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ABSTRACT
Backgrounds. Nonalcoholic fatty liver disease (NAFLD) has multiple causes, is
triggered by individual genetic susceptibility, environmental factors, and metabolic
disturbances, andmay be triggered by acquiredmetabolic stress. Themetabolic profiles
of NAFLD show significant ethnic differences, and the metabolic characteristics of
NAFLD in Chinese individuals are unclear. Our study aimed to identify the metabolites
and pathways associated with NAFLD in a Chinese cohort.
Methods. One hundred participants, including 50 NAFLD patients and 50 healthy
controls, were enrolled in this retrospective observational study at Jinling Hospital
in Nanjing; serum samples were collected from the patients and healthy subjects.
The metabolome was determined in all samples by liquid chromatography-hybrid
quadrupole time-of-flight mass spectrometry (LC-Q/TOF-MS). Univariate and multi-
variate statistical analyses were used to compare the metabolic profiles between the two
groups.
Results. The comparison indicated that the levels of 89 metabolites were different
between the two groups. The glycerophospholipid family of metabolites was the
most abundant family of metabolites that demonstrated significant differences. L-
acetylcarnitine, L-homocitrulline, and glutamic acid were the top three metabolites
ranked by VIP score and had favorable effective functions for diagnosis. Moreover,
pathway enrichment analysis suggested 14 potentially different metabolic pathways
between NAFLD patients and healthy controls based on their impact value. Biological
modules involved in the lipid and carbohydrate metabolism had the highest relevance
to the conditions of NAFLD. Glycerophospholipid metabolism had the strongest
associations with the conditions of NAFLD.
Conclusions. Our data suggest that the serummetabolic profiles ofNAFLDpatients and
healthy controls are different. L-Homocitrulline was remarkably increased in NAFLD
patients.

Subjects Gastroenterology and Hepatology, Hematology, Metabolic Sciences
Keywords Glycerophospholipids, Homocitrulline, Non-alcoholic fatty liver disease (NAFLD),
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INTRODUCTION
NAFLD is a clinicopathological condition defining a spectrum of liver diseases, including
nonalcoholic fatty liver (NAFL), nonalcoholic steatohepatitis (NASH), cirrhosis, and
hepatocellular carcinoma (Brunt, 2010; Brunt et al., 2015; Fan et al., 2019). NAFLD is
associated with inefficient nutrient metabolism and usually develops in the context of
metabolic syndrome (MetS) (Friedman et al., 2018; Yki-Järvinen, 2014). Currently, the
prevalence of NAFLD in most Asian countries remains over 25%, making it the most
common chronic liver disease (Younossi et al., 2016).

Metabolomics is used to analyze the profiles of small molecule metabolites of cellular
processes (Nicholson et al., 2002). Currently, metabolomics is used for disease prediction,
differential diagnosis, drug response assessment, and hypothesis generation (Di Dalmazi
et al., 2017; Soga et al., 2011; Tzoulaki et al., 2014; Yin & Xu, 2014). A number of studies
have demonstrated differences in the metabolomic profiles and some crucial metabolic
pathways between NAFLD patients and healthy controls in other countries (Fellinger et
al., 2020; Gaggini et al., 2018; Gitto et al., 2018; Gorden et al., 2015; Takahashi et al., 2020;
Tang et al., 2019). In China, a variety of studies have concentrated on the effects and
mechanisms of action of medicines used to alleviate NAFLD (Deng et al., 2019; Tanaka et
al., 2017; Wang et al., 2016) However, only a few published studies have focused on the
metabolic profiles of NAFLD patients in China, and the results of metabolomic studies
in NAFLD are inconsistent. We aimed to analyze the metabolomic profiles of Chinese
NAFLD patients.

Nontargeted liquid chromatography-mass spectrometry with quadrupole time-of-flight
mass spectrometry (LC-Q-TOF/MS) was used for the analysis of the serum to provide the
data to identify altered endogenous metabolites and pathways associated with NAFLD in a
Chinese cohort enrolled in this study. We sought to evaluate whether LC-MS analysis can
distinguish NAFLD patients from healthy controls based on differential metabolic profiles.
Then, the alterations in the metabolites and related pathways were defined to explain the
mechanism of NAFLD.

