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Ultraslow light realization using 
an interacting Bose–Einstein 
condensate trapped in a shallow 
optical lattice
H. Mikaeili1, A. Dalafi1*, M. Ghanaatshoar1 & B. Askari2

In this article, we propose an experimentally feasible scheme for the ultraslow light realization based 
on the optomechanically induced transparency (OMIT) phenomenon using a hybrid optomechanical 
system consisting of a one-dimensional Bose–Einstein condensate trapped in a shallow optical lattice 
considering the nonlinear effect of atom-atom interaction. It is shown how the system can switch from 
the normal mode splitting to the OMIT regime by manipulation of the s-wave scattering frequency of 
atomic collisions when the cavity is pumped at a fixed rate. Then, it is shown that an ultraslow light 
with a time delay more than 150 ms corresponding to a group velocity about 1 mm/s is achievable by 
controlling the optical lattice depth as well as the strength of atom-atom interaction and the number 
of atoms. Importantly, such an ultraslow light is detectable in the output of the cavity since it occurs 
in the frequency region of coupling-probe detuning where the reflection coefficient of the cavity is 
maximum.

The phenomenon of electromagnetically induced transparency (EIT), which was first observed in atomic vapors 
by Harris and coworkers1–3, has attracted much attention of the physics community over the last few decades. 
One of the most fascinating features of EIT has been the realization of slow light4 where the group velocity of light 
becomes much lower than that in the vacuum and has important applications in optical telecommunication and 
interferometry5,6. More recently, it has been shown that optomechanical cavities with moving mirrors can be used 
as another platform for manifestation of EIT which is called optomechanically induced transparency (OMIT)7–18.

In a bare optomechanical system (OMS), where the moving end mirror or the membrane in the middle acts 
as a mechanical oscillator, the radiation pressure of the cavity optical field is coupled with the vibrational mode of 
the mechanical oscillator through the optomechanical coupling19–21. In parallel, there are hybrid optomechanical 
systems which consist of cavities containing atomic systems like an ensemble of ultracold atoms or a Bose–Ein-
stein condensate (BEC) where the collective mode excitation of the atomic field plays the role of the mechanical 
oscillator which couples to the radiation pressure of the cavity22–24. One of the most interesting features of such 
hybrid systems containing BEC is the nonlinear effect of the atom-atom interaction which plays the role of an 
atomic parametric amplifier25–32. It has been shown that the nonlinear effect of atomic collisions may be used 
for the generation of Casimir photons33, strong quadrature squeezing34, and ultraprecision quantum sensing35–37 .

In recent years, optomechanical systems have been proposed as suitable candidates to substitute for atomic 
gases in order to generate slow and fast light based on the phenomenon of OMIT38–40. Besides, it has been shown 
that hybrid optomechanical systems consisting of atomic systems or BEC may provide more controllability in 
fast and slow light realization41–47. Furthermore, the phenomenon of Fano resonance which was observed for 
the first time in some of the Rydberg spectral atomic lines, can be also observed in optomechanical systems48–50.

In the study of ultracold atoms or BECs trapped inside periodic potentials of optical lattices, there are two 
important regimes of deep and shallow optical lattice where the system is described based on different math-
ematical models51. In the regime of deep optical lattice, which is also referred to as the tight-binding limit, the 
system is described by the Bose–Hubbard model51 where the atomic field is expanded in terms of the Wannier 
wave functions. It has been shown52 that in a system consisting of a BEC inside a deep optical lattice which 
obeys the Bose-Hubbard model, the time delay of the slow light group velocity can be increased up to about 
55µs in the best conditions by controlling the effective cavity detuning, the pumping rate of the cavity, and the 
strength of atomic collisions. On the other hand, for obtaining slow lights with longer time delays, it is necessary 
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to decrease the depth of the optical lattice by decreasing the pumping rate of the cavity. However, in the limit of 
shallow optical lattice, the Bose-Hubbard model loses its validity and the system should be described by a model 
in which the atomic wave function is expanded in terms of plane waves and can be considered as a single-mode 
quantum field in the Bogoliubov approximation53,54. It has been shown55 that in a hybrid optomechanical system 
consisting of a BEC trapped in a shallow optical lattice, the time delay of the slow light can be enhanced up to 
0.8 ms by decreasing the depth of the optical lattice in the absence of atom-atom interaction.

