propagation is applied in the train-
ing process for efficiently updating the parameters. In addition,
several optimization techniques, including stochastic gradient
descent (SGD), dropout, batch normalization, early stopping,

and momentum, are used to improve the training process (e.g.,
reducing the likelihood of overfitting).

Motif visualization and analysis

We apply the filters embedded in the first convolution layer of
our CNN model to generate the sequence motifs of pseu-

douridylation, using the same strategy as previously described
[23,33]. More specifically, we use a window of the size equal to
the length of the filters (i.e., 8) to scan the flanking regions on

both sides of a W site. During this scanning process, those
sequence segments (of length 8) with activation values more
than half of the maximum score are output. Then these
detected sequence segments are converted into the position

weight matrix (PWM) form to generate the corresponding
motifs representing the sequence contexts of pseudouridyla-
tion. To compare these obtained motifs to those known bind-

ing patterns of RNA-binding proteins (RBPs) and
transcription factors (TFs), we search over the CIS-BP [34]
and HOCOMOCO [35] databases (version 2016 for both)

using the Tomtom tool [36], respectively, and then cluster all
the motifs using RSAT [37] with default parameter settings.
The final sequence motifs are visualized using Seq2Logo [38].

We also sort out all the generated motifs and perform a clus-
tering analysis on them (File S1).

Transcriptome-wide detection of W sites

We further apply PULSE to detect potential W sites on each
transcript along the genome. All the RNA sequences of human
and mouse were downloaded from Ensembl by Biomart under

references hg19 and mm10, respectively. For each transcript,
every thymine site and the flanking 50-nt regions on its both
sides are extracted as the input sequence profile to PULSE

(‘N’s are padded if the flanking windows are out of the tran-
scripts). Then PULSE computes the local pseudouridylation
potential score (lPPS) for each thymine, which measures its

pseudouridylation probability.
Transcript pseudouridylation potential score

To evaluate the pseudouridylation potential of a particular

transcript, i.e., the estimation of the overall pseudouridylation
level of a complete transcript, we defined a new metric called
the transcript pseudouridylation potential score (tPPS). In
particular, for a transcript s, its tPPS value can be defined as
follows:

tPPS sð Þ ¼ num Wð Þ=num Uð Þ
K=L

where

num Wð Þ ¼
XK

k¼1

I lPPSk > 0:5ð Þ

num Uð Þ ¼
XK

k¼1

IðlPPSk � 0:5Þ

in which num() represents a count function, I() represents a

binary indicator function, lPPSk stands for the lPPS of the
k-th W site in s, K represents the total number of thymines in
s, and L stands for the length of s. In the aforementioned equa-
tion, the numerator represents the ratio between Ws and

thymines, which thus measures the relative abundance of pos-
sible Ws in a transcript. However, this value may bias to those
uridine-enriched transcripts. In order to eliminate such bias,

the ratio in the numerator is further normalized by the abun-
dance of both thymines and Ws in the transcript.

Results

Model validation

To evaluate the prediction performance of PULSE, we applied
a 10-fold cross-validation procedure on both human and

mouse data (see Method). In our training process, the W sites
identified from high-throughput profiling experiments and the
corresponding flanking regions of 50 nt on both sides of indi-

vidual W sites were considered positive samples, while uridine
sites with flanking windows of 50 nt on both sides that are the
closest to some W sites and do not have any overlap with the

positive samples were considered as the negative samples. We
trained PULSE on human and mouse datasets separately,
resulting in two trained models called hPULSE and mPULSE,
respectively. We also compared the prediction performance of

PULSE to that of a baseline approach, called gkm-SVM,
which is a widely-used SVM-based classifier based on gapped
k-mers that also uses only sequence information [39]. Our

10-fold cross-validation tests showed that both hPULSE and
mPULSE can achieve high prediction accuracy, with the area
under the receiver operating characteristic curve (AUC) scores

0.86 and 0.84, respectively, which were significantly better than
those of gkm-SVM (Figure 2A and B, Figure S1A and B). We
further validated PULSE on several small but reliable datasets,
which also displayed high prediction accuracy (File S1).

Previous studies showed that the pseudouridylation profiles
of transcriptome across human and mouse were conserved to
some extent despite the possible difference in the underlying

mechanisms of pseudouridylation [20]. Thus, we performed a
cross-species test between human and mouse datasets, that
is, we used the PULSE model trained from the human (mouse)

pseudouridylation profiles to test the mouse (human) data. As
expected, such a cross-species test demonstrated a strong
conservation relationship between human and mouse in

https://keras.io/
https://keras.io/


Figure 2 Performance evaluation of PULSE

A. and B. The ROC curves and the corresponding AUC scores reported in 10-fold cross-validation for human and mouse, respectively.

