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Abstract: The intestinal tract is a crucial part of the body for growth and development, and its
dysregulation can cause several diseases. The lack of appropriate in vitro models hampers the
development of effective preventions and treatments against these intestinal tract diseases. Intestinal
organoids are three-dimensional (3D) polarized structures composed of different types of cells capable
of self-organization and self-renewal, resembling their organ of origin in architecture and function.
Porcine intestinal organoids (PIOs) have been cultured and are used widely in agricultural, veterinary,
and biomedical research. Based on the similarity of the genomic sequence, anatomic morphology,
and drug metabolism with humans and the difficulty in obtaining healthy human tissue, PIOs are
also considered ideal models relative to rodents. In this review, we summarize the current knowledge
on PIOs, emphasizing their culturing, establishment and development, and applications in the study
of host–microbe interactions, nutritional development, drug discovery, and gene editing potential.

Keywords: porcine intestinal organoids; in vitro model; intestinal development; host–microbe
interactions; drugs discovery

1. Introduction

The intestinal tract is an essential digestive organ, playing important functions in the
digestion, absorption, and metabolism of food, including the metabolism and absorption
of vitamins [1], amino acids [2], and lipids [3]. The intestinal epithelium consists of cells
located at the mucosal surface. These intestinal epithelial cells facilitate the digestion of
food and nutrient absorption. The intestinal epithelial surface area is increased significantly
by the formation of small intestinal villi and microvilli [4], making the intestinal epithelial
surface more susceptible to external environmental stimuli, including food antigens, toxins,
and microbial pathogens. Intestinal epithelial cells undergo self-renewal every 3 to 5 days
to maintain tissue homeostasis and barrier function [5]; thus, the intestine is one of the
most actively regenerated tissues. The intestinal epithelium consists of different cell types,
including enterocytes, enteroendocrine cells, goblet cells, Paneth cells, and stem cells.
Enterocytes are responsible for nutrient absorption [6], enteroendocrine cells regulate
metabolism by secreting different hormones [6], goblet cells form a mucosal barrier by
synthesizing and secreting mucins [7], and Paneth cells provide support to stem cells
by secreting various factors and also secrete antimicrobial peptides for defense against
pathogens [8]. These differentiated epithelial cells originate from intestinal stem cells
located at the base of the crypt. The entire intestinal cell renewal process is facilitated
by differentiation along the crypt to the villi through the activation of the Wnt/β-catenin
signaling pathway [9], which is highly conserved in the animal kingdom [10].

Currently, laboratory animals are used predominantly to simulate the physiological
and pathophysiological functions of the human intestinal tract. In comparison with other
animal models, the porcine intestine is superior because of its anatomical and physiological
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similarities to humans [11]. Therefore, in-depth studies of the porcine intestinal epithelium
play a crucial role in agricultural, veterinary, and biomedical research. Previous studies
on porcine enteric disease were performed using immortalized cell lines of porcine or
non-porcine origin, such as IPEC-J2 (porcine jejunal epithelial cells) [12], IPI-2I [13] (porcine
ileal epithelial cells), and Vero (African green monkey kidney cells) [14]. However, cell
immortalization is usually performed via viral infection, cell fusion, or oncogenes, which
may affect the normal or intact biological function of cell lines [15]. Mimicking the biological
process of a pathogen-induced immune response is difficult to achieve with a single cell
line [16]. Moreover, immortalized cell lines have other defects. For example, Vero cells
fail to produce type I interferon (IFN) because of an interferon deficiency when infected
by a virus [17]. The clinical isolates of the porcine epidemic diarrhea virus (PEDV) do not
usually replicate well in pig-derived cells, such as IPEC-J2 and IPI-2I cells [18]. Therefore,
in vitro studies require appropriate models to reproduce the complexity of the intestinal
epithelium, which is essential for improving the reliability of results.