Motivated by the above-mentioned investigations on slow light realization, in this article we propose an 
experimentally feasible scheme for the ultraslow light realization based on the OMIT phenomenon using a hybrid 
optomechanical system consisting of a one-dimensional BEC trapped in a shallow optical lattice considering 
the nonlinear effect of atom-atom interaction. It is assumed that the cavity is pumped by a coupling laser, which 
is responsible for the generation of the optical lattice and is tuned at the red sideband of the cavity effective 
frequency, and simultaneously is probed by another laser with a much weaker pumping rate. It is shown that at 
a fixed value of the coupling laser pumping rate, one can make the system change its regime from the normal 
mode splitting (NMS) to the OMIT by increasing the s-wave scattering frequency of atomic collisions. Then, 
we show that an ultraslow light with a time delay more than 150 ms, which corresponds to a group velocity as 
low as 1 mm/s, is achievable by decreasing the optical lattice depth through decreasing the pumping rate of the 
cavity and also by increasing the strength of atom-atom interaction through the transverse trapping frequency 
of the BEC and controlling the number of the atoms of the BEC. We also explicitly show that the mentioned 
time delay occurs in the frequency region of coupling-probe detuning where the reflection coefficient of the 
cavity is maximum and therefore an ultraslow light with a considerable amplitude is physically observable in 
the output field of the cavity.

The paper has been organized as follows: In “System Hamiltonian” section the Hamiltonian of the system 
is described and in “Dynamics of the system” section the dynamics of the system is modeled based on the 
Heisenberg-Langevin equations. In “Results and discussion” section it is shown how an ultraslow light with a 
considerable time delay can be realized in the output of the cavity based on the OMIT phenomenon. Finally, the 
summary and conclusions are given in “Summary and conclusions” section.

System Hamiltonian
The system consists of a Fabry-Perot cavity with length L and resonance frequency ω0 containing a Bose-Einstein 
condensate (BEC) as has been depicted in Fig. 1. The cavity is driven simultaneously by two external lasers 
through the partially transparent left mirror and along the cavity axis. The strong coupling field with frequency 
ωc and pumping rate |εc| =

√
2κePc/�ωc  generates an optical lattice which interacts with the so-called mechani-

cal mode of the BEC through a radiation pressure interaction while the weak probe field with frequency ωp and 
pumping rate |εp| =

√

2κePp/�ωp probes the system response. Here, Pc and Pp are, respectively, the powers of 
the coupling and probe lasers and κe denotes the external decay rate of the cavity.

The matter quantum field of the BEC, which consists of N identical two-level atoms with mass ma and transi-
tion frequency ωa , interacts with the single mode of the cavity optical lattice in the dispersive regime, where the 
coupling laser frequency is far detuned from the atomic resonance so that �a = ωc − ωa ≫ Ŵa with Ŵa being the 
atomic linewidth. In this way, transition to the upper level is negligible, and consequently spontaneous emission 
is unlikely to happen56–58. Under the above-mentioned conditions, the Hamiltonian of the system in the second 
quantization formalism can be written as
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Figure 1.   A Fabry-Perot cavity containing a BEC is simultaneously driven from the left mirror and along the 
cavity axis by a coupling field at rate εc and a weak probe field at rate εp . An ultraslow light can be detected on 
the left hand side of the cavity.
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where �̂(x) is the annihilation operator of the atomic field in position space and â is the annihilation operator 
of the cavity mode in momentum space. In addition, k = ωc/c is the optical lattice wave number, U0 = g20 /�a 
is the depth of optical lattice potential per single-photon inside the cavity, g0 is the vacuum Rabi frequency, and 
Us = 4π�2as/ma is the atom–atom scattering strength with as being the two-body s-wave scattering length. It 
should be noted that in the second quantization formalism, the electromagnetic field (E(x, t), B(x, t)) inside the 
cavity can also be expanded as a Fourier series in terms of the cavity normal modes in the momentum space59. 
Since the cavity is pumped by the coupling laser whose frequency is near to one of the resonance frequencies of 
the cavity, a single mode of the cavity can be excited if the laser linewidth is much smaller than the frequency 
distance between the successive optical modes. In this way, one can achieve a single-mode optical field inside 
the cavity whose Hamiltonian is given by the first term of Eq. (1).