The terms ‘hPULSE’ and ‘mPULSE’ represent the PULSE models trained based on human and mouse datasets, respectively. gkm-SVM,

which is a classical model for sequence classification based on the gapped k-mers, was used as a baseline method for comparison. C. The

results on the cross-species test between human and mouse. Blue and green curves represent the test results on the hPULSE model (which

was trained from human data) applied to mouse data and the mPULSE model (which was trained from mouse data) applied to human

data, respectively. D. and E. The test results of hPULSE (D) and mPULSE (E) on the imbalanced datasets with different PNRs (including

1:1, 1:5, 1:10, and 1:20) that did not have any overlap with training data. F. and G. Performance of the retrained hPULSE (F) and

mPULSE (G) on individual held-out datasets. ROC, receiver operating characteristic; AUC, area under the ROC curve; PNR, positive-to-

negative ratio.
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pseudouridylation (Figure 2C, Figure S1C). In addition, this
cross-species validation test also implied an impressive general-

ization capacity of PULSE in predicting new W sites.
So far, our models have shown good performances on ba-

lanced datasets (i.e., PNR is 1:1). However, in the real world,

usually there are much more unmodified or undetected uridi-
nes in RNA transcripts than the modified ones, which means
that the previous balanced tests may overestimate the precision

of the models. To solve this problem, we retrained our models
with the same hyperparameters as we searched before and then
tested several imbalanced testing sets with different PNRs (in-
cluding 1:1, 1:5, 1:10, and 1:20). The tests on these imbalanced

datasets also showed competitive performances of our models
(Figure 2D and E, Figure S1D and E).

Since the W sites in our training data integrated from seve-

ral different studies only showed small overlap between each
other (Table S1), the trained model may be biased to specific
data sources or experiments. To investigate this potential prob-

lem and further verify the generalization capacity of our
model, we separated all the W sites into independent datasets
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according to their sources (i.e., GSE58200 [40], GSE60047 [18],
GSE63655 [20], snoRNABase [41], and Modomics [2]). Then
we held out individual datasets as testing data and retrained

our model on the remaining datasets. This additional test on
individual held-out datasets also showed a high prediction
accuracy of our model except on the Modomics of mouse (Fig-

ure 2F and G, Figure S1F and G). The reason that held-out
Modomics data as testing data in mouse did not yield good
prediction performance was probably due to the lack ofW sites

in small RNAs in the corresponding training data (Table S2).
We further tested PULSE on three small but relatively

more reliable datasets (Tables S3 and S4), which also displayed
similar high prediction performance (File S1). In addition, we

compared PULSE to other state-of-the-art methods, including
PPUS [21] and iRNA-PseU [22]. Specifically, we first directly
compared the cross-validation results of our models to those

of PPUS and iRNA-PseU evaluated on the whole balanced
dataset. The results showed that our models performed much
better than the others (File S1). To further compare our mod-

els to PPUS and iRNA-PseU on imbalanced datasets, we
retrained our models and tested them on four imbalanced
datasets (i.e., with PNRs 1:1, 1:5, 1:10, and 1:20, respectively)

which did not overlap with the training data. Expectedly, these
comparison results also showed that our models performed
much better than the others (Table 1). In addition, we further
evaluated the performances of PPUS and iRNA-PseU on the

aforementioned three reliable datasets, which also supported
the superior predictive power of our models over the others
(File S1).

In summary, the aforementioned validation tests implied
that PULSE can effectively recognize the underlying latent
features of the sequence contexts of pseudouridylation and

thus yield accurate prediction of W sites.
Table 1 Comparison between PULSE and the previous methods (PPU

Species Predictor PNR Prec

Human hPULSE 1:1 0.85

1:5 0.50

1:10 0.32

1:20 0.19

PPUS 1:1 0.94

1:5 0.92

1:10 0.89

1:20 0.80

iRNA-PseU 1:1 0.64

1:5 0.25

1:10 0.15

1:20 0.08

Mouse mPULSE 1:1 0.75

1:5 0.36

1:10 0.23

1:20 0.13

iRNA-PseU 1:1 0.65

1:5 0.27

1:10 0.16

1:20 0.09

Note: PNR, positive-to-negative ratio; MCC, Matthews correlation coeffic
The sequence contexts of pseudouridylation captured by PULSE

After PULSE was evaluated, we analyzed and visualized the
motifs of the sequence contexts of pseudouridylation captured
by the filters employed in the first convolution layer of

PULSE, using the same strategy as in the previous studies
[23,33]. In particular, we focused on those high-confident
motifs that covered more than 1% (about 50) of the positive
samples in the training data. As a consequence, we obtained

300 and 272 sequence patterns identified by PULSE for human
and mouse, respectively (see Method). These sequence patterns
were then clustered into tens of clusters which may imply dif-

ferent subtypes of pseudouridylation (Figure S2; File S1).
As expected, we found that the previously known sequence

recognition motifs of PUS4 and PUS7 [20,40], i.e.,

‘GUWCNA’ and ‘UGWAG’, appeared repetitively in the
sequence patterns identified by the filters of our CNN model
for both human and mouse (Figure 3A and B). Intriguingly,

several novel motifs also appeared repetitively in our visualiza-
tion results. We hypothesized that these motifs may corre-
spond to other PUSs or recognition proteins. Thus, we
mapped our discovered motifs to the known binding motifs

of RBPs from the CIS-BP database [34] and TFs from the
HOCOMOCO database [35] (see Method). As a result, several
of these newly discovered sequence motifs of pseudouridyla-