MATERIALS & METHODS
Study population and sample Collection
One hundred subjects, including 50 healthy controls and 50 NAFLD patients admitted
to the outpatient clinic at Jinling Hospital in Nanjing, China, were enrolled in this study
from January 2015 to December 2018. The inclusion criteria for the NAFLD group were as
follows: (1) hepatic steatosis diagnosed by imaging; (2) age between 14 and 75 years; and
(3) history of alcohol consumption of <210 g/week in men and <140 g/week in women
over 2 years prior to the diagnosis of hepatic steatosis. The exclusion criteria for the NAFLD
groupwere as follows: (1) positive results of a serum test for hepatitis B virus surface antigen
and hepatitis C virus antibodies; (2) patients with alcoholic liver disease, drug-induced liver
injury, total parenteral nutrition, hepatolenticular degeneration, autoimmune liver disease,
and other specific diseases that can cause fatty liver (Chalasani et al., 2012); (3) patients
who have taken nonsteroidal anti-inflammatory drugs, anticoagulants, antibiotics, and
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proton pump inhibitors in the past month; (4) patients who have lost weight through diet
or vigorous exercise within the past month; (5) patients with serious diseases, such as heart,
lung, brain, or kidney diseases; and (6) patients with malignant tumors or autoimmune
diseases.

Blood samples were collected from the enrolled subjects after at least 12 h of fasting.
Serum samples were obtained by centrifugation (3,500 rpm, 6 min) and divided into two
parts; one part was stored at −80 ◦C until analysis, and another part was used for the
detection of albumin, aspartate aminotransferase (AST), alanine aminotransferase (ALT),
uric acid, triglycerides, fasting blood glucose, and total cholesterol at Nanjing Jinling
Hospital Laboratory by a Hitachi 7600-110 automatic biochemical analyzer (Hitachi,
Tokyo, Japan).

Serum sample pretreatment for LC-MS analysis
Before LC/MS analysis, 200 µL of serum samples, which were thawed at room temperature
for 15 min, were mixed with 600 µL of methanol in the presence of 20 µg/mL DL-o-
chlorophenyl alanine and vigorously vortexed for 30 s. The mixtures were centrifuged at
12,000 rpm for 15 min at 4 ◦C. A 200 µL aliquot of the supernatant was used for LC-MS
analysis.

LC-MS analysis
The samples were analyzed on an Agilent LC-Q/TOF-MS system (Agilent Technologies,
Santa Clara, CA, USA), which consisted of an Agilent 1290 liquid chromatography system
and an Agilent 6530 time-of-flight mass spectrometer. The samples were injected onto
an Agilent C18 particle column (100×2.1 mm, 1.8 µm). The injected sample volume
was 4 µL, and the flow rate was 0.35 mL/min. The column temperature was maintained
at 45 ◦C. Solvent A consisted of 0.1% formic acid in water, and solvent B consisted of
0.1% formic acid in acetonitrile. The gradient of the mobile phase is shown in Table S1.
An Agilent 6530 Accurate-Mass Q-TOF/MS (Agilent Technologies, CA, USA) equipped
with an electrospray ionization (ESI) source in both negative mode and positive mode
was used to perform the mass spectrometry assays. Nitrogen was used as a nebulizer gas.
The measurement conditions were as follows: capillary voltage, −3.5 kV in ESI− and 4
kV in ESI+; sampling cone voltage, 50 kV in ESI− and 35 kV in ESI +; dissolving gas
flow rate, 700 L/h in ESI− and 600 L/h in ESI+; source temperature, 100 ◦C in ESI−
and ESI+; dissolving gas temperature, 350 ◦C in ESI− and ESI+; cone gas flow rate, 50
L/h in ESI− and ESI+; and extraction cone voltage, 4 kV in ESI− and ESI+. Centroid
data were collected from 50 to 1,000 m/z, and the scan time was 0.03 s with an interscan
delay of 0.02 s. The pooled quality control (QC) samples were used to ensure the stability
and repeatability of the HPLC-Q-TOF system. QC was a mixture of 10 µl of each sample
and was staggered after every ten samples; thus, the stability of the instrument could be
investigated based on the overlap of QC chromatograms. The total ion current (TIC)
chromatograms of the QC samples overlapped, as shown in Fig. S1.
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Statistical analysis
Two data sets from LC-QTOF/MS ESI+ and ESI− were used for peak selection, filtering,
and filling by XCMS software. The differences in the metabolic features between the
two groups were identified by the unsupervised method (principal component analysis,
PCA) and supervised method (orthogonal partial least squares-discriminant analysis,
OPLS-DA) using SIMCA-P software (Umetrics AB, Umea, Sweden). The Mann–Whitney
U test was performed to identify differential metabolites between the two groups based
on the false discovery rate (FDR). We matched the experimental tandem MS spectrum,
retention time, and accurate mass of the metabolic features with spectral databases
to identify the metabolites. Differential metabolites were characterized by search of
an online database (HMDB) and comparison of mass spectra based on the mass-to-
charge ratio or exact molecular mass. the SPSS software version 22.0 for Windows
(SPSS, Inc., Chicago, IL, USA) was used to analyze the clinical data. Nonparametric
data were analyzed using the Wilcoxon and Kruskal-Wallis tests and were expressed as
the median with ranges, including ALT, AST, TG, TC, TBS and UA. Categorical data
were analyzed using Fisher’s exact test, such as gender. Continuous variables, such as
age, was analyzed using the two sample Student’s t -test and were expressed as mean
±standard deviation. MetaboAnalyst 4.0 (http://www.metaboanalyst.ca/) and Mbrole
(http://csbg.cnb.csic.es/mbrole2/analysis.php) were used to perform metabolic pathway
analysis. The significance level was set to a bilateral asymptotic p-value of <0.05.