On the other hand, the Hamiltonian of the BEC and its interaction with the single mode of the optical field 
is given by the second term of Eq. (1). As has been investigated in Refs.53,54, the BEC has several bands of energy 
where each of them has a lot of atomic modes so that the atomic field operator should be expanded in terms of 
them as the following equation

where n is the Bloch band index and m corresponds to quasi-momentum number with l = kL/π . In the regime 
of weak optical lattice, where the condition U0�a†a� ≤ 10ωR is satisfied ( ωR = �k2/2ma is the recoil frequency of 
atoms), the above expansion can be restricted to the lowest band numbers n = 0,±1 . Besides, if the system starts 
from a homogeneous BEC, only the cosine parts of the exponential functions are excited because of the parity 
conservation so that the atomic field can be expanded in terms of new operators ĉnm = (b̂nm + b̂−n,−m)/

√
2 

where under the above-mentioned conditions the atomic field reduces to the following two-mode quantum field

In the regime of weak optical lattice and for large N the depletion of the initial condensate remains weak so that 
one can use the Bogoliubov approximation58 and treat the zero-momentum mode classically, i.e., ĉ00 ≈

√
N  . In 

this way, the atomic field annihilation operator of the BEC in position space can be expanded as the following 
single-mode quantum field

where ĉ ≡ ĉ01 is the annihilation operator of the first excited mode of the BEC (against the lowest mode ĉ00 ) in 
momentum space which obeys the commutation relation [ĉ, ĉ†] = 1.

We also define the position and momentum quadratures of the BEC mode as Q̂ = (ĉ + ĉ†)/
√
2 and 

P̂ = (ĉ − ĉ†)/
√
2i which satisfy the commutation relation [Q̂, P̂] = i according to the commutation relation 

between ĉ and ĉ† . Now, by substituting Eq. (4) into Eq. (1) and performing some calculations, the Hamiltonian 
of the system in the frame rotating at the coupling field frequency is obtained as the following form in terms of 
the position and momentum quadratures of the BEC

where δc = �c + 1
2
NU0 is the Stark-shifted cavity frequency due to the presence of the BEC, �c = ω0 − ωc is the 

detuning between the cavity resonance and coupling laser frequency, ζ = 1
2

√
NU0 is the optomechanical coupling 

between the so-called mechanical mode of the BEC and the optical field of the cavity, �c = 4ωR + ωsw/2 with 
ωsw = 8π�asN/maLw

2 being the s-wave scattering frequency of the atomic collisions (w is the waist radius of 
the optical mode), and δ = ωp − ωc is the coupling-probe detuning. Based on the Hamiltonian of Eq. (5), the 
system behaves effectively as an optomechanical system where the Bogoliubov mode of the BEC plays the role 
of the mechanical mode of a moving mirror which is coupled with the cavity optical lattice through a radiation 
pressure interaction (the second term in Eq. (5)) with the difference that in the present model there is another 
nonlinear term which originates from the atom-atom interaction (the fourth term in Eq. (5)). It should be 
emphasized that the concept of the position and momentum operators of the Bogoliubov mode of the BEC is 
different from that of a moving mirror of a bare OMS. Nevertheless, the present system is an analog of a standard 
OMS with a moving mirror.