tion significantly matched the known binding motifs of
nucleotide-binding proteins for both human and mouse
(P< 1 � 10�3; Figure 3C and D). We found that these match-

ing motifs were highly related to important RBPs and TFs,
e.g., PCBP1 (an RBP involved in the regulation of alternative
splicing [42]) and FOXO3 (a TF acting as a trigger of apopto-
sis [43]). Moreover, our model also captured the RNA-binding

motif of U2AF, which has been reported to lead to a splicing
S and iRNA-PseU) on independent imbalanced datasets

ision Recall F1-score MCC

0.65 0.736 0.547

0.65 0.566 0.471

0.65 0.432 0.382

0.65 0.289 0.291

0.09 0.156 0.193

0.09 0.156 0.253

0.09 0.156 0.261

0.09 0.154 0.253

0.59 0.614 0.265

0.59 0.355 0.187

0.59 0.234 0.146

0.59 0.138 0.107

0.74 0.741 0.485

0.74 0.486 0.376

0.74 0.350 0.310

0.74 0.220 0.235

0.76 0.702 0.359

0.76 0.397 0.258

0.76 0.261 0.205

0.76 0.154 0.152

ient. The corresponding highest performances are showed in bold.
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defect when failing to recognize the pseudouridylated
polypyrimidine tract [44]. These discovered novel motifs that
matched the known binding sequence patterns of RBPs

implied that the corresponding RBPs may play important
functional roles in the pseudouridylation process, which thus
may also provide new candidate molecules of PUSs for further

experimental studies. Since previous studies have shown that
RNAs can also be co-transcriptionally modified [45], the TFs
with the matching sequence motifs may be related to the trig-

gers of pseudouridylation during RNA transcription.

The transcriptome landscape of Ws characterized by PULSE

Each uridine in a transcript can be characterized by an lPPS
derived from the trained PULSE model based on its corre-
sponding sequence context. Basically, this lPPS value measures
the probability that a uridine can be converted into a W. Based

on the distribution of uridines on a transcript and the corre-
sponding lPPS profiles, we derived a new metric, called tPPS
(see Method), to estimate the overall pseudouridylation level

of this transcript. Based on the lPPS and tPPS profiles derived
from PULSE, we are able to study the nucleotide- and
transcript-level landscapes of pseudouridylation, respectively.

To examine the transcriptome-wide distribution of pseu-
douridylation (see Method for transcriptome-wide detection
of W sites) across different genomic regions, we compared
the percentages of pseudouridylation predicted by PULSE

among different types of regions, including 50 UTRs, CDS
regions, and 30 UTRs. Our comparison showed that Ws appear
primarily in the CDS regions (� 50%) and the 30 UTRs

(� 40%) of both human and mouse mRNAs (Figure 4A),
which was consistent with the previous reports [20,40]. Consid-
ering that the region length and the uridine content may affect

the distributions of Ws in different mRNA regions, we also
normalized the aforementioned proportions by the region
length and corresponding W ratio (W/T), and observed the

similar trend (Figure S3). As the 30 UTRs of mRNAs are
tightly associated with RNA stability and translational control
[46,47], it is reasonable to hypothesize that the pseudouridyla-
tion activities in the 30 UTRs are involved in RNA stability

modulation and translational regulation.
Pseudouridylation in RNAs has been considered to play

important roles in secondary structure stabilization [4,6]. The

structural functions of Ws in rRNAs and tRNAs have already
been relatively well studied [10,48–50], and a noticeable obser-
vation in the previous studies was that the experimentally

detected Ws are largely located in the loop regions of an
RNA secondary structure. However, the functional roles of
Ws in the structures of other types of RNAs remain poorly
understood. Here, we are interested in whether Ws in other

types of RNAs play the same roles in the regulation of RNA
3

Figure 3 Examples of the sequence motifs of pseudouridylation identi

A. and B. The sequence motifs of pseudouridylation detected by PULS

PUS7 (‘UGWAG’) for both human (A) and mouse (B). C. and D. Th

identified by PULSE and the closest matched motifs of RBPs and TFs

the known binding motifs of RBPs or TFs and the contextual sequence

are also shown), respectively. PUS, W synthase; RBP, RNA-binding p
secondary structures. We first used the RNAfold software
[51] to predict the RNA secondary structures of individual
sequences centered at putative W sites of the transcripts with

high tPPS values (top 500) predicted by PULSE (see Method).
We then compared lPPS profiles between single-strand (SS)
and double-strand (DS) regions over different types of RNAs,

including lincRNAs, pre-miRNAs, and mRNAs, whose struc-
tures are generally more diverse than those of tRNAs and
rRNAs. We found that Ws prefer to occur in SS regions over

