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Abstract: Multipotent stem cells - such as mesenchymal 
stem/stromal cells and stem cells derived from different 
sources like vascular wall are intensely studied to try to 
rapidly translate their discovered features from bench to 
bedside. Vascular wall resident stem cells recruitment, 
differentiation, survival, proliferation, growth factor pro-
duction, and signaling pathways transduced were ana-
lyzed. We studied biological properties of vascular resi-
dent stem cells and explored the relationship from several 
factors as Matrix Metalloproteinases (MMPs) and regula-
tions of biological, translational and clinical features of 
these cells. In this review we described a translational 
and clinical approach to Adult Vascular Wall Resident 
Multipotent Vascular Stem Cells (VW-SCs) and reported 
their involvement in alternative clinical approach as cells 

based therapy in vascular disease like arterial aneurysms 
or peripheral arterial obstructive disease. 

Keywords: Multipotent Stem Cells; Vascular Surgery; Cell-
based Therapy; Vascular Progenitors; Arterial aneurysms; 
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1  Introduction
Current and potential therapeutic applications for stem 
cells are various and complexes. A lot of research fields 
dealing with stem cells including discovered new sources 
of highly multipotent stem cells and methods of perpetuat-
ing them; creation of induced pluripotent stem cell clones 
to study genetic disorders or explore pharmacogenomics; 
utilization in regenerative medicine. Regarding vascular 
diseased and their treatment by stem cells we provide a 
brief review of main clinical use of vascular wall resident 
progenitor cells (VW-PCs). Endothelial cells (ECs), smooth 
muscle cells (SMCs), and adventitial stromal fibroblasts 
all derived from mesodermic sheet constitute vascular 
wall. It is recently demonstrated Recent studies have 
indicated that resident progenitor cell with angiogenetic 
properties are located inside arterial wall [1, 2]. These cells 
arose during embryonic and fetal age, in adult subject 
remain located in specific niches to guarantee the renewal 
and repair of vascular tissue and trigger the processes of 
postnatal angiogenesis [3]. Angiogenesis, characterized 
by the growth of new blood vessels or capillaries from 
preexisting vessels, plays a pivotal role in the postnatal 
tissue remodeling both in physiological and in patho-
logical conditions [4]. Matrix metalloproteinases (MMPs) 
are enzymes involved in the degradation of the extracel-
lular matrix (ECM) substrates play a regulatory role and 
participate in key stages of postnatal angiogenesis [5]. 
Vascularization of several tissues like limbs, retina, and 
myocardium damaged by ischemia can be restored using 
hematopoietic progenitors as well as bone marrow-de-
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rived endothelial cells. [6–10]. It is also demonstrated 
that quiescent multipotent stem cells (SCs) reside in the 
vascular wall; in sites of vascular pathology like arterial 
aneurysms they can be activated and differentiate into 
SMCs [11–13]. Different MMPs expression can regulate wall 
resident SC biological properties releasing growth factors 
and activating signaling pathways. [14–16]. The purpose 
of this review is to examine the role of vascular wall resi-
dent stem cells in therapy like restoring vasculature after 
ischemic events and mainly provide a huge analysis of 
biomolecular mechanisms that regulate the involvement 
of vasculature progenitors and the activity of MMPs in 
natural history of arterial aneurysms.

2  Biology of vascular stem cells
Several studies were made well assess the physiology of 
stem cells and a lot of factors which maintain stemness 
[17–23]. Endothelial cells (ECs) and vascular smooth 
muscle cells (VSMCs) are predominantly descendants of 
mesodermal cells; nevertheless, some Authors described 
an ectoderm origin for VSMCs [24, 25]. Many factors reg-
ulate the differentiation of mesoderm in vascular cells 
and this process is really complex and finely regulated. 
Blood vessels arise from endothelial precursors through a 
process known as developmental vasculogenesis [26, 27]. 
