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Abstract: In this work, we studied the impacts of transmitting light, nonlinear thermal, and microp-
olar fluid mechanics on a wire surface coating utilizing non-Newtonian viscoelastic flow. Models
with temperature-dependent variable viscosity were used. The boundary layer equations governing
the flow and heat transport processes were solved using the Runge–Kutta fourth order method. A
distinguished constituent of this study was the use of a porous matrix that acted as an insulator to
reduce heat loss. In this paper we discuss the effects of numerous development parameters, including
β0, Q, m, Ω, Kp, and Br (non-Newtonian parameter, heat-producing parameter, viscosity parameter,
variable viscosity parameter, porosity parameter, and Brinkman number, respectively). Furthermore,
the effects of two other parameters, D and M, are also discussed as they relate to velocity and tem-
perature distributions. We observed that the velocity profiles decreased with increasing values of
Kp. Fluid velocity increased as the values of M, Br, N, and D increased, while it decreased when
the values of Kp, Q and D increased. For increasing values of M, the temperature profile showed
increasing behavior, while Br and Q showed decreasing behavior. Furthermore, the present work is
validated by comparison with HAM and previously published work, with good results.

Keywords: RK4 and HAM solutions; Eyring–Powell fluid; non-Newtonian fluid; transverse MHD
effect; permeable matrix; temperature-dependent viscosity

1. Introduction

Many of the fluids that engineers and scientists interact with are Newtonian fluids
(e.g., air, water, oil). However, in many circumstances, the foundation of Newtonian
behavior is non-rational and complex, necessitating the development of non-Newtonian
responses. Non-Newtonian fluid behavior can be found in a variety of fluid materials,
such as glue, custard, paint, blood, and ketchup. Many studies have emphasized the
importance of non-Newtonian fluids because of their wide variety of engineering and
industrial applications [1–8]. Rahman et al. [9] investigated non-Newtonian nanofluids
in arterial supply through compounded stenosis. Eyring–Powell fluid, first proposed in
1944 by Eyring and Powell, is one such fluid. Several characteristics of Eyring–Powell
fluids have been studied [10–14]. The wire-coating procedure is critical for preventing
injuries and reducing the damage caused by machine vibration. Various melt polymers are
used to coat wire in industries. In most cases, two techniques are needed to coat wire. In
the first step, melt polymer is continuously dropped on the wire, and in the second step
the wire is dragged through a die soaked with viscoelastic material. The coaxial process,
dripping method, and electrostatic deposition process are the three processes utilized
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for wire coating. The dipping phase in the wire-coating process creates a considerably
stronger link between the continua, but it is slower than the other two operations. Figure 1
depicts the geometry of the wire-coating procedure. A payoff device, straightener, heating
element, extrusion device and die, cooling device, capstan, tester, and pull reel are all
included. The bare wire is wrapped on the payoff device that goes through the straightener,
while the wire is heated via a preheater, and a nozzle die contains a classical die where
the molten polymer is assembled and coated. After that, the coating wire is chilled by a
cooling unit, then passed through a capstan and a tester before being wound on a take-up
reel. Various non-Newtonian fluids have been used by numerous investigators to examine
coating processes [15–23].
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Figure 1. A typical wire-coating process.

Magnetohydrodynamics deals with highly conductive flow characteristics in the
applied magnetic field. Many scholars have dedicated a significant amount of time to
the study of magnetohydrodynamic flow problems [24–30]. Due to its Lorentz force, an
applied magnetic field produces a current that has a significant impact on fluid motion. The
fluid moment is reduced due to this Lorentz force. Magnetohydrodynamics has recently
gained prominence as a research issue due to its widespread application in a variety of
industrial processes, such as magnetic field material processing and glassmaking.

Researchers are interested in fluid flow through porous media because of the wide
range of engineering applications. Porous media include carbonated pebbles, wood, metal
foams, and other well-known materials. They have many industrial and residential uses,
including as filters, printing papers, fuel cells, and batteries, which now use a very thin
porous layer. Porous media have received a great deal of attention in several studies [31–33].

The heat exchange of non-Newtonian flow fields has gained popularity due to its
potential applications in a wide range of industries. Rehman et al. [34] investigated
heat exchange research for 3D stagnation point flow. The effect of heat exchange inves-
tigation and magnetohydrodynamic fluid was explored by many other scholars [35–43].
Hamid et al. [44] studied the heat transfer of a nanofluid through a permeable plate with
radiation along slip conditions. Similarly, Hamid et al. [45,46] investigated the heat
transfer of pseudoplastic through a permeable surface in the presence of nanoparticles.
Tanveer et al. [47] studied the chemical reactions and heat-transfer rate of a micropolar
fluid passing over a convectively heated sheet. Muhammad et al. [48] studied a Casson
nanofluid over a stretching sheet. Some recent research about heat transfer can be seen
in [49,50].