Ethics and consent
Informed consent was obtained from all individuals included in this study. Research
involving human subjects was approved by the Institutional Review Board of Jinling
Hospital (2014NZKY-007-01).

RESULTS
Clinical characteristics of patients
In the present study, 100 serum samples were analyzed using LC-MS to determine the
metabolic profiles of 50 healthy controls and 50 NAFLD patients. The biochemical
parameters are summarized in Table 1. There were no significant differences in age
between patients and the control subjects (p= 0.304). The levels of serum triglycerides,
total cholesterol, uric acid, AST, and ALT were significantly higher (p < 0.001) in the
NAFLD group than those in the control group. The fasting blood glucose (FBG) level was
higher in the NAFLD group (p < 0.001). The number of men was higher in the NAFLD
group than in the control group (80% vs 42%, p < 0.001). We used unsupervised PCA
to analyze associations of the serum metabolic profiles with sex. The results showed that
metabolic profiles were similar in males and females which were shown in Fig. 1.

Multivariate analysis of differences between the nafld and control
groups
The matrix of detected peaks obtained using XCMS was used to perform a multivariate
statistical analysis to detect the differences between the NAFLD and control groups. A total
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Table 1 Clinical characteristics of participants.

NAFLD (n= 50) Control (n= 50) P value

Gender,M/F 40/10 21/29 <0.001a

AGE 39.54± 12.17 37.26± 9.75 0.304b

P
ALT 44.5(23.75∼85.25) 15.7(12.88∼23.85) <0.001c

AST 26(18.00∼38.75) 17.9(15.55∼22.45) <0.001c

TG 2.0295(1.50∼3.00) 0.895(0.67∼1.08) <0.001c

TC 4.8115(4.36∼5.42) 4.29(3.92∼4.75) <0.001c

FBS 5.35(4.80∼5.63) 4.77(4.55∼5.00) <0.001c

UA 372(318.75∼455.75) 277(229.75∼342.00) <0.001c

Notes.
Comparison between two groups (control vs. NAFLD patients). Data represents n, mean±standard deviation or
median(range). Bold font format indicates statistical significance.

aChi-squared tests.
bTwo sample Student’s t -test.
cMann–Whitney U test.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; TG, triglyceride; TC, total cholesterol; FBS, fasting
blood sugar; UA, unic acid.

Figure 1 PCA score plot for males (red sopts) and females (green squares). (A) ESI+, (B) ESI−.
Full-size DOI: 10.7717/peerj.11346/fig-1

of 1,645 variables were included in the matrix in the positive ion mode and 1,463 variables
were included in the negative ion mode. Then, the matrix was imported into SIMCA, and
all variables were analyzed by unsupervised PCA to determine the general relationships
between the two groups, as shown in Figs. 2A and 2B (R2X = 0.507, Q2 = 0.475 in the
positive ion mode; R2X = 0.521, Q2 = 0.477 in the negative ion mode), revealing a clear
separation trend. Then, orthogonal partial least squares-discriminant analysis (OPLS-DA)
was performed, and the results indicated significant separations with valid model fitting
(R2X= 0.47, R2Y= 0.899, Q2= 0.867 in the positive ionmode; R2X= 0.485, R2Y= 0.882,
Q2Y= 0.862 in the negative ion mode), as shown in Figs. 3A and 3B. The parameters of the
OPLS model indicated that these results were able to reliably and predictably discriminate
between the two groups because the R2Y values in the ESI+ and ESI− modes were >0.4.