Angiogenesis, also called collateral growth, is the trans-
formation of preexistent collateral arterioles into func-
tional collateral arteries could be induced by human bone 
marrow-derived stromal cells through paracrine mecha-
nisms [28, 29]. The expression of a lot of growth factors 
and cytokines, such as VEGF and stromal derived factor-1a 
(SDF-1a) is regulated by hypoxia-inducible factor-1a (HIF-
1a) whose activation should be ascribe to the drop in O2 
tension observed in hypoxic tissues or tumors [30]. The 
release of VEGF and SDF-1a into peripheral circulation 
lead to recruitment of hematopoietic cells like CFU-ECs 
and CACs in affected tissues. Afterwards these factors 
activating angiogenesis process utilizing intracellular Ca2+ 
signals toolkit. [31-39]. Immature VSMCs are still involved 
in blood vessel morphogenesis. They are able to prolifer-
ate, migrate and produce extracellular matrix (ECM) com-
ponents of the blood vessel wall. The process of VSMV dif-
ferentiation is triggered by a lot of vascular growth stimuli, 
such as ischemic injury. Ischemic damage involves matrix 
proteases, known as matrix metalloproteinases (MMPs). 
MMPs, thus, are involved in several vascular [40–54] and 
nonvascular diseases [55].

3  Adult vascular wall resident stem 
cells and angiogenesis
It is clearly know that several progenitor cells and stem 
cells are hidden in arterial and venous vessels. Various 
type of cells are involved like endothelial progenitor cells 
(EPCs), smooth muscle cell (SMC) progenitors, hematopoi-
etic stem cells (HSCs), mesenchymal stem cells (MSCs), 
and the mesangial cells, which express either endothelial 
either myogenic markers [56–59]. Cells expressing CD 34, 
vascular endothelial growth factor 2 receptor (VEGFR2) 
and tyrosine kinase with immunoglobulin-like and EGF-
like domains 2 (TIE2). Were identified between media and 
adventitia of human vessels. These cells have the power to 
switch into ECs, either in physiological pathways either in 
pathological pathways [14, 59–62]. In human arteries and 
veins we can find also CD44(+) CD34(−) CD45(−) multipo-
tent MSC-like stem cells, these cells can differentiate into 
pericytes/SMC. Researchers have demonstrated that these 
cells are capable to cover the endothelium of new vessels 
in vivo and in vitro conditions [63]. CD 34+ and sca1+ cells 
are part of Sonic Hegehog pathway, and they are placed in 
the inner part of adventitia of arteries in animal models. 
They seem to build a vasculogenic area [64]. This area plays 
a central role in the resource of progenitor cells related to 
the EPCs which circulate and derive from bone marrow. 
Moreover they are also a reserve for local immune response 
in the inflammation pathways [65]. In these zones we can 
find also VW-PCs during their growth from the embryonic 
phase to adult one. VW-PCs can become SMC and peri-
cytes and have the power to build new capillary sprouts 
and go towards angiogenic lineage [66]. Vasculogenesis is 
known as the formation of new vessels from angioblasts, 
this is the most important pathway involved in blood 
island vessels formation, dorsal aorta, endocardium, and 
vitelline vessels in the embryo. On the other hand angi-
ogenesis is known as the formation of new vessels from 
other vessels in response to pathological or physiological 
conditions [67]. In this pathway are involved endothelial 
cell migration, proliferation, and tube formation [68–70]. 
An important reservoir of non differentiated cells is made 
by VW-PCs ready to answer to cellular demands modify-
ing their phenotypical characteristics [71]. Neovasculari-
zation is linked to endothelial cells, their migration and 
proliferation ability, and coverage of vessels performed 
by pericytes. Pericytes allow stabilization and survival of 
new sprouting vessels; Researchers found either in vivo 
either in vitro that VW-PCs can differentiate into vascular 
SMCs and pericytes [72]. During angiogenesis an impor-
tant reservoir of pericytes and SMCs can be supplied by 
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MSCs in physiological and pathological conditions. After 
a vascular injury these cells occur to repair the damaged 
vascular cells [73-76].

4  Regulatory role of MMPs on 
vascular wall resident stem cells
MMPs, are a group of zinc dependent proteinases consist-
ing of 28 family members that are able to degrade ECM 
compounds and other proteins [77] taking a pivotal role in 
vascular remodeling [78]. 