Nobody has yet examined the coating process for wire using a magnetohydrodynamic
Eyring–Powell fluid. The goal of this work was to use Reynolds’ and Vogel’s models to
describe the wire-coating process as it relates to heat production, porous materials, and
variable viscosity.
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2. Wire Coating Modelling

Figure 2 depicts the geometry of the problem under investigation. Here, L denotes
the length of the die, Rd denotes the radius, and θd denotes the temperature where an
inviscid polymer melt is saturated. Where the temperature of the wire is determined by θw,
radius Rd, and velocity Uw in porous medium, the wire is dragged at the center line a fixed
pressurized die. A constant pressure gradient dp analogous to the x-axis and a normal
magnetic field of strength B0 work together to operate the emerging fluid. The induced
magnetic number is used as a minor in our current scenario in order to ignore the actual
magnetization. The reference problem is formulated along the wire axis.
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The proper formulas for fluid velocity, stress tensor, and temperature field in the
above-mentioned circumstances are as follows [17–20]:

q = 0i + 0j + w(r)k (1)

S = S(r) (2)

θ = θ(r) (3)

For viscoelastic Eyring–Powell fluid, the Cauchy stress tensor is written as [17–20]:

S = µ ∗ ∇v +
1
β
∗sinh−1

(
1
C
∇v
)

(4)

Equation (4) can be simplified as follows:

sinh−1
(

1
C
∗ ∇v

)
≈ 1

C
∗ ∇v− 1

6

(
1
C
∗ ∇v

)3
,
∣∣∣∣ 1
C
∗ ∇v

∣∣∣∣� 1 (5)

For the sake of this discussion, the appropriate boundary conditions are as follows [17,20]:

w(Rw) = Uw, θ(Rw) = θw (6)

The fundamental equations follow as [17–20]:

∇ · q = 0 (7)

ρ

(
Dq
Dt

)
= F−∇p + J ∗ B +

µq
K∗p

(8)
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ρCp
Dθ

Dt
= k∇2 + ϕ + Q0(θ − θw) + Jd (9)

where q, Dt/D, J ∗ B, ρ, and Q0 are the velocity vector, material derivative, magnetic field,
density, and rate of volumetric heat generation, respectively.

The magnetic body force generated in the z-direction is defined as [18,20]:

J ∗ B =
(

0, 0, σβ2
0w
)

(10)

Equation (7) is satisfied automatically when (1–3) are used, and non-zero terms are
as follows:

Szr =

(
µ +

1
βC

)
dw
dr
− 1

6βC3

(
dw
dr

)3
(11)

∂P
∂r

= 0 (12)

∂P
∂θ

= 0 (13)

∂P
∂z

=
1
r

d
dr

[
r

{(
µ +

1
βC

)
dw
dr
− 1

6βC

(
dw
dr

)3
}]
− σβ2

0w− µw
K∗p

(14)

However, due to the pressure gradient, Equation (14) displays the flow. When depart-
ing the die, the only event occurring is wire drag. As a result, pressure gradient has no
effect and Equation (14) becomes:

1
r

d
dr

[
r

{(
µ +

1
βC

)
dw
dr
− 1

6βC

(
dw
dr

)3
}]
− σβ2

0w− µw
K∗p

= 0 (15)

Energy Equation (9) becomes:

K
(

d2θ
dr2 + 1

r
dθ
dr

)
+

((
µ + 1

βC

)
dw
dr −

1
6βC3

(
dw
dr

)3
)

,
dw
dr + Q0(θ − θw) + σβ2

0w2 = 0

(16)

3. Constant Viscosity

Dimensionless parameters are defined as [17–20]:

r∗ = r
Rw

, w∗ = w
Uw

, M2 =
σβ2

0R2
w

µ ,

Kp = R2
w

K∗p
, w = v0

Uw
, N = 1

µβC ,

θ∗w = (θ−θw)
(θd−θw)

, Q = Q0R2
w

K ,

Br =
µU2

w
K(θd−θw)

, Rw = βv0
µ , ε = µ

6w2(βC)3

(17)