Dynamics of the system
The dynamics of the system is described by the following Heisenberg-Langevin equations of motion deduced 
from the Hamiltonian of Eq. (5): 
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 where 
√
2κeâin is the input noise originated from the input–output coupling while 

√
2κi âint is the internal noise 

due to non-perfect mirrors or scattered light from the residue air molecules in the cavity with κi being the internal 
decay rate of the cavity. In fact, the intra-cavity field leaks through the left mirror at the rate of κe which can be 
detected as the output field of the cavity and also is dissipated by any inaccessible channels at the rate of κi so that 
the damping rate of the cavity field amplitude is κ = κe + κi

60. Furthermore, the coupling parameter rc = κe/κ 
is defined to describe the output coupling ratio60. Besides, γB is the damping rate of the Bogoliubov mode of the 
BEC and P̂in is the input noise of the BEC atomic field with zero mean value.

Using the mean-field approximation, i.e., �âb̂� = �â��b̂� , which means that the two operators are assumed to 
be uncorrelated and considering �âin� = �âint� = �P̂in� = 07,45, the equations of motion for the mean values of 
the operators are obtained from Eqs. (6a–6c) in the following form 

By eliminating �P̂� from Eqs. (7b) and (7c) the dynamical equation of the Bogoliubov mode of the BEC can 
be rewritten as the following second order differential equation

which is the dynamical equation of a driven-damped simple harmonic oscillator with the effective resonance 
frequency ωB =

√

(4ωR + 1
2
ωsw)(4ωR + 3

2
ωsw) , the so-called Bogoliubov frequency. As is evident from Eq. (8) 

the position quadrature of the Bogoliubov mode is driven by the cavity radiation pressure (the term on the right 
hand side) and therefore is coupled with Eq. (7a). When the amplitude of the probe field is much weaker than 
that of the coupling field, the steady-state solutions to the equations of motion, i.e., Eqs. (7a) and (8), to the first 
order of εp in the rotating frame at frequency ωc can be written as: 

According to Eqs. (9a), (9b), the expectation values contain three components. The first components i.e. a0 
and Q0 , are steady-state solutions at zero order of εp which oscillate at the coupling field frequency ωc in the 
laboratory frame. The second and third components are steady-state solutions at the first order of εp which oscil-
late, respectively, at the probe frequency ωp and four-wave mixing frequency 2ωc − ωp in the laboratory frame61.

By substituting Eqs. (9a) and (9b) in the equations of motion, i.e., Eqs. (7a) and (8), the zero order compo-
nents are obtained as 

 where � = δc + ζQ0 is the effective cavity detuning. On the other hand, by equating the first order terms in 
either side of the equations of motion with the same frequency, the following set of algebraic equations is obtained 
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If a0 is assumed to be real, the unknown coefficients can be obtained by solving Eqs. (11a–11d) as 

 where the parameter f and the so-called mechanical susceptibility χ of the Bogoliubov mode of the BEC have 
been defined as 

To obtain the amplitude of the cavity output (reflected) field at the probe frequency, we use the input-output 
relation59

where εin = εc + εpe
−iδt and εout are, respectively, the amplitudes of the input and output fields of the cavity. Sim-

ilar to Eq. (9a), the cavity output field in the rotating frame with the coupling field frequency can be expanded as

Here, εout0 , εout+ , and εout− are, respectively, the system responses at the coupling field frequency ωc , at the probe 
field frequency ωp and at the four-wave mixing frequency 2ωc − ωp in the laboratory frame. By substituting �â� 
and εout from Eqs. (9a) and (15) and εin in the input–output relation of Eq. (14), the system responses can be 
obtained as 

On the other hand, in the critical regime, where the internal resonator loss (κi) and input-output coupling 
rate (κe) are equal so that the coupling parameter becomes rc = 1/2 , the reflected field amplitude at the probe 
frequency which is defined as the ratio of output response at the probe frequency ( εout+ ) to the input probe 
amplitude , i.e., εR = εout+/εp , is obtained as the following function8,62

Since the total output field at the probe frequency is a complex variable, which can be written as εR = |εR|eiφ 
with φ being its phase, the group velocity delay of the probe field due to the rapid phase variations in the vicinity 
of the resonance frequency arising from OMIT is given by14,38,39

