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ABSTRACT

Background: Renal excretion is a major route of elimination for many drugs. Renal clearance is the 
sum of three processes: glomerular filtration, tubular secretion, and tubular re-absorption. Tubular 
secretion is an active transport process and is immature at birth. In the neonates, renal tubular secretion 
can be important for the elimination of those drugs which are renally secreted, such as penicillins and 
cephalosporins.
Aim: The objective of this study was to evaluate the predictive performances of three models to 
predict total and renal clearance of renally secreted drugs in neonates (≤3 months of age).
Methods: From the literature, clearance values for 12 renally secreted drugs for neonates and adults 
were obtained. Three models were used to predict the clearances of these drugs. The predictive 
performances of these models were evaluated by comparing the predicted values of total and renal 
clearance with the observed clearance values in the neonates.
Results: There were 12 drugs with 22 observations (preterm and term neonates, ≤3 months of age) 
for total clearance and six drugs with eight observations for renal clearance. For both total and renal 
clearance, a prediction error of <50% was observed by all three models evaluated in this study.
Conclusions: The proposed models can predict mean total and renal clearances of renally secreted 
drugs in preterm and term neonates (≤3 months of age) with reasonable accuracy (50% prediction 
error) and are of practical value during neonatal drug development.
Relevance for Patients: The work may help in dose selection for neonates for medicines that are 
renally secreted.

1. Introduction

The elimination of xenobiotics from the body takes place by metabolism, by renal route, or 
by both mechanisms [1,2]. At least for the first few years of life, physiological changes occur 
rapidly but these changes are not a linear process [1,2]. Renal excretion is a major route of 
elimination for many drugs. Renal clearance is the sum of three processes: glomerular filtration, 
tubular secretion, and active or passive tubular re-absorption. In healthy adults, glomerular 
filtration rate is approximately 120 mL/min [3]. Renal clearance >120 mL/min indicates that 
the secretion mechanism is involved, whereas renal clearance <120 mL/min indicates tubular 
re-absorption besides filtration [3]. Regardless of the renal clearance of a drug, it is possible that 
filtration, secretion, and re-absorption processes are simultaneously taking place.

Tubular secretion is an active transport process and is independent of plasma protein 
binding but dependent on renal blood flow [3]. Tubular secretion is immature at birth and 
approaches adult values by 7 months of age [4]. In neonates, renal tubular secretion can be 
important for the elimination of those drugs which are renally secreted, such as penicillins 
and cephalosporins [5].
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Empirical models such as allometry and physiologically-based 
pharmacokinetic (PBPK) models can be used to predict total 
and renal clearance of drugs in neonates and infants [6-8]. Such 
predictions can be helpful for dose selection before initiating 
pediatric clinical trials.

The objective of this study was to predict the clearances of 12 
renally secreted drugs in preterm and term neonates (≤3 months of 
age) using allometry and an unorthodox minimal physiologically-
based pharmacokinetic method (mPBPK).

2. Methods

From the literature, the total and renal clearance values for 12 drugs 
(S1-S27) that are renally secreted (renal clearance in adults >120 mL/
min) were selected. These drugs were acyclovir, amoxicillin, 
ampicillin, carbenicillin, cilastatin, cefotaxime, cimetidine, 
famotidine, mezlocillin, penicillin G, piperacillin, and ranitidine. The 
drugs were selected based on the criteria that the drugs are renally 
secreted in adults and the clearance (CL) values are available for 
both adults and neonates. Total clearance values were available in 
both neonates and adults but renal clearance values for many drugs 
were not available in the neonates. The following methods were used 
to predict mean clearance values of drugs that are renally secreted 
and the predicted mean total and renal clearance values were then 
compared with the observed mean total and renal clearance values.

2.1. Methods

2.1.1. Total clearance

Method I: Allometric exponent derived from tubular secretary 
capacity

Renal secretion data were obtained from Rubin et al. [9]. In their 
study, the authors administered mannitol by intravenous route to 
children from 2 days to 142 months of age. The body weight of the 
children ranged from 2.4 kg to 35.5 kg. An allometric plot of body 
weight and tubular secretary capacity gave an allometric exponent 
of 1.394 (rounded to 1.4; r2 = 0.8). An allometric exponent of 1.4 
was then used to predict clearance of drugs in neonates according 
to equation 1.

Total CL in neonates = Adult CL × (Weight of the child/70)1.4

 (1)

Method II: A minimal physiological model based on kidney 
weight, kidney blood flow, and glomerular filtration rate (GFR)

This method is based on a previous proposal of Mahmood [10,11] 
for the prediction of clearance for renally secreted drugs from 
animals to humans (interspecies scaling). The clearance of renally 
secreted drugs in the neonates was predicted based on Mahmood’s 
proposed interspecies scaling method which is as follows:

Factor = (GFR × Kidney blood flow)/(Body weight × Kidney 
weight) (2)

Kidney weight, kidney blood flow, and GFR values in a neonate 
were obtained from the following equations.