We derive the following form by introducing the above new variables in Equations
(6), (15) and (16):

(1 + N)

[
r

d2w
dr2 +

dw
dr

]
− ε

[(
dw
dr

)3
+ 3r

(
dw
dr

)2 d2w
dr2

]
−M2wr− Kpwr = 0 (18)

w(1) = 1 and w(δ) = 0 (19)

d2θ

dr2 +
1
r

dθ

dr
+ Br(1 + N)

(
dw
dr

)2
+ εBr

(
dw
dr

)4
+ Qθ + Br M2w2 = 0 (20)

θ(1) = 0 and θ(δ) = 1 (21)
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4. Temperature-Dependent Viscosity

Reynolds’ model is utilized to explain temperature-dependent viscosity in this case.
For Reynolds’ model, viscosity in dimensionless form is [17]:

µ ≈ 1− β0mθ (22)

It is used to calculate temperature-dependent viscosity variation, with m as the viscos-
ity parameter. We introduce the following non-dimensional parameters [17–20]:

η∗ = r
Rw

, f ∗ = w
Uw

, M2 =
σβ2

0R2
w

µ0
, Kp = R2

w
K∗p

, f = v0
Uw

, N = 1
µ0βC , µ∗ = µ

µ0
,θ∗ =

(θ−θw)
(θd−θw)

, Q = Q0R2
w

K , Br =
µ0U2

w
K(θd−θw)

, Rf =
βv0
µ0

, ε = µ0

6 f 2(βC)3

(23)

In view of Equation (23), Equations (18)–(21), after deleing the asterisks, become:

d2 f
dη2

[
η(1− β0mθ) + ηN − 3ηε

(
d f
dη

)2
]
+ d f

dη

[
1− β0mθ + N − β0mη dθ

dη

]
−ε
(

d f
dη

)3
− Kp f η −M2 f η = 0

(24)

f (1) = 1 and f (δ) = 0 (25)

d2θ

dη2 +
1
η

dθ

dη
+ (1− β0mθ)Br

(
d f
dη

)2
+ Br

(
d f
dη

)2

(N + ε) + Qθ + Br M2 f 2 = 0 (26)

θ(1) = 0 and θ(δ) = 1 (27)

For Vogel’s model [17]:

µ = µ0 exp
(

D
B′ + θ

− θ f

)
(28)

After expanding Equation (28), we have:

µ = Ω
(

1− D
B′2

θ

)
(29)

Here, D and B are viscosity parameters and Ω = µ0 exp
(

D
B′2 − θ f

)
. After deleting the

asterisks, Equations (24)–(27) become:

d2 f
dη2

[
ηΩ
(

1− D
B′2 θ

)
+ ηN − 3ηε

(
d f
dη

)2
]

+ d f
dη

[
Ω
(

1− D
B2 θ
)
+ N −Ω D

B′2 η dθ
dη

]
−ε
(

d f
dη

)3
− Kp f η −M2 f η = 0

(30)

f (1) = 1, f (δ) = 0 (31)

d2θ
dη2 +

1
η

dθ
dr + Ω

(
1− D

B′2 θ
)

Br

(
d f
dη

)2

+Br

(
d f
dη

)2
(N + ε) + Qθ + Br M2 f 2 = 0

(32)

θ(1) = 0 and θ(δ) = 1 (33)

5. Numerical Computation
Constant Viscosity

Equations (30)–(33), which regulate the system, are reduced to first ODE.



Polymers 2021, 13, 3696 6 of 19

The RK4 approach is used to solve them numerically [17,18]:

d2 f
dη2 =

ε
(

d f
dη

)3
− (1 + N)

d f
dη + M2 f η + Kp f η

(1 + N)η + 3ηε
(

d f
dη

)2 (34)

d2θ

dη2 = −
[

1
η

dθ

dη
+ Br(1 + N)

(
d f
dη

)2
+ εBr

(
d f
dη

)4
+ Qθ + Br M2 f 2

]
(35)

We introduce the following new variables:

f = y1, f ′ = y2, f ′′ = y′2, θ = y3, θ′ = y4, θ′′ = y′4 (36)

y′2 =
ε(y2)

3 − (1 + N)y2 + M2y1η + Kpy1η

(1 + N)η + 3ηε(y2)
2 (37)

y′4 = −
[

1
η

y4 + Br(1 + N)(y2)
2 + εBr(y2)

4 + Qy3 + Br M2y2
1

]
(38)