Results and discussion
We investigate the behavior of the real and imaginary parts of the reflected field amplitude of Eq. (17) represent-
ing, respectively, the absorption and dispersion as well as the group velocity delay given by Eq. (18) in terms of 
the coupling-probe detuning δ = ωp − ωc . For this purpose, we analyze our results based on the experimentally 
feasible parameters given in Refs.23,24. We consider a cavity with length L = 178µ m, damping rate of κ = 105 Hz, 
and bare frequency ω0 = 2.41494× 1015 Hz corresponding to a wavelength of � = 780 nm which contains 
N = 105 Rb atoms with a transition frequency of ωa = 2.41419× 1015 Hz. The atomic field of the BEC couples 
with the optical field of the cavity with the atom-field coupling strength g0 = 2π × 14.1 MHz. The recoil fre-
quency of the atoms is ωR = 23.7 KHz and the damping rate of the Bogoliubov mode of the BEC is γ = 10−4κ.

In the following, we will obtain our results in the red detuned regime of � = ωB which leads to the following 
third order algebraic equation in terms of the coupling laser frequency
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where for a fixed value of ωsw the value of the Bogoliubov frequency ωB is fixed and also the zero-order optical 
mean-field becomes |a0|2 = |εc|2/(κ2 + ω2

B) based on Eq. (10a). Therefore, there will be three roots for ωc for 
any fixed value of ωsw where for just one of them the system is stable based on the Routh–Hurwitz criteria63.

In Fig. 2 we have plotted both the real part of the reflected field amplitude of Eq. (17) expressing the absorp-
tion (Fig. 2a–2c), and the imaginary part of the reflected field amplitude expressing the dispersion (Fig. 2a′–c′ ), 
versus the normalized detuning δ/κ for three different values of the s-wave scattering frequency: (a, a′) ωsw = 5ωR , 
(b, b′) ωsw = 15ωR , (c, c′) ωsw = 30ωR , in the red detuning regime of � = ωB when the coupling laser pumping 
rate is fixed at |εc| = 0.07κ . For any fixed value of ωsw , the condition � = ωB leads to Eq. (19) which can be 
solved numerically. Based on the Routh-Hurwitz criteria63, the system is stable for just one of the solutions of ωc 
where each curve in Fig. 2 has been plotted based on that specified value of ωc . Since the Bogoliubov mode of 
the BEC plays the role of the mechanical mode in an optomechanical system, the dips of transparency windows 
appearing at δ ≈ 2κ , δ ≈ 4.14κ , and δ ≈ 7.23κ in Fig. 2a–2c correspond to δ = ωB.

As is seen from Fig. 2a, for ωsw = 5ωR the system is in the NMS regime where the two peaks corresponding 
to the two eigenmodes of the system have been resolved from each other with a fairly wide transparency window 
between them. It is because of the fact that for that value of ωsw the enhanced effective optomechanical coupling, 
i.e., ζ |a0| , is greater than the threshold of k/2 and consequently the system is in the strong-coupling regime64,65, 
which leads to the manifestation of NMS phenomenon. However, by increasing ωsw in Fig. 2b and 2c to greater 
values, the enhanced effective optomechanical coupling becomes smaller and consequently the two peaks come 
closer to each other and the transparency window becomes narrower so that for ωsw = 30ωR (Fig. 2c), where 
ζ |a0| reduces to a value lower than κ/4 , the system enters the OMIT regime and the two eigenmodes overlap. In 
this way, one can change the regime of the system from NMS to OMIT by manipulation of the s-wave scattering 
frequency which itself is controllable through the transverse trapping frequency of the BEC51.

The other important phenomenon which is observable in Fig. 2a–2c is the fact that the position of the mini-
mum of the transparency window shifts to larger frequencies as the s-wave scattering frequency increases. In 
order to explain this phenomenon, it should be noted that in bare optomechanical systems the minimum of the 
transparency window of OMIT appears when the frequency of the probe laser equals to the resonance frequency 
of the cavity7. Therefore, in the present hybrid optomechanical system, where the presence of the BEC causes the 
resonance frequency of the cavity to be shifted from ω0 to ω̃0 = ω0 + 1

2
NU0 , the center of transparency window of 

OMIT should occur at ωp = ω̃0 . On the other hand, in the red detuned regime of � = ωB where ωc ≈ ω̃0 − ωB , 
the detuning between the probe and coupling lasers, i.e., δ = ωp − ωc , equals to δ = ωp − ω̃0 + ωB . In this way, 
for ωp = ω̃0 , which is equivalent to δ = ωB , the minimum of the transparency window appears. Finally, since 
ωB is an increasing function of ωsw , the minimum of the transparency window shifts to larger frequencies by 
increasing ωsw.