Yang et al. (2021), PeerJ, DOI 10.7717/peerj.11346 5/18

https://peerj.com
https://doi.org/10.7717/peerj.11346/fig-1
http://dx.doi.org/10.7717/peerj.11346


Figure 2 The PCA score plot of 50 healthy controls (red spots) and 50 NAFLD patients (green
squares). (A) ESI+; (B) ESI−.

Full-size DOI: 10.7717/peerj.11346/fig-2

Figure 3 The OPLS-DA score plot of 50 healthy controls (green spots) and 50 NAFLD patients (blue
squares). (A) ESI+; (B) ESI−.

Full-size DOI: 10.7717/peerj.11346/fig-3

The model did not have an overfitting problem because the R2Y and Q2 values were high
and the differences between the R2Y and Q2 values were lower than 0.2.

PCA showed a trend of separation of the groups on the score plot and was able to detect
and exclude some outliers, which were defined as observations located outside the 95%
confidence region of the model. In our study, NAFLD patients were clearly separated from
the healthy controls. Moreover, OPLS-DA models indicated clear separations between the
NAFLD and healthy control groups.

Identification of metabolites in the altered profiles
Thus, a panel of 89 variables significantly discriminated the NAFLD and healthy control
groups (FDR <0.05), and the volcano plot (Figs. 4A and 4B) showed alterations in
53 metabolites in the ESI+ mode and 41 metabolites in the ESI− mode in serum
from NAFLD patients. Furthermore, the serum concentrations of 55 metabolites
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Figure 4 Comparative serummetabolomic profiles of NAFLD patients and healthy controls. (A) and
(B) Volcano plot (−log10 (P value] and log2 (fold change)) of the features of serum metabolite ions of
NAFLD patients and healthy controls. (A) ESI+; (B) ESI−; (C) Percentage of metabolite classes that
are significantly different in the serum of NAFLD patients compared with those in the healthy controls.
Abbreviations: PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylserine; LPE, lysophos-
phatidylethanolamine; PG, phosphatidylglycerol; PS, phosphatidylserine; FA, fatty acyl; CPA, cyclic phos-
phatidic acid; LPA, lysobisphosphatidic acid; LPC, lysophosphatidylcholine; PI, phosphatidylinositol; and
SM, sphingomyelin.

Full-size DOI: 10.7717/peerj.11346/fig-4

were increased and the serum concentrations of 39 metabolites were decreased in
NAFLD patients compared to those in healthy controls. The families of the changed
metabolites contained glycerophospholipids, including phosphatidic acid (PA),
phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylserine (PS),
lysophosphatidylethanolamine (LPE), phosphatidylglycerol (PG), cyclic phosphatidic
acid (CPA), lysophosphatidylcholines (LPC), lysobisphosphatidic acids (LPA),
phosphatidylinositol (PI), fatty acyls, amino acids, bile acids, organic acids, sphingomyelins,
dipeptides, purines, and other metabolites. Analysis of all 89 variables indicated that the
most abundant altered metabolite families were phosphatidylcholine ≈ phosphatidic acid
>phosphatidylethanolamines >lysophosphatidylethanolamine >phosphatidylglycerol, as
shown in Fig. 4C.

The error between the qualitative estimate of the compound and the actual molecular
weight of the compound was described by1ppm. Metabolites with m/z within 5 ppm and
retention time (RT) within 50 min were selected for further study. In total, 35 metabolites