DS regions in all three types of RNAs for both human and
mouse [Figure 4B and C; P < 1 � 10�200, rank-sum test;
n(human,lincRNA,SS) = 20,918, n(human,lincRNA,DS) = 37,852,
n(human,pre-miRNA,SS) = 3302, n(human,pre-miRNA,DS) = 7597,

n(human,mRNA,SS) = 16,717, n(human,mRNA,DS) = 34,357,
n(mouse,lincRNA,SS) = 28,260, n(mouse,lincRNA,DS) = 48,402,
n(mouse,pre-miRNA,SS) = 3355, n(mouse,pre-miRNA,DS) = 7194,

n(mouse,mRNA,SS) = 18,193, n(mouse,mRNA,DS) = 32,270]. In
addition, we applied our model to predict the profiles of
tRNAs annotated by tRNAscan-SE [52], and found that Ws

also prefer to occur in SS regions of human tRNAs [Figure S4;
P = 4.30 � 10�31, rank-sum test; n(human,SS) = 6357,
n(human,DS) = 4513]. For mouse tRNAs, we did not observe

the same trend [Figure S4; n(mouse,SS) = 4704, n(mouse,DS) =
3555], which was probably due to the lack of W sites on small
RNAs in the mouse training data (Table S2). We also looked
into the predicted W sites of a tRNA corresponding to alanine

(tRNAdb ID: tdbR00000017) and compared them to those
experimentally validated sites. We found that our model
exactly detected two experimentally reported W sites and one

potential novel site (Figure S5). Overall, our analysis results
were mostly in line with the previous known distributions of
Ws in tRNAs [8,10]. Such similar patterns of W distributions

in RNA secondary structures implied that most likely the func-
tional roles of pseudouridylation in regulating RNA structures
are generic across all types of RNAs.

To explain the discrepancy in the distributions of Ws in dif-
ferent types of RNA secondary structures, we hypothesize that
Ws may play an important role in stabilizing or rigidifying
RNA secondary structures (Figure 4D). Such a hypothesis is

also supported by the previous studies [4,6,7,10] which have
shown that Ws in SS RNAs may interact relatively more easily
with other nucleotides to constrain the corresponding loop

regions and form more stable conformations. More specially,
Ws in an inner loop (e.g., hairpin loop or internal loop) may
pair with nearby nucleotides in space to help stabilize the loop

structure, while Ws in external or flanking SS regions may con-
tribute to supporting and immobilizing their proximal inner
loops. Although we cannot rule out that this phenomenon
may be caused by the bias of the antibodies used in W identi-

fication experiments, which may have different binding affini-
ties to the W sites between RNA SS and DS regions, our new
fied by PULSE

E corresponding to the known motifs of PUS4 (‘GUWCNA’) and

e comparisons between the sequence motifs of pseudouridylation

for human (C) and mouse (D), respectively. Top and bottom show

features of pseudouridylation identified by PULSE (the filter IDs

rotein; TF, transcription factor.
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analysis results covered pre-miRNAs, lincRNAs, and mRNAs,
and previous known distributions in tRNAs and rRNAs
strongly supported our hypothesis.

Moreover, the Gene Ontology (GO) enrichment analyses
for the top 500 genes with the highest tPPS values for both
human and mouse showed that genes with high tPPS values

predicted by PULSE are mainly distributed in the nucleus
and contribute to DNA or RNA binding (Figure 4E and F;
File S1). This phenomenon implied that Ws in mRNAs may

also enhance the bindings between nucleotide-binding proteins
and RNAs by increasing their interaction strength and forming
more stable complex conformations, which was consistent with
the previous results about the potential functions of pseu-

douridylation in RNA secondary structure and translational
regulation [4,6,53].

Pseudouridylation serves as an additional factor in controlling

mRNA stability

Previous studies have suggested that pseudouridylation may

play an important role in enhancing mRNA stability [4,18],
which is probably modulated through the 30 UTRs of mRNAs.
To examine more details of this issue, we analyzed the poten-

tial relationships between the predicted pseudouridylation
potentials of the 30 UTRs of mRNA transcripts and their
half-lives. In particular, we first applied PULSE to compute
the tPPS values of the 30 UTRs for those transcripts with

known half-life information (File S1). We then divided these
transcripts into two groups, with the tPPS values of 30 UTRs
greater or less than the average level, respectively. The compar-

ison between these two groups showed that mRNAs with
higher tPPS values of 30 UTRs tend to have relatively longer
half-lives [Figure 5A; P = 4.71 � 10�7, rank-sum test;

n(High tPPS) = 3215, n(Low tPPS) = 4260]. We also performed a
similar analysis on the relationships between the tPPS values
of CDS regions and mRNA half-lives, but did not observe

any significant effect of Ws in the CDS regions on mRNA
half-lives [Figure 5B; P = 0.17, rank-sum test; n(High tPPS) =
3264, n(Low tPPS) = 4217]. These results indicated that Ws in
the 30 UTRs of mRNAs may improve their stability, which

was also supported by the previous study [53]. On the other
hand, previous studies also reported that the length and GC-
content of the 30 UTR of an mRNA can affect its stability, that

is, short 30 UTR and high GC-content can promote mRNA
decay through distinct mechanisms [54,55]. To decouple the
effects of these two factors and pseudouridylation on RNA

stability, we also investigated the relationships between the
tPPS values of 3ʹ UTRs and their lengths and GC-contents.
As a result, we observed that those 30 UTRs with larger tPPS
values are significantly shorter and tend to have higher
3