The emergence of intestinal organoids offers the possibility to solve the above issues.
Indeed, a recent study showed that porcine intestinal organoids (PIOs) are more similar
to epithelial tissue than IPEC-J2 and are physiologically closer to in vivo conditions than
immortalized cell lines through comparative transcriptome analysis of PIO epithelial tissue
and IPEC-J2 cells [19]. Intestinal organoids are in vitro culture models consisting of multiple
intestinal cell types with petal-like structures of the hollow lumen, containing both villi and
crypt-like domains, capable of long-term self-renewal, and they can be stably cryopreserved
and resuscitated [20]. Human intestinal organoid models have been reported and used in
various research applications, which are derived from the crypt or induced by pluripotent
stem cells (PSCs) [21,22]. However, the human intestinal crypt is usually derived from
diseased tissues, and there is individual variability in tissue origin. Compared with crypt-
derived intestinal organoids, PSC-derived intestinal organoids possess more advantages,
such as avoidance of tissue origin issues and ethical issues, as well as the possibility of
gene editing to generate personalized intestinal organoids. In contrast to human studies,
there is a paucity of literature on PIOs. Only a few crypt-derived PIOs have been reported.
There are no reports on the generation of PIOs derived from PSCs. Targeted induction of
porcine PSCs to generate intestinal organoids seems feasible considering the high similarity
between the porcine and human genomes, providing additional insights for studies on the
porcine intestine.

In this review, we summarize the research progress of PIOs, highlighting their cul-
turing, establishment and development, and applications in agricultural, veterinary, and
biomedical research. We also propose further improvements to the methods used to culture
PIOs and future applications.

2. Culturing, Establishment and Development of PIOs

In 2007, Barker et al. identified leucine-rich repeat sequence G protein-coupled recep-
tor 5 (Lgr5)-positive cells located at the base of intestinal crypts and found that Lgr5-positive
basal columnar cells of the crypts afforded all epithelial lineages within 60 days, confirming
that these cells were the stem cells of the small intestine and colon [23]. On the basis of
this innovative discovery, in 2009, Clevers et al. successfully established mouse intestinal
organoids by culturing mouse Lgr5-positive intestinal stem cells in a specific differenti-
ation medium [24]. In 2011, the same group established crypt-derived human intestinal
organoids by adding nicotinamide and various small-molecule inhibitors to the cultures
used to promote the growth of mouse organoids [25], while PSC-derived human intestinal
organoids were established by Spence et al. in the same year [22]. Subsequently, other
researchers reported the successful culturing and establishment of intestinal organoids in
cattle, pigs, dogs, cats, chickens, and bats [20,26–30]. Self-renewal and differentiation of
intestinal stem cells promote organoid expansion, which is regulated by multiple signaling
pathways. The Wnt signaling pathway plays an important role in promoting cell prolif-
eration and self-renewal [31], the Notch pathway contributes to cell differentiation [32],
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the BMP signaling pathway can inhibit β-catenin protein activity [33] (thus, its inhibition
by the antagonist Noggin contributes to stem-cell renewal [34]), and epidermal growth
factor (EGF) promotes cell proliferation [35]. Other required complementary factors in-
clude B27 supplement, nicotinamide, N2 supplement, N-acetylcysteine, Y-27632 (ROCK
protein kinase inhibitor), SB202190 (p38 MAPK inhibitor), and A83-01 (TGF-β receptor
inhibitor), regulating various signaling pathways to ensure the morphological maintenance
and long-term culture of intestinal organoids [36].