Yang et al. (2021), PeerJ, DOI 10.7717/peerj.11346 7/18

https://peerj.com
https://doi.org/10.7717/peerj.11346/fig-4
http://dx.doi.org/10.7717/peerj.11346


were accurately recognized based on this standard, as summarized in Table 2. Analysis of
these metabolites indicated that the contents of amino acids, including L-homocitrulline
and N-succinyl-L-diaminopimelic acid, were increased in the NAFLD group. The level
of glutaconic acid, which was classified as dicarboxylic acid, was increased in the NAFLD
group. The levels of fatty acid esters, including L-acetylcarnitine and propionylcarnitine,
were increased in the NAFLD group. The changes in glycerophospholipids were variable
because of diverse types of fatty acyl chains. Additionally, the changes in fatty acids and their
conjugates were variable. The level of 2-isopropylmalic acid was decreased in the NAFLD
group, and the level of 20-COOH-leukotriene B4 was increased in the NAFLD group.
Table 3 shows the metabolites with higher area under the curve (AUC). Analysis of these
metabolites indicated that L-acetylcarnitine, L-homocitrulline, and glutamic acid were the
top 3 metabolites ranked by VIP score (VIP 1.9, 1.94, 1.9, respectively) and had favorable
effective functions (AUC 0.9952, 95% CI [0.985–1.000]; 0.9908, 95% CI [0.966–1.000];
0.9884 95% CI [0.973–1.000], respectively, p< 0.001) for diagnosis.

Pathway analysis of altered profiles
A total of 89 metabolites altered in the NAFLD group versus healthy control group
were selected for metabolomic pathway analysis (MetPA). The relevant pathways for
the NAFLD patients and healthy controls were visualized by an interactive visualization
framework in Fig. 5. Metabolic pathways with the impact values >0.1 or −log(p) >10
was considered the most relevant pathways involved in the studied conditions [10]. In
the present study, 14 metabolic pathways were selected as potential metabolic pathways
for NAFLD patients and healthy controls based on their impact value, as shown in Table
4. In these pathways, some biological modules were involved in the lipid metabolism,
including glycerophospholipid metabolism, linoleic acid metabolism, alpha-linolenic acid
metabolism, and ether lipid metabolism. Some biological modules were involved in the
carbohydrate metabolism, including pyruvate metabolism, glycolysis/gluconeogenesis, and
glyoxylate and dicarboxylate metabolism. Glycerophospholipid metabolism was the most
relevant pathway.

DISCUSSION
NAFLD is a multifactorial disease. The pathogenic factors include genetic factors, the
environment, metabolic disturbances, and other factors that may be induced by acquired
metabolic stress. The pathogenesis of NAFLD remains unclear and is associated with genetic
susceptibility. On the other hand, NAFLD is closely associated with metabolic disorders.
The metabolic features of NAFLD may vary because of racial and ethnic factors linked to
differences in genetics and diet.

The metabolic profiles of NAFLD patients in the present study were completely
different from the profiles of healthy controls. The contents of the majority of the
altered metabolites were increased in the NAFLD group. The most abundant altered
metabolite families were mainly glycerophospholipids, including PC, PA, PE, and PG. A
serum metabolomic study of patients with hyperuricemia demonstrated similar results
indicating that the progression of NAFLD in patients with hyperuricemia was associated
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Table 2 Qualitative identification results of differential serummetabolites in NAFLD.

No. Retention
time (min)

Ion
mode

Query VIP 1ppm FDR-PV FC Direction of
viration

Class

1 2.13 ESI− Glutaconic acid 1.94 4 3.16154E−24 7.11 ↑ Dicarboxylic acids and derivatives

2 6.17 ESI+ L-Homocitrulline 1.9 2 9.65529E−24 6.71 ↑ Amino acids, peptides, and analogues

3 5.14 ESI+ L-Acetylcarnitine 1.9 2 1.02404E−25 20.06 ↑ Fatty acid esters

4 7.86 ESI− LysoPE(0:0/22:1) 1.9 1 5.19367E−25 52.85 ↑ Glycerophosphoethanolamines

5 12.73 ESI− PE(18:3/20:5) 1.87 0 2.34822E−21 105.90 ↑ Glycerophosphoethanolamines

6 6.75 ESI+ N-Succinyl-L-diaminopimelic acid 1.86 0 5.78078E−28 14.70 ↑ Amino acids, peptides, and analogues

7 12.30 ESI+ PE(14:0/14:0) 1.85 3 1.80239E−22 4.53 ↑ Glycerophosphoethanolamines

8 12.81 ESI+ PC(14:1/22:6) 1.84 5 3.25029E−21 4.38 ↑ Glycerophosphocholines

9 12.17 ESI− PE(18:4/18:4) 1.8 0 7.63936E−19 17.19 ↑ Glycerophosphoethanolamines

10 12.47 ESI− PA(20:3/20:5) 1.79 3 3.5061E−20 2.84 ↑ Glycerophosphates

11 13.27 ESI− PE(20:4/20:4) 1.74 3 6.87857E−17 2.66 ↑ Glycerophosphoethanolamines