On the other hand, the imaginary part of the reflected field amplitude has been plotted in Fig. 2(a′–2c′) versus 
the normalized detuning δ/κ for three values of ωsw . Here, there are two important points that should be noted. 
Firstly, the slope of the reflected field amplitude is negative near the resonance point of δ = ωB which indicates 
the anomalous dispersion. Secondly, the absolute value of the slope increases by increasing the s-wave scattering 
frequency so that for ωsw = 30ωR the imaginary part of the reflected field amplitude becomes nearly a vertical 

(19)(ωc − ωa)
2(ω0 − ωc − ωB)+

1

2
Ng20 (ωc − ωa)−

Ng40�c

4ω2
B

|a0|2 = 0,

Figure 2.   (a–c) The real and (a′, c′) imaginary parts of the reflected field amplitude versus the normalized 
frequency detuning δ/κ for three different values of the s-wave scattering frequency: (a, a′) ωsw = 5ωR , (b, b′) 
ωsw = 15ωR , and (c, c′) ωsw = 30ωR , in the red detuning regime of � = ωB when the coupling laser pumping 
rate is fixed at |εc| = 0.07κ.
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line at the resonance point (Fig. 2c′ ). In the following, it is shown how these results lead to the slow-light phe-
nomenon in the region of transparency window.

For this purpose, we firstly introduce the reflection coefficient of the system at the probe frequency as the 
square of the reflected amplitude at the probe frequency as follows

Then, in order to show how the atom-atom interaction affects the amount of group velocity slowness, in Fig. 3 we 
have plotted the phase of the reflected field amplitude, i.e., phase of Eq. (17) (Fig. 3a), the reflection coefficient 
of the system (Fig. 3b), and the group velocity delay of the output field due to the rapid phase dispersion in the 
vicinity of the resonance (Fig. 3c) versus the normalized detuning δ/κ for two different values of the s-wave scat-
tering frequencies: ωsw = 5ωR (red thin curve) and ωsw = 15ωR (blue thick curve) in the red detuning regime 
of � = ωB when the coupling laser pumping rate is fixed at |εc| = 0.07κ.

As is seen from Fig. 3a, the phase of the reflected field amplitude has a fairly smooth variation at δ = ωB 
corresponding to the dip of transparency window where the reflection coefficient of the system is maximized 
as is seen from Fig. 3b, while there are two rapid variations on either side around transparency window center 
for each ωsw . It should be noted that for ωsw = 5ωR (red thin curves) the dip of transparency window occurs 
at δ ≈ 2κ and for ωsw = 15ωR (blue thick curves) the dip of transparency window occurs at δ ≈ 4.1κ . Interest-
ingly, the two rapid variations on either side of the transparency window lead to very large group velocity time 
delays. However, these large time delays occur at detunings where the reflected field has zero amplitude since the 
reflection coefficient is zero (compare Fig. 3b, 3c). Therefore, there is no physical importance for them because 
they cannot be detected at the output of the cavity.

Nevertheless, there is a central peak for the group velocity time delay which occurs at δ = ωB where the 
reflection coefficient is maximum. As is seen from Fig. 3c the height of central peak for ωsw = 5ωR is about 
0.1ms while it increases to 0.4ms for ωsw = 15ωR . Although the central peak is much weaker than the other side 
peaks, but the important point is that it can be physically detected at the output of the cavity because it occurs at 
the detuning where the reflection coefficient of the system is maximum and there is a signal with considerable 
amplitude. The other important point is that the central peak can be amplified by increasing the s-wave scattering 
frequency which itself is controllable through the transverse frequency of the BEC trap.