Kidney weight in the neonate = 0.010 × (Body weight)0.807 
(r2 = 0.987) (3)

Kidney blood flow in the neonate = 0.012 × (Body weight)1.121 
(r2= 0.983) (4)

Where both body and kidney weights are in kilograms and the 
kidney blood flow is in L/min.

The GFR (mL/min) was allometrically estimated [12] in the 
neonates according to equation 5.

 GFR = 1 × (body weight)1.15 (5)

Finally, the clearance of renally secreted drugs in the neonates 
was predicted according to equation 6.

Total CL in the neonate = (Adult CL × Factor × [Weight of the 
neonate/70])/6.4 (6)

The value 6.4 was obtained according to equation 2 from healthy 
adult subjects (GFR = 120 mL/min, kidney blood flow = 1.12 L/min, 
kidney weight = 0.3 kg, and body weight = 70 kg).

Method III: Model based on kidney weight and kidney blood 
flow

In this method, kidney weight and kidney blood flow in the 
neonates were estimated from equations 3 and 4. The projected 
kidney weight and kidney blood flow were divided by 0.3 kg 
(adult value) and 1.12 L/min (adult value), respectively. The sum 
of these two physiological parameters was then used to predict 
drug clearance in a neonate according to the following equation:

Total CL in the neonate = Adult CL × Sum of the parameters 
× (weight of the neonate/70)0.7 (7)

Exponent 0.7 is the exponent for creatinine clearance obtained 
from the interspecies scaling (rounded from 0.69) [13].

2.1.2. Renal clearance

Renal clearance in the neonates was predicted by equations 1, 
6, and 7. In these equations, adult renal clearance rather than total 
clearance was used.

2.2. Statistical analysis

Percent error between the observed and predicted values was 
calculated according to the following equation:
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Three categories of prediction errors were used to characterize 
the accuracy of the prediction. These categories were ≤50%, 
≤30%, and ≤20% prediction error. An acceptable prediction 
error in the literature is two-fold. However, the author of this 
manuscript considers a two-fold error too high to be acceptable for 
any practical purpose. Therefore, more rigid acceptable criteria of 
≤50% was used as acceptable prediction error.

3. Results

In this study, there were 12 drugs with 22 observations for 
total clearance and six drugs with eight observations for renal 
clearance. In Table S1 (in Supplementary File), the observed 
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total and renal clearance values in adult subjects used for the 
prediction of total and renal clearance of the drugs in the neonates 
are presented.

3.1. Total clearance

In Table 1, the predicted and observed total clearance values 
for 12 drugs are shown. In Table 2, the percent prediction error for 
total clearance by three methods is shown.

The allometric exponent derived from tubular secretary 
capacity was 1.4 (Method I). When this exponent was used 
according to equation 1, an excellent prediction of drug clearance 
in the neonates was noted. Out of 22 observations, ≤50%, ≤30%, 
and ≤20% prediction error was noted for 22 (100%), 19 (86%), 
and 14 (64%) observations, respectively (Table 2).

For minimal physiological method (Method II), out of 22 
observations, ≤50%, ≤30%, and ≤20% prediction error was noted 
for 22 (100%), 20 (91%), and 14 (64%) observations, respectively 
(Table 2).

For Method III, which is also a minimal physiological model 
and is even simpler than method II, out of 22 observations, ≤50%, 
≤30%, and ≤20% prediction error was noted for 22 (100%), 

20 (91%), and 16 (73%) observations, respectively (Table 2). The 
highest prediction error by Methods I, II, and III were 33%, 33%, 
and 36%, respectively.

3.2. Renal clearance

In Table 3, the predicted and observed renal clearance values 
for six drugs are shown. The renal clearance values for other six 
drugs were not available in the neonates. In Table 4, the percent 
prediction error for total clearance by three methods is shown.

The allometric exponent derived from tubular secretary 
capacity (Method I) provided a fairly good prediction of 
renal clearance in preterm and term neonates. Out of eight 
observations, ≤50%, ≤30%, and ≤20% prediction error was 
noted for 8 (100%), 7 (88%), and 3 (38%) observations, 
respectively (Table 4).