Serra et al. have demonstrated MMPs involvement in 
a lot of vascular diseases [4, 79–84]. Angiogenesis process 
start with ECM degradation by proteinases leading to 
release of several factors such as growth factors and their 
receptors, adhesions molecules, chemokines and apopto-
sis mediators as well as cell migration [30, 85, 86,]. VW-PCs 
acquired the ability to differentiate into a smooth muscle 
cells (SMCs) and pericytes that synthesize some proteins 
of basement membrane like proteoglycans and various 
types of collagens [87-89]. Vascular basement membrane 
(VBM) is a specialized extracellular matrix that surrounds 
the blood vessels of the body and interacts with paralytic 
MSCs regulated through an interplay between proteases 
and protease inhibitors influencing vessel homeostasis 
and vascular diseases like vessel aneurysms [90–96]. 
In pericyte–EC interface there are a lot of proteins like 
fibronectin and a compounds of different type of junctions 
like tight, gap as well as N-cadherin and b-catenin-based 
adherens junctions [97]. Fibronectin is degraded by pro-
teolytic enzymes such as MMPs rising biologically active 
fragments like a 45 kDa fibronectin fragment, involved in 
vascular remodeling and maturation [98]. MMPs represent 
the main proteolitic enzyme involved leading to release of 
angiogenic factors [99–101]. SMCs can express MMP-7 and 
MMP-3 and express and secrete MMP-2 and MMP-9 under 
the control of NF-kB. Moreover, MMPs can be released by 
leucocyte while SMCs are the main source of tissue pro-
tease inhibitors [102, 103]. They also constitutively express 
and secrete several serine proteases [104, 105]; thus, in 
the vascular wall, SMCs are the main source of TIMPs 
[106]. As recently reported the expression of Homeobox 
C11 (HOXC11) results in drastic vessel wall remodeling 
[107, 108]. MMP-8 and MMP-9 initiate a cascade of events 
including release and activation of mobilizing factors and 
cytokines, ECM degradation and remodeling [109–112]. 
MMPs are also related to mitogenesis and migration of 
SMCs [113]. In in vivo studies, MMP-3 knockout mice 
reduced neo-intima formation after carotid ligation and 

also attenuated SMCs migration into wound [114]. SMCs 
are important both to promote arterial remodeling and to 
modify vessel diameter and/or wall thickness to ensure 
adequate tissue perfusion [115]. In presence of VEGF, arte-
rial wall resident cells became round-shaped, resembling 
ECs, and part of the cells acquired CD-31, VE-cadherin, and 
von Willebrand factor expression, whereas when they are 
cultured with TGF𝛽-1 or platelet derived growth factor-BB 
(PDGF-BB) adopted a rather elongated phenotype, similar 
to that of SMCs, and part of the cells acquired anti-𝛼-
smooth muscle actin (ASMA) and calponin [116]. VEGF 
also induces the expression of Notch1 through PI3K/AKT 
pathway in cultured ECs [117]. The roles of Notch include 
the differentiation in both EPCs and SMC via activation of 
transcriptional CBF-1/RBP-J𝜅-dependent and independent 
pathways and transduction of downstream Notch target 
gene expression [118, 119]. These angiogenic factors can 
induce differentiation from progenitor in media to EPCs 
and SMCs [14]. Recently it has been shown that pericytes 
are able to detach from the vascular wall and contribute to 
fibrosis by becoming scar-forming myofibroblasts in many 
organs including the kidney. At the same time, the loss of 
pericytes within the perivascular compartment results 
in vulnerable capillaries which are prone to instability, 
pathological angiogenesis, and, ultimately, rarefaction 
such as aneurysmal disease [120, 121]. Based on these evi-
dences, we could affirm that MMPs may play a central role 
to regulate the activity of the VWPCs by increasing the bio-
disponibility of main proangiogenic factors. Another role 
of MMPs is to promote the differentiation and migration 
of fibroblast and resident vasculogenic progenitors crit-
ically involved in vascular repair by remodeling of ECM 
[122]. MMPs contribute to VW-PCs during the progression 
of arterial aneurysms and participate in all crucial stages 
of this degenerative disease.

5  Vascularwall resident cells and 
aneurysms
Vascular accidents are very frequent in the western coun-
tries, and aneurisms are one of the most important one. 