Benefiting from the successful establishment of human intestinal organoids and the
elucidation of the signaling pathways associated, Gonzalez et al. for the first time success-
fully cultured PIOs derived from piglet jejunal tissue in 2013 [27]. Since this work, PIOs
derived from different intestinal segments have been established rapidly and applied as
in vitro models in various research fields. Two key factors are required for the success-
ful culturing of crypt-derived PIOs: the acquisition of complete porcine intestinal crypts
and the appropriate culture system necessary for growth development (Figure 1). The
crypts are located in the depression between intestinal villi, and the bottom is arranged
by stem cells and Paneth cells in a “U”-shaped structure. The porcine intestine contains
many microorganisms and needs to be washed repeatedly with phosphate-buffered saline
(PBS), treated with ethylenediaminetetraacetic acid (EDTA) to loosen its structure, and then
repeatedly blown with a pipette to obtain a crypt suspension [25]. However, the crypt can
easily fragment because of the lack of tissue protection during isolation, resulting in the
loss of the underlying structure containing stem cells and Paneth cells and subsequent poor
efficiency in cultures. The acquisition of porcine intestinal crypts is based on a previously
reported method [37] with slight modifications [38–41]. Although pigs and humans share
a high degree of physiological similarity [11], heterogeneity between them may lead to
the fact that the isolated method of human intestinal crypts is not fully applicable to the
isolation of porcine intestinal crypts. Previous studies revealed clear variability in the
isolation results even when using the same method to isolate different intestinal segments
of the crypt in pigs [39], suggesting that a different method is needed for isolating the
porcine intestinal crypt. Our recent study showed that complete and many porcine jejunal
crypts can be obtained by incubating intestinal tissue with PBS containing 10 mM EDTA
and 1 mM dithiothreitol (DTT) on a plate shaker at 70 rpm/min for 25 min at 4 ◦C, and
then vortexed twice for 10 s each with a vortexer at the lowest speed with the capacity of
suspending intestinal tissues. This method was also suitable for separating crypts from
other intestinal segments.

The development of intestinal crypts into organoids requires the suspension of intesti-
nal crypts in a Matrigel rich in laminin to support three-dimensional (3D) growth and the
addition of various factors required to grow intestinal organoids. IntestiCult is a serum-free,
commercial culture medium designed specifically for culturing mouse intestinal organoids.
Researchers have attempted to use media for culturing mice intestinal organoids to culture
PIOs for related studies [38,42,43]. Some studies found that PIOs cultured in IntestiCult
displayed a less differentiated organoid morphology [44]. Culturing human intestinal
organoids has been standardized and applied in research [45,46], and, on the basis of the
similarity between the porcine and human intestines, other researchers have used the
medium components from cultured human intestinal organoids to establish PIOs [27,40,41].
However, the resulting PIO structures had few or no emergent structures in the proliferating
areas, suggesting a less differentiated organoid pattern. Moreover, the resulting PIOs were
not cultured over the long term, as performed for human or mouse intestinal organoids.
Previous studies have shown that three proteins, Wnt3a, R-spondin1, and Noggin, play key
roles in culturing PIOs [36]. These proteins are commercially available and used to culture
PIOs but are expensive and not suitable for some large-scale screening experiments. Thus,
establishing cell lines that stably express Wnt3a, R-spondin1, and Noggin and harvesting
these three key proteins from cell supernatants is a cost-effective approach. Although cell
lines simultaneously expressing all three proteins (L-WRN) or only expressing Wnt3a are
available from the American Type Culture Collection (ATCC), the fixed proportion of three
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proteins derived from L-WRN cell supernatants is insufficient to support the long-term cul-
turing of porcine organoids [29]. This observation indicates that an appropriate ratio among
the three proteins is important. In addition, significant differences in the composition of the
medium used to culture human and mouse intestinal organoids [22] suggest that different
species of intestinal organoids require different cultures. Standardization of intestinal
organoid culture techniques is a prerequisite for achieving experimental reproducibility,
reducing inter-laboratory variation, and producing high-quality studies. Therefore, it is
necessary to explore the conditions for isolating porcine intestinal crypts and organoid
cultures to determine an optimal and universally applicable protocol. Our recent study
showed that it is important for successful long-term culturing of PIOs to add different
ratios of Wnt3a, R-spondin1, and Noggin cell culture supernatants. We also found that the
concentration of Wnt3a was critical for the growth of PIOs.
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Figure 1. Intestinal structure, crypt location, and organoid formation. (a) The physiological and
cross-sectional structure of the porcine intestine and the corresponding positions of intestinal villi and
crypts in physiological states and porcine intestinal organoids. (b,c) Structure of complete intestinal
crypts containing intestinal stem cells and Paneth cells at the base. The isolated crypts were embedded
in Matrigel and then formedpetal-like intestinal organoids by adding various growth factors.