Figure 4 The transcriptome-level characteristics of pseudouridylation

A. Distributions of the W sites identified by PULSE over different type

between SS and DS regions over different types of RNAs (including linc

respectively. *, P < 1 � 10�200, rank-sum test. D. Schematic illustrati

secondary structures. E. and F. GO enrichment analyses of genes with

and mouse (F), respectively. lPPS, local pseudouridylation potential

tPPS, transcript pseudouridylation potential score.
GC-contents [Figure 5C and D; P = 3.07 � 10�53 for the
length of 3ʹ UTR, P = 1.71 � 10�267 for the GC-content of
3ʹ UTR, rank-sum test; n(High tPPS) = 3215, n(Low tPPS) = 4260],

which implied that Ws in 30 UTRs can compensate for the
down-regulation effects of RNA stability caused by their short
lengths and high GC-contents. To further verify this relation-

ship, we performed additional analyses on several other
curated RNA half-life datasets. The additional analysis results
suggested that the relationship mentioned above is probably

robust to different cell lines (Figure S6; File S1).

Pseudouridylation fine-tunes the effects of codon bias to

maintain translation efficiency

It has been reported that Ws in mRNAs may affect their trans-
lation fidelity [12]. Moreover, when uridines in stop codons are
pseudouridylated, ribosomes may read through without trans-

lation termination, that is, tRNAs can also bind to these mod-
ified stop codons and continue the translation process [56].
These previous studies highlighted the potential regulatory

functions of Ws in translation through changing the properties
of the corresponding codons. The distinct distributions of lPPS
values of uridines in different codons at individual positions

may also support the aforementioned potential regulatory
functions of pseudouridylation (Figures S7–S9). Here, we
investigated the relationships between the lPPS values of indi-
vidual uridine-containing codons and different indices of

codon usage bias, including the tRNA adaptation index
(tAI) [57], the codon adaptation index (CAI) [58], and the
%MinMax metric (Table S5; File S1). In general, RNA

regions with loose structures where ribosomes can move for-
ward relatively more rapidly tend to have higher tAI and
CAI values. On the other hand, pseudouridylation may act

as a stumbling block to impede ribosome movement by
increasing the rigidity of local conformations during a transla-
tion process. Thus, we speculate that pseudouridylation is

more likely to happen in codons with relatively lower tAI
and CAI values. To validate this speculation, we divided all
codons into two groups according to their lPPS values, i.e.,
based on whether their lPPS values were greater than the aver-

age level or not. We then compared the tAI and CAI values of
the codons between these two groups, respectively. As a result,
codons with higher lPPS values displayed significantly lower

tAI and CAI values for both human and mouse (Figure 5E
and F; P < 1 � 10�200, rank-sum test). These results implied
that pseudouridylation prefers to occur in relatively rare

codons or codons with lower supply of their corresponding
tRNAs. Furthermore, for codon rareness, we considered the
%MinMax metric that has been developed to evaluate the
relative rareness of codons in a coding sequence [59].
predicted by PULSE

s of regions in mRNAs. B. and C. Comparisons of the lPPS values

RNAs, pre-miRNAs, and mRNAs) for human (B) and mouse (C),

on of the potential functional roles of W sites in stabilizing RNA

high tPPS values (top 500) carried out by DAVID for human (E)

score; SS, single-strand; DS, double-strand; GO, Gene Ontology;
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We performed the same analysis for %MinMax as we con-
ducted for tAI and CAI. The comparison of the %MinMax
values between codons with high and low lPPS values demon-

strated that Ws also prefer to occur in relatively rare codons
(Figure 5E and F; P < 1 � 10�200, rank-sum test), which
was consistent with our previous results. In summary, our

analysis results showed that pseudouridylation prefers to occur
in rare codons, which suggested that pseudouridylation may be
involved in controlling the rhythm of translation and perhaps

the co-translational folding of the nascent peptide chains.
Pseudouridylation modulates the translation initiation and

elongation processes

It has been revealed that pseudouridylation in mRNAs can
enhance the translational capacity [53], which implys that Ws
may play an important role in mRNA translation. Previously,

we showed that pseudouridylation is codon biased and may be
involved in translation regulation through codon fine-tuning.
To further investigate whether pseudouridylation may partici-

pate in the modulation of translation rates, we also performed
an integrative analysis by combining PULSE prediction results
with ribosome profiling data that describe the translation initi-

ation and elongation processes (File S1).
To reveal the functional roles of pseudouridylation in trans-

lation initiation, we first collected the human ribosome profiles
of translation initiation positions (File S1) and selected initia-

tion codon sites near uridines (i.e., within the range of +/�1
codon). After that, we ran the PULSE model to calculate the
lPPS values of the flanking sequences centered at the uridines

that were closest to the selected initiation codon sites. Next, we
extracted two groups of codons from these selected initiation
positions, which had lower than 25% quantile (termed by