Several conditions are linked to aneurism incidence such 
as alterations of glucose and lipid metabolism, hyperten-
sion, trauma, anastomotic disruption, infections, and 
connective or inflammatory diseases. As already 
described, arterial aneurysms are divided into central 
aneurysms, like abdominal aortic aneurysms, and periph-
eral aneurysms, like aneurysms of the popliteal, femoral, 
and carotid arteries [123,124]. Two are the pathogenic keys 
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in the aneurismal formation, medial degenerations and 
vessel dilatation: low activities of MMPs [125] and Death 
SMCs causes poor synthesis of elastine [126]. Artery wall is 
progressively destroyed by ROS damage and chronic 
inflammation. As already described, in arterial wall are 
preserved resident stem cells [82, 127-129]. So in the vascu-
logenic area are hidden VWPCs which are involved in the 
formation of perycites/SMCs. During endothelial injuries 
VW-PCs and SMCs evolve to proliferate, migrate and dif-
ferentiate. This mechanism allow damage repair [130, 131]. 
SMCs derived from differentiation of VW-PCs occurs at the 
injury site and migrate into the intima [132]. Adventitia 
release factors that activate and regulate VW-PCs wall 
function. Resident stem cells are involved also in struc-
tural modifications of artherosclerotic disease acquiring 
specific structural and morphological features [133, 134]. 
So is clear that in pathological conditions vasculogenic 
area plays a central role in the wall injury [135]. Literature 
underline how other enzyme and cytokynes can influence 
the mobilization of these cell from their residence zone. 
These factors are tumor necrosis factor alpha (TNF-𝛼), 
transforming growth factor beta (TGF-𝛽), granulocyte 
colony stimulating factor (G-CSF), granulocyte mac-
rophage colony stimulating factor (GM-CSF), monocyte 
chemoattractant protein-1 (MCP-1), and stromal cell 
derived factor 1-alpha (SDF1-𝛼). Reserchers demonstrated 
that adventitia inflammation allows mobilization of pro-
genitor cells via vasa vasorum [136]. Arterial aneurisms 
and VW-PCs are probably linked. We have find a descrip-
tion of stem cells role in inflammatory pathway of abdom-
inal arterial aneurism (AAA) by Ryer et al. after analysis of 
several patients underwent to surgery for infrarenal aneu-
rismal repair. Researchers found a great amount of ckit+ 
and CD34+ cells. On the other hand they find macrophage 
marker CD68 expression. But they didn’t find SM22 as 
SMCs marker or FSP1 as fibroblast marker. We know also 
that CD68+ cells are present at the time with the cellular 
marker of proliferation Ki67 [131]. So resident stem cells 
appears to have an important role in pathogenesis of AAA 
as described and confirmed also by other authors [137,138]. 
It has been shown that hemodynamic influence stem cells 
differentiation. Shear stress is linked to endothelial differ-
entiation pathway, on the other side cyclic forces improves 
smooth muscle cells proliferation. These abnormal differ-
entiation stimuli allow wall disease and lead to aneurism 
formation [135]. Certain authors like Witte et al. affirm that 
vacuoles in VW-PCs are the probe of their ability to form 
capillary lumen. These cells can go or on the side of differ-
entiation or on the side of nescrosis, if RBC goes into the 
vacuole they go to the necrosis pathway [138]. Afetr tissue 
injury VW-PCs express CD-34, STRO-1, c-Kit, so they 

acquire the ability to differentiate into SMCs and fibro-
blasts, this admit the hypothesis that they have a key role 
in a repair and remodeling process [120]. To differentiate 
into ECs and MSCs are required stimuli by angiogenetic 
citokyne like VRGF, which is stimulate by C-kit cells [139]. 