12 12.46 ESI+ PA(13:0/17:1)) 1.72 1 7.21129E−21 2.44 ↑ Glycerophosphates

13 12.90 ESI+ PE(18:/22:6) 1.72 0 2.22908E−18 4.54 ↑ Glycerophosphoethanolamines

14 13.06 ESI− MGDG(18:3/18:4) 1.62 0 3.61325E−17 2.28 ↑

15 3.42 ESI+ 2-Isopropylmalic acid 1.49 0 1.26439E−14 0.38 ↓ Fatty acids and conjugates

16 14.31 ESI+ PA(18:0/0:0) 1.43 3 6.53123E−14 0.26 ↓ Glycerophosphates

17 7.51 ESI+ Propionylcarnitine 1.41 0 5.31064E−15 16.06 ↑ Fatty acid esters

18 12.44 ESI+ PS(21:0/0:0) 1.38 2 1.88192E−11 3.07 ↑ Glycerophosphoserines

19 10.69 ESI− LysoPE(18:0/0:0) 1.37 0 2.32189E−13 0.84 ↓ Glycerophosphoethanolamines

20 9.22 ESI+ 20-COOH-Leukotriene B4 1.33 3 8.06805E−11 2.61 ↑ Fatty acids and conjugates

(continued on next page)
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Table 2 (continued)
No. Retention

time (min)
Ion
mode

Query VIP 1ppm FDR-PV FC Direction of
viration

Class

21 12.54 ESI+ PC(16:1/2:0) 1.31 5 1.39377E−11 0.72 ↓ Glycerophosphocholines

22 10.28 ESI− LysoPE(0:0/20:2) 1.28 0 1.97997E−13 0.76 ↓ Glycerophosphoethanolamines

23 12.36 ESI− PT(18:0/18:1) 1.25 1 1.44434E−08 0.80 ↓

24 12.57 ESI+ PC(O-16:0/3:0) 1.18 2 4.14917E−10 0.74 ↓ Glycerophosphocholines

25 0.66 ESI− PC(14:1/16:1) 1.17 4 1.78018E−06 0.80 ↓ Glycerophosphocholines

26 12.18 ESI+ PE(16:0/20:4) 1.16 3 1.10602E−07 0.71 ↓ Glycerophosphoethanolamines

27 9.54 ESI− N-palmitoyl-phosphoethanolamine 1.13 2 5.54069E−09 0.68 ↓ Organic phosphonic acids

28 10.66 ESI+ LysoPC(18:3) 1.11 2 1.20618E−09 0.86 ↓ Glycerophosphocholines

29 11.19 ESI+ PC(O-16:0/5:0) 1.1 5 2.78952E−07 0.70 ↓ Glycerophosphocholines

30 8.46 ESI+ C16 Sphinganine 1.09 2 7.55376E−09 0.53 ↓ Phosphosphingolipids

31 0.67 ESI− Purine 1.08 0 0.000016678 0.83 ↓ Purines and purine derivatives

32 11.92 ESI− PC(O-1:0/16:0) 1.07 0 5.24049E−08 0.84 ↓ Glycerophosphocholines

33 9.58 ESI+ PA(21:4/0:0) 1.05 3 1.19698E−06 1.63 ↑ Glycerophosphates

34 11.24 ESI+ PC(O-1:0/16:0) 1.04 3 1.49395E−08 0.74 ↓ Glycerophosphocholines

35 11.01 ESI− PC(17:1(10)/0:0) 1.01 1 5.30124E−08 0.81 ↓ Glycerophosphocholines

Notes.
VIP, variable importance in projection; FC, fold change calculated as the ratio of the mean values in NAFLD patients to that in the controls; PV, corresponds to P value obtained from Student’s t -test.
1 ppm corresponds to the error between the qualitative estimate of a compounds and the actual compound that was calculated according to the equation: (exact molecular weight of the compound to be
determined - exact molecular weight of the composition of all elements of the actual compound)/exact molecular weight of the composition of all elements of the actual compound*10000.
Direction of variation means the direction of the changed metabolites of fatty liver group compared with the normal group.
Compounds were confirmed by reference standards.
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Table 3 Diagnostic capacity of top 20 metabolites ranked by the AUC value.