‘< 1st Qu.’) and greater than 75% quantile (termed by
‘> 3rd Qu.’) of lPPS values, respectively (File S1). We then
compared the normalized ribosome densities (NRDs) of the

codon sites in these two groups. The comparison showed that
3

Figure 5 The functional roles of pseudouridylation inferred by PULSE

A. Comparison of the cumulative distribution curves of log2 half-life v

30 UTRs greater and less than the average level, respectively. P =

distribution curves of log2 half-life values between two groups of mRN

the average level, respectively. P = 0.17, rank-sum test. C. Compariso

values between two groups of mRNAs with the tPPS values of the

P = 3.07 � 10�53, rank-sum test. D. Comparison of the cumulative dis

mRNAs with the tPPS values of the 30 UTRs greater and less than the a

F. Comparisons of the tAI, the CAI, and the codon rareness (measured

values greater than the average level (termed by ‘High lPPS’) and with

human (E) and mouse (F), respectively. *, P < 1 � 10�200, rank-sum te

log2 NRD values between positions with greater than 75% quantile (

‘< 1st Qu.’) of lPPS values for translation initiation (G) and translati

initiation and elongation at different lPPS thresholds. J. The p

pseudouridylation in translation initiation and translation elongation

regions may help the translation initiation complexes bind to mR

pseudouridylation. In translation elongation, Ws located in the A sites

promote the movement of ribosomes. tAI, tRNA adaptation index; C
the W sites with higher lPPS values are more likely to be
located in regions with lower initiation ribosome densities
(Figure 5G; P < 1 � 10�200, rank-sum test). This result sug-

gested that Ws in the translation initiation regions may help
reduce the accumulation of ribosomes. We speculated that this
may be realized by attracting the rRNAs in the small subunits

(SSUs) of ribosomes through the formation of extra hydrogen
bonds, which can thus accelerate the installing process of initi-
ating ribosomes (Figure 5J).

To decipher the impact of pseudouridylation on the trans-
lation elongation process, we explored the human ribosome
profiles of translation elongation obtained from a previous
study [60], and integrated them with the PULSE prediction

results. We first processed the ribosome profiling data using
the same strategy as we conducted in the analysis of translation
initiation, except that here we mainly focused on the codons in

CDS regions. Unsurprisingly, we found that pseudouridyla-
tion prefers to occur in the regions with relatively slow elonga-
tion rates (Figure 5H; P < 1 � 10�200, rank-sum test). This

result implied thatWs in mRNAs may help modulate the trans-
lation elongation rates. We speculated that Ws in mRNAs may
serve to affect the elongation process by dragging the aminoa-

cyl tRNAs to the A sites of ribosomes during elongation
through the force of extra hydrogen bonds (Figure 5J).

To investigate more details about the relationships between
pseudouridylation and translation, we further compared the

ribosome densities at different lPPS thresholds ranging from
0.1 to 1.0 with an increment of 0.1. We found that the ribo-
some densities significantly decreased along the lPPS values

from 0.1 to 1.0 (Figure 5I). This result demonstrated the
robustness of the relationships between pseudouridylation
and translation that we previously claimed.

In summary, Ws in mRNAs are involved in modulating the
translation process, including both initiation and elongation,
probably by strengthening the bindings of ribosomes or

tRNAs to mRNAs. Of course, unveiling the detailed underly-
ing mechanisms will still require further extensive experimental
studies.
alues between two groups of mRNAs with the tPPS values of the

4.71 � 10�7, rank-sum test. B. Comparison of the cumulative

As with the tPPS values of the CDS regions greater and less than

n of the cumulative distribution curves of log10 length of 30 UTR

30 UTRs greater and less than the average level, respectively.

tribution curves of GC-contents of 30 UTR between two groups of

verage level, respectively. P = 1.71 � 10�267, rank-sum test. E. and

by the %MinMax score) between codons from groups with lPPS

lPPS values less than the average level (termed by ‘Low lPPS’) for

st. G. andH. Comparisons of the cumulative distribution curves of

termed by ‘> 3rd Qu.’) and lower than 25% quantile (termed by

on elongation (H) in human, respectively. I. NRDs of translation

utative models proposed to explain the functional roles of

, respectively. In translation initiation, Ws in ribosome assemble

NAs mainly due to the extra hydrogen donors resulting from

of ribosomes may enhance the loading of tRNAs, which may thus

AI, codon adaptation index; NRD, normalized ribosome density.
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Relationships between pseudouridylation and SNVs

The sequence contexts of Ws captured by PULSE can enable
us to investigate the functional effects of SNVs on pseu-
douridylation. To demonstrate this point, we first applied

PULSE to predict the lPPS profiles of the major alleles and
the corresponding minor alleles for SNVs that have been anno-
tated by the current genome-wide association studies (GWAS)
and validated by 1000Genomes (File S1). Next, we calculated

the log2 fold change of lPPS values between major and minor
alleles, which was termed as the allele fold change of pseu-
douridylation potential (AFCP; File S1). Interestingly, we

found that when the T allele was replaced by another allele
(i.e., A, C, or G), the corresponding lPPS values dropped sig-
nificantly. On the other hand, when the other alleles were

replaced by the T allele, the corresponding lPPS values
increased significantly (Figure 6A). This result implied that, a
uridine site with a T allele in its contextual sequence is more

likely to be pseudouridylated than another one with other alle-
les in its contextual sequence.