The degradation of arterial wall ECM components 
increased by MMPs activation is the basic moment in 
aneurismal formation. [140, 141]. MMPs, expecially MMP-2 
and MMP-9, are released in the aortic wall by SMCs and 
macrophages. [142, 143]. To occur vascular aneurism is 
required that medial fibers are impaired, a diminution of 
SMC and invasion of inflammatory cells in the vascular 
wall. ECM are strictly linked to its synthesis by SMCs and 
protease activation. Chronic inflammation due to an aneu-
rismal history cause a diminution of SMCs with vascular 
impairment and reduction of production of elastine and 
basement membrane. All of these findings cause the loss 
of organization of extracellular matrix [70, 144–146]. In 
neo-intimal lesions and adventitia of atherosclerotic 
plaques of human corps after autopsies several authors 
showed the presence of CD34+Sca1+CD133− cells. These 
cells might be at the origin of endothelial and vascular 
smooth muscle cells that are at the base o f atherosclerosis 
[147–150]. Also pericytes are involved in vascular inflam-
matory response as described by Tigges et al. in restenosis 
of femoral arteries injuries in mices [82, 151] They contrib-
ute to intima hyperplasia due to their mesenchymal stem 
cell like behavior [152, 153]. VSMs are most representative 
cells in the media and can perform pro-inflammatory 
response to several stimuli. Macrophage and t-cells are 
affected by media cytochines and chemochines, but on 
contrary VSMCs and EMC can perform also anti-inflamma-
tory pathways. The opposition between the two forces 
impacts the medial pathology. The medial immune privi-
lege defends the media from injury and inflammation, it 
provides the typical arteriosclerotic lesions, as the first 
step of aneurysmal disease. On the contrary when the 
medial immune privilege is lost. We observe a severe leu-
kocytic infiltrates, loss of VSMCs with alterations of the 
extracellular matrix architecture. With augmentation of 
incidence of aneurismal disease and vasculitides [154, 
155]. Also CD4+ T cells, CD8+ T cells, and B cells are 
involved in the immune response in vascular tissues, they 
are stimulated by factors from apoptotic cells, necrotic 
cells microvasculature injury, and stroma [156, 157]. Insuf-
ficient inflammatory cytokines during chronic inflamma-
tory sites, however, are able to induce MSCs to secrete 
chemokines and tropic factors without immune inhibitory 
factors. Son chronic inflammation may lead MSCs to pro-
tract the disease recovery or even worsen the disease 
course such us in aneurysmal disease [158, 159]. From the 
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bone marrow also osteoblast and osteoclast precursor 
(also known as osteoprogenitors) could be able to create a 
process of calcification. According the circulating cell 
theory from the bone marrow the cell population of osteo-
progenitors (OP) could seed the arteries and could be 
responsible of the damage or, instead, could repair it [160-
162]. It is also possible the mechanism of homing: in 
response to a damage, an injury, an inflammatory phe-
nomena, a stress signal, or in response to an abnormal 
cytokine signaling or also only to repair the damage, the 
circulating OP could be recruited in the arteries; they 
could cross the endothelium, they could invade the target 
tissue [163, 164]. The homing depends by the endothelial 
phenotype: every endothelial phenotype has different 
functions. So, the homing of bone marrow derived stem 
cells is modulated by endothelial phenotype. In the coro-
nary artery endothelium, for example, is possible a fastest 
integration of the bone marrow stromal cells. It is essen-
tial the interation of vascular cell adhesion molecule mol-
ecule-1, very late antigen-4, 𝛽1integrins, MMPs secretion, 
and cytokines [165, 166]. Another important molecule is 
BMP-2, expressed by pericytic myofibroblasts; it is a pow-
erful bone morphogenic factor. According some studies, 
in the pathogenesis of atherosclerosis could be involved 
the MSC because in culture they acquires an osteoblastic 
phenotype as the WNT pathway is activated [167, 168]. It 
was noticed in rats with hyperlipidemia and treated with 
angioplasty that paracrine BMP-2 (one of the most impor-
tant mediators in the differentiation of MSC along the 
osteoblastic lineage) mediates the remodeling and it trig-
gers calcification of the vessel walls [169, 170]. It is also 
known that pericytes represent a reservoir of progenitors 
cells (including osteoblasts) [171, 172], and they can differ-
entiate themselves into various cell lines, also the chondro 
and osteogenic ones [173, 174]. This is an interesting 
example of how the interation among different cells of 
vessel wall can bring to the calcification. The suppression 
of MMP by the VW-PCs could be a fundamental element to 
reduce the aneurismal degeneration. It is also possible 
that tissue damage could be induced by differentiation of 
VW-PC into inflammatory cells. The presence of mac-
rophages that are involved into the replenishment of the 
aneurysm wall probably is due to the VW-PC. It is clear, so, 
that the vW-PC could be responsible both of the inflamma-
tory state and aneurismal degeneration both of the vascu-
lar repair. Different factors are involved, for example 
cytokines, growth factors, and the activation of specific 
pathway [175]. 