The boundary conditions become:

y1(1) = 1 and y1(δ) = 0 (39)

y3(1) = 0 and y3(δ) = 1 (40)

Similarly, for Reynolds’ and Vogel’s models, we transform the higher ODE into a
first-order ODE as:

For Reynolds’ model:

y′2 =
ε(y2)

3+Kpy1r+M2y1r−y2[1−β0my3+N−β0mry4]

[r(1−β0my3)+rN−3rε(y2)
2]

,

y′4 = −
[

1
r y4 + (1− β0my3)Br(y2)

2

+Br(y2)
2(N + ε) + Qy3 + Br M2y2

1

]
,

(41)

y1(1) = 1 and y1(δ) = 0 (42)

y3(1) = 0 and y3(δ) = 1 (43)

For Vogel’s model:

y′2 =
ε(y2)

3+Kpy1r+M2y1r−y2

[
Ω
(

1− D
B2 y3

)
+N−Ω D

B2 ry4

]
rΩ
(

1− D
B2 y3

)
+rN−3rε(y2)

2

y′4 = −
[

1
r y4 + Ω

(
1− D

B′2 y3

)
Br(y2)

2

+Br(y2)
2(N + ε) + Qy3 + Br M2y2

1

] (44)

y1(1) = 1 and y1(δ) = 0 (45)

y3(1) = 0 and y3(δ) = 1 (46)

6. Results and Discussion

An EP (Eyring–Powell) fluid was examined for wire surface coating in this study. In
a porous medium, wire coating usually happens inside a die with persistent magnetic
and heat emission effects. We examined the effects of numerous development parameters,
including Q, m, Ω, Kp, and Br, which stand for the non-Newtonian parameter, heat-
producing parameter, viscosity parameter, variable-viscosity parameter, porosity parameter,
and the Brinkman number, respectively. Furthermore, the effect of two other parameters,
D and M, are also discussed as they relate to velocity and temperature distributions.
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Keeping Br and Q fixed, Figure 3 shows the effect of Kp on velocity distribution in the
absence of variable viscosity. The velocity significantly decreased with increasing Kp.
Ignoring variable viscosity and keeping other parameters fixed, Figure 4 shows the effect
of increasing ε on the velocity distribution. With increasing ε, the velocity profile shows an
increasing tendency. The influence of M on velocity distribution is displayed in Figure 5. In
the figure, the velocity profile increases as the parameter M increases. The impact of Br on
the velocity distribution in the Reynolds model is shown in Figure 6. The Brinkman number
(Br) is a dimensionless parameter used during melt processing to describe the conduction
of heat from a barrier to a moving viscous fluid. With increasing Br, the velocity profile
increased as well. This is attributed to the increased thermal power produced by viscous
dissipation, which increases the fluid temperature and, as a result, increases the buoyant
force. As a consequence, increasing the buoyant force causes the velocity to increase as
well. When β0 = 0.2, M = 0.6, Br = 0.1, Q = 0.1, and m = 0.3, Figure 7 depicts the effects of the
permeability parameter on the velocity in the case of the Reynolds model. As Kp increased,
the velocity inside the die decreased. It is self-evident that the existence of a porous material
generates greater fluid dynamic restriction, causing the flow to decline. As a result, as the
impermeability factor increases, the barrier to flow velocity increases, and therefore velocity
falls. Figure 8 shows the effect of N on the velocity profile for the Reynolds model. The
growing action caused by a rise in N is eliminated by the velocity curve. Figure 9 illustrates
that in Vogel’s model, the velocity of the fluid exhibits an increase with increasing Br, with
M = 0.1, Kp = 0.6, and Q = 0.6. In Vogel’s model, the velocity curve in Figure 10 depicts
an increasing tendency with increasing D. Figure 11 shows the tendency in the velocity
distribution as Q increases in the case of Vogel’s model, with D = 0.3, M = 0.1, and Br = 0.5.
When M = 0.5, Kp = 0.6, and N = 0.02 in the case of constant viscosity, Figure 12 illustrates
the fluctuations in temperature distribution caused by ε. With increasing ε, the velocity
profile shifted downward. The influence of the Brinkman number (Br) on the temperature
curve with constant viscosity is shown in Figure 13; the dimensionless temperature profile
falls as the dimensionless factor Br is increased in Figure 13, implying that this parameter
enhances the wall temperature more than the mean temperature. This is because the fluid
flow transports relatively less energy nearer to the borders in comparison to the core area,
which may be the result of greater temperatures near the wall area. With viscosity and
all other parameters held constant, Figure 14 shows the impact of Q on the temperature
profile. With increasing Q, the fluid velocity shows an increasing tendency. Figure 15
shows an increasing behavior of the temperature field as the value of ε increases, in the
case of the Reynolds model. In Figure 16, as M increases, the temperature profile increases
as well. For the Reynolds model, the temperature profiles show an increasing behavior as
M increases. By applying a perpendicular magnetic field to an electrical conductor fluid,
a Lorentz force is created. The resulting Lorentz force has the capacity to eliminate fluid
velocity in a confined geometry while also causing a temperature increase. As a result,
increasing the value of the magnetic field parameter causes the thickness of the thermal
boundary layer to develop, but the speed in the flow direction drops. With increasing Q,
the temperature curve shows a decreasing behavior in Figure 17. In the case of Vogel’s
model with D = 0.5, Kp = 0.2, and Q = 0.6, Figure 18 shows that the temperature inside
the die increased due to impedance in M. Figure 19 illustrates that increasing Ω led to a
declining temperature trajectory in Vogel’s model with N = 0.3, β0 = 1.2, Kp = 0.2, and
D = 0.5. The influence on the streamlines of various values of Br with uniform velocity is
shown in Figure 20. Figure 21 shows the impact on streamlines of different values of Br
in the case of the Reynolds model. Figure 22 shows how streamlines are affected by the
variation of Br in Vogel’s model.
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7. Validation of the Results