Previous studies showed that SNVs in RNAs may affect sta-
bilities of their secondary structures [61–63]. To investigate the

relationships between pseudouridylation and the effects of
SNVs on RNA structure stability, we first used RNAfold [51]
to estimate the minimum free energy (MFE) values of the

sequences of both major and minor alleles and calculated the
change ofMFE (denoted byDMFE;File S1).We then compared
the minor allele frequency (MAF) values between two groups of

SNVs, which had DMFE greater than 1.0 kCal/Mol and less
than �1.0 kCal/Mol, respectively. These two thresholds were
chosen according to the 80% and 20% quantiles of all the
DMFE values. The comparison result showed that alleles with

high MAF values are more likely to occur in relatively unstable
RNA regions, i.e., with relatively high MFE, which generally
correspond to flexible RNA regions, e.g., SS regions [Figure 6B;

P = 4.87 � 10�9, rank-sum test; n(DMFE > 1.0) = 3248,
n(DMFE < �1.0) = 3347]. From this observation, we speculate
that SNVs may act on RNA structures through affecting the

pseudouridylation profiles of their corresponding sequences.
To study this issue, we first compared the MAF values between
two groups of SNVs, which had AFCP values greater than 1.0

and less than �1.0, respectively. This comparison showed that
SNVs with larger MAF values are more likely to be
pseudouridylated [Figure 6C; P = 4.85 � 10�6, rank-sum test;
n(AFCP > 1.0) = 2207, n(AFCP < �1.0) = 2568]. In addition, we

compared the DMFE values between two groups of SNVs with
AFCP values greater than 0.0 and less than 0.0, respectively. As
3

Figure 6 Relationships between pseudouridylation and SNVs

A. Distributions of the AFCP values for different allele pairs. When the

were larger than zero (labeled by ‘+’), while when other nucleotide al

than zero (labeled by ‘�’). B. Comparison of �log2 MAF values betw

DMFE< �1.0, respectively. C. Comparison of �log2 MAF values be

AFCP < �1.0, respectively. D. Comparison of DMFE values betwe

AFCP < 0.0, respectively. E. Two types of variants significantly enrich

The set of all SNVs used in the analysis was used as the background.

|AFCP| values. In (B–D), the P values were computed by rank-sum tes

SNV, single nucleotide variant; AFCP, allele fold change of pseudouri

free energy.
a result, we found that alleles with larger predicted pseudouridy-
lation potentials are associated with relatively higher
MFE values [Figure 6D; P= 1.23 � 10�33, rank-sum test;

n(AFCP > 0.0) = 7853, n(AFCP < 0.0) = 8661]. Note that here,
although the energy gap (DMFE) betweenmajor andminor alle-
les was small (i.e., within a range of � 3 kCal/Mol), it can lead

to a dramatic transformation of RNA secondary structure
(Figure S10). In addition to the aforementioned results, we also
performed similar analyses based on the prediction results from

remuRNA [64] and RNAsnp [65], which predict an ensemble of
RNAsecondary structures, andobserved similar trends (Figures
S11 and S12). Overall, our analyses indicated that SNVs can
affect the pseudouridylation potentials of RNA sequences to

change the stability of their secondary structures.
We also performed an enrichment analysis of the variants

with relatively high AFCP values (i.e., |AFCP| > 2.0) over dif-

ferent types of genomic regions. The enrichment analysis
results showed that SNVs with high AFCP values are signifi-
cantly enriched in the splice donor regions (Figure 6E;

P = 7.04 � 10�3, hypergeometric test) and depleted in the
30 UTRs (Figure 6E; P = 5.34 � 10�3, hypergeometric test),
when compared to the background (i.e., the set of all SNVs

used in the analysis). These results implied that pseudouridyla-
tion may be relatively more sensitive to SNVs in the contextual
sequences that are related to RNA splicing and regulatory
functions of 30 UTRs. We also combined the traits associated

to the SNVs with the predicted lPPS values to illustrate latent
relations between pseudouridylation and important pheno-
types, such as complex diseases. In particular, we first selected

the top 10 variants with the highest absolute AFCP values,
including rs7190997, rs11073328, rs4846923, rs10007186,
rs11635553, rs72807343, rs12150660, rs7286917, rs7089227,

and rs1934179. We then investigated the disease traits associ-
ated with these 10 selected SNVs. Interestingly, we found that
these 10 variants were mainly associated with immune system

lesions (Figure 6F). For example, rs11073328 and rs11635553
have been reported to be related to rheumatoid arthritis [66]
and IgG glycosylation [67], respectively. This result implied
that pseudouridylation may play an important role in the

immune system.
Discussion

Based on PULSE we showed that pseudouridylation is codon
biased and closely related to RNA translation. We believed

that these relationships were constructed during a long
T allele was replaced by other nucleotide alleles, the AFCP values

leles were replaced by the T allele, the AFCP values were smaller

een sequences from two groups of SNVs with DMFE> 1.0 and

tween sequences from two groups of SNVs with AFCP > 1.0 and

en sequences from two groups of SNVs with AFCP > 0.0 and

ed in the screened SNVs with high AFCP values (i.e., |AFCP| > 2).