Following the rapid development of PSC technology, targeted induction of human
PSCs to form intestinal organoids [21] has considerably widened the method of building
organoid models and their application in related fields. In vitro directed differentiation
of human PSCs into intestinal organoids mainly includes the following steps (Figure 2):
(1) the formation of a definitive endoderm (DE) induced by activin A; (2) the production of
the posterior endoderm, hindgut specification, and morphogenesis induced by fibroblast
growth factor 4 (FGF4)/Wnt3a; (3) midgut or hindgut encapsulation in Matrigel to promote
intestinal growth, morphogenesis, and cell differentiation. The resulting 3D intestinal
organoid contains villi-like structures and crypt-like domains with the expression of intesti-
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nal stem-cell markers, as well as goblet cells, Paneth cells, and enteroendocrine cells [21].
These 3D intestinal organoids can be used for in vitro mimicry studies of in vivo organs. For
example, induced production of colonic-like organoids was used in a SARS-CoV-2 infection
study, revealing that the strong induction of chemokines was similar to that observed in
SARS-CoV-2-infected patients [47]. Pigs share a high degree of homology with humans;
thus, it is feasible to induce porcine PSCs to produce intestinal organoids. However, early
established porcine PSCs did not meet the strict pluripotency criteria [48,49]. In 2019, the
establishment of true porcine PSCs was first reported in Hong Kong [50], with characteristic
long-term stable culturing and application in routine biological experiments, including
gene editing [50]. Culturing porcine PSCs requires the presence of feeder cells, which can
affect further induction. We briefly maintained a feeder-free culture of porcine PSCs by
adding feeder cell supernatant and then successfully induced porcine PSCs into intestinal
organoids (Figure 2) by treatment with activator A, FGF4, and Wnt3a, and the resulting
intestinal organoids supported infection by an intestinal coronavirus. The successful estab-
lishment of porcine PSCs provides an excellent platform for developing more potent and
safer therapeutic strategies.
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Figure 2. Schematic diagram of a specific method for inducing pluripotent stem cells to form
intestinal organoids. (a) Pluripotent stem cells expressing pluripotency markers (OCT4, SOX2, and
NANOG) are first treated with activin A to form the FoxA2+ and SOX17+ definitive endoderm.
This definitive endoderm is treated with Wnt3a/CHIR99021 and FGF4 to form CDX2+ spheroids.
The spheroids are embedded in Matrigel and form intestinal organoids with the addition of various
growth factors. (b) Porcine pluripotent stem cells are cultured in the feeder-free state by adding feeder
cell supernatants followed by treatment with activin A, Wnt3a, and FGF4 to form CDX2+ spheroids.
The formed CDX2+ spheroids are then embedded in Matrigel and form intestinal organoids with the
addition of various growth factors.

3. PIOs as Models for the Study of Intestinal Pathogen–Host Interactions

The intestinal organoid is a 3D structural model with the intestinal hollow lumen in the
interior and the exterior encapsulated by Matrigel. The presence of the structure limits the
entry of pathogens, which poses a challenge for the study of pathogen–host interactions. To
address this problem, researchers have developed several solutions (Figure 3): (1) infection
of dissociated organoids; (2) addition to two-dimensional (2D) monolayers; (3) Transwell
method; (4) microinjection into the intact organoid; (5) reversal of the intestinal organoids
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apical membrane. Here, we focus on research progress examining the interactions of the
host with enteric coronaviruses, bacteria, and parasites using PIOs as in vitro models.
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Figure 3. Methods of infecting intestinal organoids with pathogenic microorganisms. The methods
of infecting intestinal organoids with pathogenic microorganisms are as follows: (1) blowing apart
the intestinal organoids directly to expose the apical membrane and then incubating them with
pathogenic microorganisms [45,46]; (2) forming a 2D monolayer by treating the intestinal organoids
with trypsin, followed by the addition of pathogenic microorganisms [38,42]; (3) blowing apart the
intestinal organoids and then spreading them in a Transwell to form a polarized air–liquid model
with multilayer cell accumulation, followed by the addition of pathogenic microorganisms to the
air–liquid surface [51]; (4) directly injecting pathogenic microorganisms into the intestinal organoid
lumen [52]; (5) exposing the apical membrane inside the intestinal organoid by suspension culturing,
followed by infection with pathogenic microorganisms [53].