For minimal physiological method (Method II), out of eight 
observations, ≤50%, ≤30%, and ≤20% prediction error was noted 

Table 1. Predicted and observed total clearances (mL/min) of drugs by 
three methods.
Drugs Chronological 

age
Observed 

CL
Predicted CL

Method 
I

Method 
II

Method 
III

Acyclovir 0 – 3 months 7.8±2.3 7.6 8.0 8.8
Amoxicillin Preterm 1.3±0.4 1.3 1.2 1.1
Ampicillin Preterm  

(2.6 days)
1.1±NR 1.0 1.0 0.9

Ampicillin Preterm  
(15.4 days)

2.3±NR 2.1 2.1 2.0

Ampicillin Term (2.9 days) 3.6±NR 2.9 2.9 2.9
Ampicillin Term (13.4 days) 5.5±NR 3.7 3.7 3.9
Carbenicillin Term 7.4±2.3 6.3 6.4 6.7
Cefotaxime Preterm (1.1 kg) 1.3±0.3 1.2 1.2 1.1
Cefotaxime Preterm (1.8 kg) 3.4±1.4 2.5 2.4 2.3
Cefotaxime Preterm (2.6 kg) 4.8±2.6 4.1 4.1 4.2
Cilastatin Term 2.1±1.1 2.1 2.1 2.2
Cilastatin Preterm 0.6±0.2 0.7 0.7 0.6
Cimetidine Preterm 4.2±NR 3.3 3.2 3.0
Cimetidine Term 12.5±NR 12.2 12.4 13.2
Famotidine Preterm-Term 5.7±3.4 4.6 4.6 4.7
Famotidine 0 – 3 months 16.7±NR 11.5 12.0 13.3
Mezlocillin Preterm 2.4±1.1 2.2 2.1 2.1
Penicillin G Preterm 1.2±0.3 1.2 1.1 1.1
Piperacillin 29 – 31 weeks 2.2±0.8 1.5 1.5 1.4
Piperacillin 33 – 35 weeks 3.4±0.8 2.6 2.6 2.5
Piperacillin 38 – 42 weeks 8.6±1.2 6.2 6.3 6.6
Ranitidine Term 14.7±8.9 10.2 10.4 10.9
Method I: Allometric exponent derived from tubular secretary capacity, Method II: Minimal 
physiological model based on kidney weight, KBW, and GFR, Method III: Model based on 
kidney weight and KBW. NR: Not reported, GFR: Glomerular filtration rate, KBW: Kidney 
blood flow, CL: clearance

Table 2. Number of observations with percent prediction error in total 
clearances of drugs.
Methods Percent prediction error (n=22)

≤50, n (%) ≤30, n (%) ≤20, n (%)

Method I 22 (100) 19 (86) 14 (64)
Method II 22 (100) 20 (91) 14 (64)
Method III 22 (100) 20 (91) 16 (73)
The number in parenthesis are percent of total observations. The highest prediction error by 
methods I, II, and III were 33%, 33%, and 36%, respectively

Table 3. Predicted and observed renal clearances (mL/min) of drugs 
by three methods.
Drugs Age Observed 

CL
Predicted CL

Method 
I

Method 
II

Method 
III

Acyclovir 0–3 months 5.1±1.9 6.0 6.9 6.3
Cilastatin Term 1.4±0.3 1.3 1.3 1.3
Cilastatin Preterm 0.3±0.1 0.4 0.4 0.4
Cimetidine Term 6.8±NR 5.5 6.0 5.7
Famotidine Preterm-term 11.7±1.3 7.5 8.7 7.9
Famotidine 0–3 months 4.0±NR 3.0 3.0 3.0
Mezlocillin Preterm 1.3±0.6 1.6 1.5 1.5
Ranitidine Term 6.9±6.6 8.8 9.4 9.0
Method I: Allometric exponent derived from tubular secretary capacity, Method II: Minimal 
physiological model based on kidney weight, KBW, and GFR, Method III: Model based on 
kidney weight and KBW. NR: Not reported, GFR: Glomerular filtration rate, KBW: Kidney 
blood flow, CL: clearance

Table 4. Number of observations with percent prediction error in renal 
clearances of drugs.
Methods Percent prediction error (n=8)

≤50, n (%) ≤30, n (%) ≤20, n (%)

Method I 8 (100) 7 (88) 3 (38)
Method II 8 (100) 6 (75) 3 (38)
Method III 8 (100) 6 (75) 3 (38)
The highest prediction error by methods I, II, and III were 36%, 42%, and 37%, respectively
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for 8 (100%), 6 (75%), and 3 (38%) observations, respectively 
(Table 3).