A HAM approach was used for confirmation of the results. As demonstrated in
Figures 23–28, we had excellent agreement using this method. This comparative study was
carried out for three different scenarios: constant viscosity, Vogel’s model, and Reynolds’
model. In addition, as shown in Table 1, the residual was calculated. The current results
were also validated with the published work of Hayat et al. [11] to ensure the accuracy
of our findings. This analysis revealed that our results obtained for the stated model
parameters were in remarkable conformity, and we are sure of the veracity and flexibility
of our conclusions.
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Table 1. Comparison of the present work with HAM and published works.

η RK4 HAM Hayat et al. [11] Absolute Error

0.0 1 1 1 0

0.1 0.906702 0.906701 0.906702 1.7263 × 10−5

0.2 0.798963 0.798962 0.798963 3.1826 × 10−6

0.3 0.676887 0.676885 0.676887 5.2213 × 10−10

0.4 0.543737 0.543736 0.543737 1.7120 × 10−11

0.5 0.406571 0.406571 0.406571 0.00327 × 10−21

0.6 0.275849 0.275849 0.275849 0.10240 × 10−21

0.7 0.163688 0.163689 0.163688 0.25100 × 10−22

0.8 0.080481 0.080481 0.0804805 1.0021 × 10−30

0.9 0.0296124 0.0296124 0.0296124 1.00010 × 10−33

1.0 5.34328 × 10−12 5.34328 × 10−12 5.34328 × 10−12 0.00152 × 10−33

8. Conclusions

We calculated the influence of an MHD fluid as well as heat transmission on the
coating of wire utilizing a viscoelastic fluid in the presence of a porous medium. The
impact of temperature-dependent viscosity and Joule heating were also discussed. The
wire was coated with an Eyring–Powell fluid in a pressure-type die. Because a porous
matrix was employed as an insulator, the heat and mass flexibility process reduced heat
loss, thus improving the melting capacity. The numerical approach was utilized to obtain
a numerical solution to the given model. Regarding velocity and temperature profiles,
the outcomes of the involved parameters were shown. Increases in the values of ε, M, Br,
N, and D caused the fluid velocity to increase, whereas increases in the values of Kp, Q,
and D caused fluid velocity to decrease. For the Reynolds model, the temperature profiles
depicted increasing behavior as M increased. By applying a perpendicular magnetic field
to an electrical conductor fluid, the Lorentz force is created. The resulting Lorentz force has
the capacity to eliminate fluid velocity in a confined geometry while also causing a rise
in temperature. As a result, raising the magnetic field parameter causes the thickness of
the thermal boundary layer to develop, but the speed in the flow direction to drop. When
increasing Br, the temperature profiles decreased. This is because the fluid flow transports
relatively less energy nearer to the borders in comparison to the core area, which may be
the result of greater temperatures near the wall area. The temperature profile indicated an
increasing tendency in the values of ε and M, as well as a declining behavior in the values
of Br and Q. In addition, the present study was also validated with HAM and compared
with published literature, and the results were in good agreement.
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