3.1. Host–Viral Interactions

Numerous viruses are present in the porcine intestine, but the application of intestinal
organoids has focused primarily on the study of swine enteric coronaviruses, such as PEDV,
transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV), which
are the major cause of lethal watery diarrhea in neonatal pigs and pose a significant threat to
the farming industry and public health [54–56]. The establishment of PIOs has accelerated
the study of intestinal coronaviruses, deepening our understanding of their pathogenic
mechanisms. For example, PEDV infects multiple intestinal cells in PIOs (epithelial cells,
cup cells, and stem cells) and suppresses early IFN production. Further studies have
revealed that the clinical isolate PEDV-JMS replicates better than the laboratory virus strain
PEDV-CV777 [38]. Transcriptomic analysis of PIOs from different intestinal segments
infected with PDCoV showed that the distinct host aminopeptidase N (APN, a functional
receptor for PDCoV [57,58]) expression profile is a determinant for PIO susceptibility to
PDCoV rather than IFN levels [42]. In addition, the infection of porcine jejunal-derived
organoids with PEDV, TGEV, and PDCoV revealed different host epithelial responses
via a parallel comparison of transcriptomics [42]. PEDV and TGEV infections induced
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similar transcriptional profiles that differed from the transcriptional profile obtained from a
PDCoV-infected porcine jejunal-derived organoid. In contrast to PEDV infection, TGEV and
PDCoV infections trigger abundant upregulation of antigen-presentation genes and T-cell-
recruiting chemokines in PIOs [43]. Currently, reported infections of PIOs by porcine enteric
coronaviruses include two approaches: treatment of PIOs with trypsin to produce a compact
monolayer with transmembrane resistance [38,39,42] or polarization of PIOs to direct the
apical membrane outward [53]. Both methods significantly promote pathogen infection.
Nonetheless, the polarization of PIOs appears to be a superior approach for infecting PIOs
because it enables virus infection from the apical membrane while maintaining the 3D
structure of the PIOs. In conclusion, these studies suggest that PIOs can serve as a powerful
model for in vitro studies of virus–host interactions and provide new insights into the
causative agents and pathogenic mechanisms.

3.2. Host–Bacterial Interactions

The presence of pathogenic bacteria in the intestine of poultry and livestock seriously
affects the farming industry. PIOs play an important role in the study of bacterial pathogen-
esis because PIOs contain lumen and tolerate bacteria for several days without significant
tissue damage [59]. Salmonella is a common contaminant in poultry and livestock and is
usually carried asymptomatically in the gastrointestinal tract of animals [60]. A previous
study confirmed that Salmonella species are highly susceptible to crypt-derived PIOs [20].
Similar PIOs have also been used in studies of E. coli, an enteric pathogen that causes
post-weaning diarrhea in piglets [61]. Under the stimulation of enterotoxins secreted by
E. coli, the porcine intestinal compartment exhibits swelling, as well as electrolyte and water
imbalance, and it secretes inflammatory markers [44]; further studies have shown that toxin-
producing E. coli inhibits intestinal stem-cell expansion and disrupts the integrity of the
intestinal mucosa through downregulation of the Wnt/β-catenin signaling pathway [62].
A similar phenotype was reported for PIOs treated with deoxynivalenol, a toxin produced
by mycobacteria [63]. Bacteria-derived cholera toxin treatment of PIOs causes typical signs
of cholera toxin poisoning, which is characterized by increased short-circuit currents and
increased epithelial chloride levels [64]. In addition to being a model for in vitro studies of
pathogenic bacteria, the intestinal organoid is also a model for in vitro studies of probiotic
bacteria. E. coli strain Nissle has been used as a probiotic and therapeutic agent to protect
mice from enterohemorrhagic E. coli [65]. Treatment with E. coli strain Nissle prevented loss
of epithelial barrier function and E-calmodulin expression in human intestinal organoids
and prevented increased production of reactive oxygen species and apoptosis. PIOs can
be used to study intestine and probiotic interactions and to develop nutritionally relevant
therapeutic and preventive strategies. Taken together, these studies suggest that PIOs are a
suitable model for in vitro studies of bacteria.