6  MSCs application in cardiovascu-
lar regenerative therapy
The interest of many studies is concentrated on VW-PC, 
on circulating EPCs and on umbilical cord blood cells 
because they can be used for the treatment of many differ-
ent diseases. The vascular disorders, for example, could 
be treated using the EPC; the EPC can migrate through 
the blood, can differentiate into new endothelial cells so 
that the process of neoangiogenesis can be induced, the 
endothelium (also of damaged tissues that are distant) 
can be repaired [176, 177]. The vascular repair, in fact, can 
be obtained if the EPC can be mobilized from the bone 
marrow into the peripheral circulation or if the EPC situ-
ated into the vascular wall can be activated; EPC form the 
endothelial cells that are incorporated into the endothe-
lial layer of the injured area to repair the lesion size [186]. 
It is clearly demonstrated and previously described that 
VEGF, as well as many other growth factors, utilize are 
able to activate neoangiogenesis utilizing Ca2+ signaling 
toolkit which regulates EPCs biological properties like 
differentiation, proliferative rate, migration and vessel 
tube formation. Intracellular Ca2+ signals toolkit could 
be manipulate to repair damaged tissue using genetically 
transformed cells or represent the target site of cell based 
therapy through the impairment of EPC-dependent vas-
culogenesis and adverse tumour neovascularization [178-
192]. Also MSC are useful to reduce a lesion because they 
could be able to stop the process of fibrosis, apoptosis, 
and could be responsible to induce mitosis in intrinsic cel-
lular progenitors [193]. The reduction of functions of B and 
T lymphocytes and NK is the cause of these immunomod-
ulating effects [194, 195]. The MSC has not a great immu-
nogenic effect, because of the low levels of HLA–I and the 
null expression of HLA-II [196, 197]. The MSC could have 
a reparative effect if administered after an acute event, 
as demonstrated in porcine with myocardial effect [198-
201]; the MSC could also have the ability of differentiate 
into cells with biologic characteristics of cardiac myocytes 
and endothelial cells, with the result of an improvement 
of cardiac function, if compared with untreated controls 
[202, 203]. Also the postnatal skeletal muscle is able to 
repair and regenerate itself but in some particular patho-
logical conditions, for example, muscular dystrophy or 
compartment syndrome, the myogenic progenitors are not 
be able to do it [204-207]. To prove the structural and func-
tional regeneration of human myofibers, pericytes purified 
from human myofibers, from fat, pancreas and placenta, 
were transplanted into mouse with dystrophy and in car-
diotoxin treatment; it was noticed that there was a more 
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efficient regeneration than do myoblasts or endothelial 
cells. There was also a surprising improvement also with 
pericytes isolated from patients with Duchenne muscular 
dystrophy [208-210]. A specific cellular type can be used 
only in a specific treatment. For example, to obtain the 
bone regeneration or dental repair or adipose reconstruc-
tion can be used the pericytes (studies have demonstrated 
that osteogenic, odontoblastic and adipogenic progen-
itors originate from perivascular niches) [211]. MSCs and 
pericytes derived from cord blood may have a great thera-
peutic efficacy also in the complete restoration of kidney 
function, if compared with MSC derived form regular bone 
marrow; they could seem to secret angiogenic and antia-
poptotic factors that could be responsible of renoprotec-
tive effects [212, 213]. Furthemore, the umbilical cord is 
another source of stem cells [214-216]. The pericytes could 
be useful for many therapies. They can migrate toward the 
damaged cells, and can produce the vascular endothe-
lial growth factor and keratinocyte growth factor, with 
antiapoptotic and angiogenic properties, so it is possible 
to obtain the vascular repair [217-221]. The same MSC are 
present not only in bone marrow but also around adult 
vessels; these MSC-like cells seem to be responsible of vas-
culogenesis, arteriogenesis, angiogenesis. With no doubt, 
using the MSCs and the MSC-like cells there are no ethical 
problems, but the only problem is that we don’t know their 
specific mechanisms of action. Different elements have to 
be considered. Release of vasculogenic-angiogenic factors 
and/or arteriogenic-stimulating factors, immunomodula-
tion into a different microenviroment, differentiation into 
vascular tissue, but also cell source, administration route, 
cell dosage, timing of cell delivery, are important factors 
to take in consideration. Many different results have been 
observed and probably are due to other many variables, 
for example drugs, diseases, inflammatory status, and 
comorbidities. Studies in vivo demonstrated that MMP 
activity was inhibited by MSCs and TIMP-1 was influenced 
by MSCs, instead MMP-2 activity was suppressed ex-vivo. 