Metabolite Ionmode AUC SEN(%) SPE(%) VIP Fold change

PE(14:0/14:0) ESI+ 0.998 1 0.96 1.85 4.53
L-Acetylcarnitine ESI+ 0.9952 0.98 1 1.9 20.06
N-Succinyl-L-diaminopimelic acid ESI+ 0.9928 0.98 1 1.86 14.70
PC(14:1/22:6) ESI+ 0.9928 0.98 1 1.84 4.38
Glutaconic acid ESI− 0.9908 0.98 1 1.94 7.11
L-Homocitrulline ESI+ 0.9884 0.98 1 1.9 6.71
PE(18:3/20:5) ESI− 0.988 0.98 1 1.87 105.90
LysoPE(0:0/22:1) ESI− 0.9876 0.98 1 1.9 52.85
PE(18:4/18:4) ESI− 0.9844 0.98 1 1.8 17.19
PE(20:4/20:4) ESI− 0.984 0.94 0.98 1.74 2.66
PA(20:3/20:5) ESI− 0.984 0.96 1 1.79 2.84
Propionylcarnitine ESI+ 0.9812 0.98 1 1.41 16.06
PE(18:/22:6) ESI+ 0.972 0.98 0.98 1.72 4.54
PA(13:0/17:1)) ESI+ 0.9716 1 0.9 1.72 2.44
MGDG(18:3/18:4) ESI− 0.9536 0.94 0.9 1.62 2.28
PS(21:0/0:0) ESI+ 0.9524 0.92 0.9 1.38 3.07
20-COOH-Leukotriene B4 ESI+ 0.8924 0.96 0.78 1.33 2.61

Notes.
AUC, area under the receiver operating characteristic curve; SEN, sensitivity; SPE, specificity; VIP, variable importance in projection.

Figure 5 Metabolomemap of metabolic pathways relevant for the changes in the serummetabolic
profiles of NAFLD patients versus healthy controls. Colors varying from yellow to red indicate metabo-
lites detected in the present study with different levels of significance according to the enrichment analysis.
The original p values were calculated based on the enrichment analysis, and the impact values indicate the
pathway impact values calculated based on the pathway topology analysis.

Full-size DOI: 10.7717/peerj.11346/fig-5

with disturbances in the phospholipase metabolism (Tan et al., 2016). According to the
pathway enrichment analysis, glycerophospholipidmetabolism had the closest relationship.
Several animal studies have shown that some protective effects of medications, such
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Table 4 Detailed results of potential metabolic pathways of NAFLD patients and healthy controls.

Potential metabolic pathway −log(p) Impact Relevant metabolites

Glycerophospholipid metabolism 5.0737 0.21631 Phosphatidylethanolamine
Phosphatidylcholine 1-Acyl-sn-glycero-3 phosphocholine

Linoleic acid metabolism 2.924 0 Phosphatidylcholine
D-Glutamine and D-glutamate metabolism 2.7469 0 L-Glutamine
Nitrogen metabolism 2.7469 0 L-Glutamine
alpha-Linolenic acid metabolism 2.0095 0 Phosphatidylcholine
Arginine biosynthesis 1.9405 0 L-Glutamine
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 1.9405 0.00399 Phosphatidylethanolamine
Ether lipid metabolism 1.6143 0 1-(1-Alkenyl)-sn-glycero-3-phosphate
Pyruvate metabolism 1.5291 0 (S)-Lactate
Glycolysis/Gluconeogenesis 1.3821 0 (S)-Lactate
Alanine, aspartate and glutamate metabolism 1.318 0.11378 L-Glutamine
Glyoxylate and dicarboxylate metabolism 1.2044 0 L-Glutamine
Arachidonic acid metabolism 1.1064 0 Phosphatidylcholine
Pyrimidine metabolism 1.0411 0 L-Glutamine

Notes.
−log(p), the original P value calculated based on the enrichment analysis. Impact, the pathway impact value calculated based on the pathway topology analysis.