For Method III, out of eight observations, ≤50%, ≤30%, 
and ≤20% prediction error was noted for 8 (100%), 6 (75%), 
and 3 (38%) observations, respectively (Table 3). The highest 
prediction error by methods I, II, and III were 36%, 42%, and 
37%, respectively

The results of this study indicated that an allometric exponent 
of 1.4 can predict the clearance of renally secreted drugs in the 
neonates with accuracy. The other two physiologically-based 
minimal models provided equally accurate prediction. Overall, 
all three models provided similar results. Furthermore, these 
three models are very simple to use but models I and III are even 
simpler than model II.

4. Discussion

At birth, kidneys are anatomically and functionally immature 
and as a result, the renal function in newborns is limited. In 
general, the GFR in neonates is 30 – 40% of adult values [14]. 
By the end of the third week, GFR is about 50 – 60% of the adult 
values [14]. The GFR increases rapidly during the first 2 weeks of 
life because of a postnatal drop in renal vascular resistance and an 
increase in renal blood flow. GFR then rises steadily until adult 

values are reached at 8 – 12 months of age [14].
Tubular secretion is an active transport process and is 

independent of plasma protein binding but dependent on renal 
blood flow [4]. Drug secretion also depends on the affinity of 
the drug for carrier proteins in the proximal tubule, the rate of 
transport across the tubular membrane, and the rate of delivery 
of the drug to the site of secretion [4]. Tubular secretion { XE 
“tubular secretion” } is immature at birth and approaches adult 
values by 7 months of age [4].

Allometric scaling is a very useful tool for the prediction 
of pharmacokinetic parameters from adults to pediatric 
populations [6,12-19]. However, in neonates and infants, 
physiological changes develop very rapidly. Considering these 
rapid physiological changes which are nonlinear, a single exponent 
cannot describe the clearance versus body weight or age across all 
age/weight groups [6,15-17].

In this study, several allometric models were used to predict 
physiological parameters such as kidneys and liver weights, 
kidneys and liver blood flows, and GFR. Equation 5 for the 
prediction of GFR in neonates was originally obtained by an 
allometric plot of inulin clearance from preterm neonates to 
adults [12]. This equation provides a reasonable prediction of mean 
GFR across age (validated by external data) and is comparable 
with the maturation model [20]. The model [12] is far simpler than 
the maturation model but is as accurate as the maturation model.

Physiologically-based pharmacokinetic (PBPK) models are 
also used to predict drug clearance in children. PBPK modeling 
requires extensive data (physicochemical properties of drugs, 
organs or tissues, blood flow rates, enzymatic activity, etc.). In 
PBPK modeling, physiological, physicochemical, and biochemical 
processes are mathematically described. This method of analysis 

is generally called “whole-body PBPK model” [21-23]. Overtime, 
it was realized that in a PBPK model not every organ or tissue as 
well as many physiological parameters are required to describe 
concentration-time data. This led to the development of “minimal 
or lumped PBPK models” [24,25]. The minimal PBPK model 
indicates that the extensive body organs and information utilized 
in whole-body PBPK modeling is unnecessary. Thus, the minimal 
PBPK model is rationale, practical, and as informative and useful 
as whole-body PBPK model.

Considering the concept of “minimal or lumped PBPK 
models’, Mahmood further simplified PBPK models. In a 
study, Mahmood et al. [26] developed a minimal physiological 
model to predict drug clearances of 9 glucuronidated drugs in 
children <3 months of age. The model used liver weight, liver 
blood flow, and UDP-glucuronosyltransferases (UGT) activities. 
This simple physiological model was compared with the whole-
body physiological model. Comparative results for clearance 
were obtained by the two models. The unorthodox minimal 
physiological approach taken in this study indicates that a very 
simple physiological model can be developed to achieve certain 
objectives.

In recent years, Mahmood and coauthors have compared 
minimal physiological or allometric models with whole-body 
PBPK model and demonstrated that these simple models are as 
robust and accurate as a whole-body PBPK [26-29].

In the current study, the physiological concept of renal secretion 
was applied to derive the allometric exponent. Furthermore, two 
new minimal physiological models were developed to predict the 
clearance of renally secreted drugs in neonates. The predictive 
powers of all these three models were excellent.

5. Conclusions

This study indicates that the clearances of drugs which are 
renally secreted can be predicted in preterm and term neonates 
(≤3 months of age) with fair degree of accuracy using allometry 
or by minimal physiological models.

The suggested methods can be used to estimate a first-in-neonatal 
dose during pediatric drug development based on the knowledge 
of observed adult clearance and predicted clearance in preterm 
and term neonates for renally secreted drugs. The application of 
the proposed methods is in pediatric drug development and is not 
a substitute for a pediatric clinical trial. The allometric approach 
and the two minimal physiological models in this study (and 
some previous studies) indicate that simple approaches can be 
developed and used with reasonable accuracy.
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