Studies in vitro, instead, showed how MM gene expres-
sion in macrophages was suppressed by MSCs. There was, 
also, a negative correlation between elastin content and 
MMPs. It was described a reduced expression of inflam-
matory cytokines, as IL-6, MCP-1, TNF-α, probably impli-
cated in the up-regulation of MMP in the aortic wall. It 
is probably true that paracrine mechanisms induced by 
MSCs could be stop the immunopathologic reactions in 
the aneurismal vascular wall. As regards MSCs coming 
from bone marrow, they could seem inhibited in vitro the 
activity of dendritic cells, T cells, NK cells. MMP2 and MMP 
9, elastases and chemokines are responsible of induction 
of mobilization and homing of MSC; MSC is known also 

to have particular tropism for inflammation. Important 
elements of AA are represented by chronic inflammation 
of the aortic wall induced by chemokines and aortic ECM 
degradation by MMP-2 and MMP-9, so MSCs that migrate 
toward MMPs and Chemokines can be useful for therapy 
of aortic aneurysm [222-225].

7  Discussion 
SCs research is both scientifically promising and ethically 
challenging. In vascular diseases like arterial aneurysm 
the complexity of pathogenesis involving inflammation, 
MMPs activation, ECM remodeling, and VSMC dysfunc-
tion and apoptosis lead to the weakening of the vessel wall 
and arterial expansion under the influence of mechanical 
stimuli [226, 227]. Several complications like rupture, dis-
section, and distal embolization are frequently observed 
[228]. The degenerative remodeling seen in arterial aneu-
rysms can result from a combination of excessive destruc-
tion and insufficient repair in which SCs play an impor-
tant role creating a useful microenvironment for vascular 
regeneration [229]. VW-PCs have been also isolated from 
the thoracic and abdominal aortas of humans. A specific 
zone of vascular wall named vasculogenic zone contains 
specific subpopulation of EPCs [32]. In arterial aneurysms 
the chronic inflammation lead to MMPs activation induc-
ing the mobilization of local VW-PCs and tissue-resident 
EPCs involved in an active repair process involving SCs. 
VW-PCs promote vascular repair by differentiating into 
vascular SMCs and fibroblasts in vasa vasorum localized 
in adventitial layer of vascular wall. MMPs activation can 
induce the secretion of pro-angiogenic cytokines such as 
VEGF and stimulate host SCs proliferation and differenti-
ation. Share stress is also involved in arterial aneurysms 
pathophysiology. Arterial ECs proliferation and migration 
and medial SMC proliferation promotes adaptive enlarge-
ment and luminal tortuosity of vascular wall. A lot of 
papers report that proteolytic activity of ECM degradation 
by MMPs play a critical role in vascular formation and 
remodeling promoting the synthesis of pro-angiogenic 
growth factors and cytokines. Vascular formation and 
remodeling include recruitment, migration, prolifera-
tion, and apoptosis of vascular cells consisting of stem/
progenitor cells, ECs, VSMCs, and other cells located in 
vascular wall. MMP-2, MMP-9, MT1-MMP, MMP-3, MMP-1, 
and MMP-7 have been recognized in vascular tissue and 
play pathogenic roles in vascular remodeling via regulat-
ing VSMC behaviors [230]. Early outgrowth EPCs induce 
only transient angiogenesis by secretory activity. Late out-
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growth cells probably produce the effect by direct engraft-
ment [231, 232]. VW-PCs exert their functional role in dif-
ferent phases of the natural history of aneurysms. In the 
early stages, the activity of MMPs lead to growth factors 
release. Stem cells are quiescent and reside in stem cell 
niches of the vessel wall but several stimuli can lead their 
activation. If damage is moderate, the laminar flow will 
stimulate stem cells to differentiate into ECs to maintain 
the vessel integrity. When severe damage or atheroscle-
rotic lesion occurs, locally the disturbed flow is induced, 
resulting in stem cell differentiation towards SMCs, which 
accumulates within the intima [233, 234]. The existence of 
VW-PCs provides an exciting prospect to directly manip-
ulate local responses within the vasculature, as it has 
already happened, in a similar way, in cell therapy for 
critical limb ischemia [235]. 
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