F. Traits or diseases associated with the SNVs with top 10 highest

t, while in (E), the P values were computed by hypergeometric test.

dylation potential; MAF, minor allele frequency; MFE; minimum
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evolution process of epigenome. Actually, it has been widely
believed that rare codons appear mainly due to the codon
usage bias resulting from mutation and natural translation

selection [68]. Codon usage plays an essential role in regulating
multiple levels of cellular processes, such as translation and
protein folding. During the translation process, codons are

carefully selected to achieve accurate translation and thus opti-
mal cellular fitness to a certain context, e.g., expression of a
certain gene in a certain organism or under certain conditions

[69]. Despite that rare codons in an mRNA transcript may
decrease its translation efficiency, they are generally important
for regulating protein folding and RNA stability [70,71].
Although codon usage under selection pressure during the evo-

lution process can fine-tune gene expression, it may not be able
to have a quick response to a sudden change caused by envi-
ronmental stimulation. On the other hand, pseudouridylation

can provide an additional factor to further fine-tune the trans-
lation process. Under a certain cellular condition, pseu-
douridylation can increase the translation speed of original

rare codons probably through strengthening the binding of
ribosomes or tRNAs to mRNAs, to ensure the efficient trans-
lation of functionally important residues in proteins, when

responding to dramatic environmental changes. Those rare
codons without such a fine-tuning function may die out during
molecular evolution and their functions in the control of trans-
lation may be lost. Thus, from an evolutionary point of view,

selecting rare codons for pseudouridylation may promote the
conservation of certain rare codons in the genome.

Our analyses indicated that pseudouridylation can fine-tune

RNA stability. Note that there are many potential biological
factors that can affect RNA stability, such as the regulation
of RBPs, RNA modification, polyadenylation, and miRNA-

mediated regulation. Thus, most likely the half-life of an
RNA is influenced by a mixed effect of all these factors. Our
results indicated that although with a small effect (Figure 4A),

pseudouridylation can significantly contribute to the regula-
tion of RNA stability. Such a finding has an important biologi-
cal implication. In fact, in the literature, similar phenomena
have also been observed. For example, it has been found that

N6-methyladenosine can significantly modulate mRNA trans-
lation efficiency, although only with a marginal effect [72].

RNA pseudouridylation is obviously crucial to RNA regu-

lation simply by its prevalence in transcriptome and its high
conservation across different species. Therefore, a comprehen-
sive understanding of RNA pseudouridylation will be con-

ducive to the consummate studies of RNA modifications and
RNA epigenetics. The studies of RNA pseudouridylation espe-
cially in mRNAs may help understand its functional roles in
post-transcriptional regulation. Given the complication of

the underlying pseudouridylation mechanisms (e.g., there are
at least 13 types of PUSs) and the limitations of current exper-
imental profiling techniques, it is generally difficult to explore

the biological functions of pseudouridylation through conven-
tional experimental methods (e.g., gene knockdown experi-
ment). This challenge can also partially explain why

pseudouridylation is relatively less studied compared to other
RNA modifications. Here, our proposed model provides a nat-
ural method to unify all current available W profiling data and

fully exploit the underlying contextual sequence features of
pseudouridylation. Such a strategy can take advantage of the
learning and predictive power of the CNN model to reveal
the characteristics and potential functional roles of
pseudouridylation by connecting the prediction results to the
profiles of other biological factors or processes (e.g., RNA
secondary structure, translation initiation and elongation),

which can provide useful hints into understanding the
underlying mechanisms of pseudouridylation.

Conclusion

In this study, we developed an effective CNN model to detect

W sites, based on which we further analyzed the landscape of
Ws across the human and mouse transcriptomes. Our model
can not only capture the known motifs of pseudouridylation
that were consistent with previous studies, but also reveal

novel sequence patterns that may help uncover potential new
PUSs. The analysis of the associations between SNVs and
the changes of pseudouridylation potentials based on the

sequence contexts captured by our model showed that pseu-
douridylation may be involved in several complex diseases,
such as rheumatoid arthritis (associate trait of the

rs11073328 SNV) and Alzheimer’s disease (associate trait of
the rs72807343 SNV) [73]. Our extensive analysis on the rela-
tionships between predicted pseudouridylation scores and dif-
ferent types of RNA secondary structures showed that Ws are

more likely to occur in SS RNA regions rather than DS RNA
regions, which led to a speculation that Ws may act as an
anchor to stabilize or rigidify RNA structures. Comparison

of half-lives between mRNA transcripts with high and low
tPPS values of their 30 UTRs derived from the prediction
results showed that Ws in the 30 UTRs of mRNA transcripts

may enhance their stability. Also, the GO enrichment analysis
of genes with high pseudouridylation scores predicted by our
model may provide useful hints for understanding the biologi-

cal functions of pseudouridylation. We also showed that pseu-
douridylation is codon biased and uridines in rare codons are
more likely to be pseudouridylated, which may serve as an
important regulatory strategy for achieving optimal mRNA

translation. Comparisons of ribosome occupancy densities
between positions with high and low pseudouridylation poten-
tials predicted by our model for both translation initiation and

elongation showed that pseudouridylation often occurs in the
ribosome sparse regions, which implied that Ws may promote
the translation process by enhancing the interactions between

ribosomes and RNAs. We believe that these results can pro-
vide novel insights into the studies of pseudouridylation and
our computational framework can also inspire studies on other

types of RNA modifications.
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