3.3. Host–Parasitic Interactions

Most animal models or cancer cell lines used early in parasitic disease research do not
generalize to naturally occurring infections [66,67]. Organoids have become a powerful
tool for studying parasitic infections in vitro. Toxoplasma gondii can be transmitted through
multiple routes, but ingestion of undercooked meat is an important route for its entry
into the host gastrointestinal tract [68–70]. In recent years, the prevalence of Toxoplasma
gondii in pork has decreased significantly because of in-house farming. However, with
the increase in organic and free-range farms, this prevalence has increased again [71].
In vitro studies on Toxoplasma gondii showed that PIOs are highly susceptible to Toxoplasma
gondii [20]. Although the use of porcine organoids to study host–parasite interactions
is in its infancy, intestinal organoids of other species have also been used in different
parasite studies, such as Cryptosporidium [72], Toxoplasma gondii [73], Giardia [74], and
helminths [75]. This in vitro model should improve the labor-intensive and technically
difficult traditional animal experiments [76] and provide new strategies for preventing and
controlling parasitic diseases.
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4. Other Applications of PIOs
4.1. The Study of Intestinal Nutritional Development

Most early studies on intestinal nutrition focused on mouse and human intestinal
organoids. For example, mice treated with sodium selenite increased the number of
intestinal samples in culture and significantly upregulated intestinal stemness markers [77].
Growth hormone increased the proliferation of intestinal stem cells in mice and upregulated
the expression of stemness markers, e.g., Lgr5, whereas treatment of mice with glutamine
affected the differentiation potential of intestinal stem cells [78].

The use of pigs as a model for human nutrition studies has received more attention
recently. A previous study used piglets as a model for studying pediatric nutrition and
metabolism [79]. Che et al. used an intrauterine growth restricted pig model to explore the
effects of postnatal nutritional restriction on the oxidative status of neonates and confirmed
that postnatal nutritional restriction leads to impaired antioxidant defense systems in
intrauterine growth-restricted pigs [80]. Feeding pigs with different ratios of fat and fiber
affects the gut microbiota and microbial metabolites, suggesting that pigs are a promising
model system for studying the interaction of the human diet with intestinal microbiota [81].
The successful cultivation of PIOs can reduce the use of animal experiments and provide
valuable or suitable alternatives for human intestinal development. Weaning stress in
piglets usually damages the intestinal stem cells of piglets, causing diarrhea and leading to
great economic losses to the pig industry [82]. The addition of vitamin A during feeding
can effectively alleviate weaning stress in piglets, and in vitro experiments have shown that
vitamin A can significantly change the morphology of intestinal organoids [83]. Another
study indicated that treatment with glutamine enhanced proliferation and renewal of
porcine jejunal crypts [84], confirming that PIOs are a promising alternative model for
in vivo intestinal growth and development studies.

4.2. Drug Discovery

Inappropriate models for preclinical drug experiments may lead to the failure of
clinical trials. Several conventional biological experimental techniques can be used on
organoids, such as RT-qPCR, Western blot, and CRISPR/Cas9 [46,85–87], thereby accelerat-
ing the application of organoids in drug discovery. Different human organoids have been
applied to drug discovery. For example, a previous study confirmed that the chemother-
apeutic drug cisplatin exhibits toxicity toward kidney organoids in a dose-dependent
manner [88], while different drug treatments caused alterations in the beat rates of a heart
organoid [89]. In addition, liver organoids enabled sensitive assessment of acetaminophen-
related toxicity [90]. Colonic-like organoids supported the high-throughput screening
of Food and Drug Administration (FDA)-approved drugs against SARS-CoV-2 infection,
and several effective drugs were identified, including imatinib, mycophenolic acid, and
quinacrine dihydrochloride [47]. However, human organoids are usually derived from
diseased tissues or generated by inducing PSCs. Although organoids developed from dis-
eased tissues can generate human drug screening models for specific diseases, this choice
of organoid may affect research outcomes because of the large inter-individual variability.
In addition, the generation of human intestinal tissue derived from PSCs in vitro usually
takes a long time [21]. As a species with close genetic homology and organ anatomical
and physiological similarities to humans, porcine organoids can be obtained from healthy
tissues, which avoids the impact of tissue origin differences on the stability of experimental
results. Our recent study showed that porcine PSCs can be targeted to produce intestinal
organoids, which exhibit great potential for various applications and avoid the ethical
problems associated with using human PSCs. Other researchers used porcine, monkey,
and human colonic organoids to test the toxic responses of anticancer drugs irinotecan and
regorafenib and found that porcine colonic organoids were closer to human colonic organs
than monkey colonic organs [41]. Although using porcine organoids for drug screening
is still in its infancy, their use has significant potential, especially in establishing porcine
PSC-derived organoids.
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4.3. Gene Editing