as Shengling Baizhu San and total turmeric extract, and genetic factors, i.e., growth
arrest and DNA damage-inducible protein 45 α, in the animal models of NAFLD target
the glycerophospholipid metabolism pathway (Deng et al., 2019; Tanaka et al., 2017;
Wang et al., 2016). Glycerophospholipid metabolism is complex, and the changes in
glycerophospholipids detected in our study are variable. Various PEs were increased or
decreased in the NAFLD group compared to those in the healthy control group; however,
most PEs were increased in the NAFLD group. Similar results were obtained in the case of
PC. Abnormally high or low levels of PC or PE can influence energy metabolism (van der
Veen et al., 2017). Some animal studies reported that the turnover of PC and PE species
was increased in the liver in the animal models of NAFLD/NASH (Hyde et al., 2009; van
Ginneken et al., 2007; Vinaixa et al., 2010).

This study is the first to report an increase in L-homocitrulline in the NAFLD group
compared to that in the healthy controls. Homocitrulline is derived by carbamylation.
Carbamylation is one of the posttranslational modifications that change the structure
and function of proteins. Carbamylated proteins are known to be associated with
various diseases, such as atherosclerosis (Jaisson et al., 2015; Speer et al., 2014; Sun et al.,
2016), autoimmune disease (Pruijn, 2015), chronic kidney disease (CKD) (Jaisson et al.,
2018), thrombus formation(Holy et al., 2016), and infections (Koro et al., 2014). Some
metabolomic studies have shown a correlation between the levels of homocitrulline and
other diseases. A clinical trial in Germany showed that homocitrulline was significantly
associated with the causes of CKD (Grams et al., 2017). Another metabolite analysis showed
that homocitrulline was progressively increased during the development of Alzheimer’s
dementia (Corso et al., 2017). A cross-sectional study on children with environmental
enteric dysfunction in the USA reported that homocitrulline was positively associated with
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gut permeability (Semba et al., 2017). Interestingly, plasmametabolomic analysis of patients
with alcoholic hepatitis (AH) detected significantly higher levels of homocitrulline in the
alcoholic hepatitis groups and demonstrated that the plasma levels of homocitrulline were
correlated with theModel for End-stage Liver Disease (MELD) scores in AHpatients (Ascha
et al., 2016). However, only a few studies investigated homocitrulline and carbamylation in
NAFLD. Carbamylation is a nonenzymatic reaction with isocyanic acid. Isocyanic acid has
two main origins, one of which is urea deamination. Ornithine transcarbamylase (OTC)
and carbamoyl phosphate synthetase (CPS1), which are enzymes involved in the urea
cycle, are present in the mitochondria, and mitochondrial dysfunction is associated with
the progression of NAFLD (Pessayre & Fromenty, 2005). Another origin of isocyanic acid is
thiocyanate oxidation bymyeloperoxidase (MPO), which often occurs under inflammatory
conditions and in atherosclerotic plaques. MPO is present in some immunocytes, including
monocytes, neutrophils, and certain tissue macrophages (Odobasic, Kitching & Holdsworth,
2016). These phenomena indicate a possible link between carbamylation and NAFLD.

Pathway enrichment analysis performed in the present study suggested 14 potential
differential metabolic pathways in NAFLD patients and healthy controls based on
their impact value. Biological modules involved in lipid metabolism and carbohydrate
metabolism were the most relevant to NAFLD. Insulin-sensitizing thiazolidinedione
compounds can treat NASH by binding and inhibiting the mitochondrial pyruvate carrier
(Colca, 2020)[41]. A study on the serum metabolomic biomarkers of NAFLD in Iranian
patients showed elevated levels of the TCA cycle intermediates inNAFLDpatients compared
to those in healthy controls (Chashmniam et al., 2019)[42]. In summary, both studies
highlighted the role of mitochondrial dysfunction in the progression of NAFLD.

CONCLUSIONS
Overall, this study identified significant alterations in the metabolic profiles of NAFLD
patients versus healthy controls. The metabolic profiles of Chinese NAFLD patients
were characterized by alterations in glycerophospholipids, and pathway enrichment
analysis demonstrated that glycerophospholipid metabolism was the most closely related
metabolic pathway. L-Homocitrulline, which is a carbamylation-derived metabolite, was
remarkably increased in NAFLD patients. This study has some limitations. First, this was
a retrospective observational study that could not show a causal link between metabolites
and NAFLD. Second, additional experiments are required to confirm the associations
between homocitrulline, NAFLD, and the metabolic pathways.
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