Inactivating mutations in human motor molecule myosin Vb (MYO5B) cause mi-
crovillous inclusion body disease (MVID), a congenital diarrheal disease caused by genetic
mutations [91–93]. During the first week of life, life-threatening diarrhea requires early
treatment with total parenteral nutrition [94]. There is no definitive treatment for MVID.
Researchers developed a porcine MVID model by gene editing to study the pathogenesis
of human MVID and establish PIOs for in vitro simulation [95]. This study showed that
the porcine MVID model was very similar to human MVID. The application of gene-edited
pigs avoided ethical issues, and the generation of porcine somatic organoids with targeted
gene editing provided important inspirations for future studies.

The generation of personalized organoids by gene editing is a future research direction.
Although it is possible to study the function of a particular gene by transferring the gene
into a human intestinal organoid [96] or by generating a model animal with gene editing,
both genetic manipulations at the organoid level and the generation of model animals are
typically complex and time-consuming. PSCs can develop into model animals in vivo after
being genetically edited in vitro, and recent studies have shown that PSCs can be directly
induced to generate organoids in vitro [22,47,88]. This result suggests that it is feasible to
generate personalized porcine organoids through in vitro induction of gene-edited porcine
PSCs, which may replace the use of related model animals.

5. Concluding Remarks and Future Prospects

The establishment and use of PIOs have facilitated the progress of many key research
areas in recent years. In this review, we summarized the recent progress in establishing
PIOs and their use as in vitro models in the study of intestinal pathogen–host interactions,
nutritional development, drug discovery, and gene editing potential. The structural and
genetic similarities between the porcine and human intestines provide an alternative model
for human intestinal development, disease research, and drug screening. However, several
problems remain to be solved. Firstly, the currently reported PIOs are not amenable to
long-term passaging of cultures, which may be caused by the inadequacy of the medium
composition. Secondly, many studies have used intestinal cell monolayers from single-
cell suspensions of enzymatically dissociated porcine organoids to perform pathogenic
infection research; however, this method loses the advantage of the 3D structure of the
organoids. Although polarity reversal can maintain the 3D structure of organoids [53],
this method remains discrepant when used to simulate in vivo conditions. Thirdly, PIOs
do not contain structures such as surrounding tissues, immune cells, and blood vessels
during in vitro culturing, which may differ from the real situation in vivo. Thus, future
challenges include increasing the complexity of porcine intestinal models. Lastly, PIO
cultures require Matrigel to provide 3D supports, but Matrigel is derived from mouse
sarcomas, and the complexity and uncertainty of the composition may have implications
for transplantation-related studies. The use of hydrogels or synthetic scaffolds with a more
defined composition as 3D supports represents a future option.

The emergence of new technologies, materials, and methods will broaden the applica-
tion of PIOs. Currently, human intestinal organoids can be induced and differentiated from
long-term cultured PSCs and applied to related research [21,47], which will fundamentally
address the source variability of organoids and greatly enhance the reproducibility of
experiments. The successful culture of porcine PSCs offers the possibility of inducing
differentiation of stem cells into intestinal organoids [50], which can be genetically edited,
and the edited stem cells can be induced to form more customized organoids. In conclu-
sion, continuing research on PIOs will lead to PIOs becoming a powerful tool in future
research endeavors.
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