In the following, we will show that the central peak of the group velocity time delay can be significantly 
increased by increasing the s-wave scattering frequency when the number of atoms is fixed and the cavity is 
driven by the coupling laser at a fixed value of pumping rate in the red detuned regime of � = ωB . Then it is 
shown how one can also increase the central peak of τg by controlling the depth of the optical lattice through the 
coupling laser pumping rate and also by the number of the BEC atoms. For this purpose, we have plotted in Fig. 4 
the maximum of the group velocity time delay corresponding to the central peak of τg , which occurs at δ ≈ ωB 
for every ωsw , in millisecond versus the normalized s-wave scattering frequency ωsw/ωR for three different cases 
where the number of the BEC atoms is N = 100, 000 (Fig. 4a), N = 80, 000 (Fig. 4b), and N = 60, 000 (Fig. 4c). 
In each panel, the maximum of the group velocity time delay has been plotted in the red detuning regime of 
� = ωB for four different values of the coupling laser pumping rate: |εc| = 0.01κ (red thick curve), |εc| = 0.02κ 
(blue thin curve), |εc| = 0.05κ (green dashed curve), and |εc| = 0.07κ (black dotted curve)

Firstly, it should be noted that for obtaining each point of every one of curves demonstrated in Fig. 4a–4c, 
the cavity should be driven by the coupling laser where its frequency is tuned at a specified value of ωc which 
is determined by one of the roots of Eq. (19) for every specified value of ωsw where the system is stable based 
on the Routh–Hurwitz criteria63. Secondly, each point of every curve in Fig. 4a–4c corresponds to the central 
peak of the group velocity time delay demonstrated in Fig. 3c where the output reflected field has the maximum 
amplitude and therefore is physically detectable in the output of the cavity.

The important results that are obtained from Fig. 4a–4c are that one can receive a reflected slow light with 
a maximum amplitude in the output of the cavity so that the amount of time delay can be increased in three 
ways: (i) by increasing the s-wave scattering frequency, (ii) by decreasing the pumping rate of the coupling laser 
which is equivalent to decreasing the depth of the optical lattice, and (iii) by decreasing the number of the BEC 

(20)R = |εR|2.

Figure 3.   (a) The phase of the reflected field amplitude, (b) the reflection coefficient of the system, and (c) the 
group velocity delay of the output field in ms versus the normalized frequency detuning δ/κ for two different 
values of the s-wave scattering frequency: ωsw = 5ωR (red thin curve), ωsw = 15ωR (blue thick curve), in the 
red detuning regime of � = ωB when the coupling laser pumping rate has been fixed at |εc| = 0.07κ . The other 
parameters are the same as those in Fig. 2.
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atoms. Nevertheless, it should be emphasized that there are also limitations for the above-mentioned parameters. 
As has been mentioned earlier, the pumping rate of the cavity, from one hand, should be weak enough that the 
system is in the weak coupling regime where the condition U0�a†a� ≤ 10ωR is satisfied and from the other hand, 
it should be strong enough to generate an optical lattice which interacts with the BEC through an optomechani-
cal coupling. Besides, the s-wave scattering frequency is preferable to be below 100ωR in order that our effective 
single-mode model of BEC to be valid. Furthermore, the number of the BEC atoms should be so large that the 
stability conditions of the system are satisfied.

From the experimental point of view, since ωsw is controllable through the transverse trapping frequency of 
the BEC and the optical lattice depth can be controlled by the coupling laser pumping rate, the group time delay 
can be controlled experimentally by transverse trapping frequency as well as the coupling laser power. Based 
on the above-mentioned results which predict a group time delay of order 150 millisecond in the present setup 
whose cavity length is 178µm , it can be easily concluded that the group velocity of probe laser can be reduced 
as low as 1 mm/s which means the realization of ultraslow light. Therefore, the most challenging problem for the 
experimental realization of the theoretical model proposed in this paper, is the control of the s-wave scattering 
frequency. As has been shown previously28, there is a one to one correspondence between the s-wave scattering 
frequency of the atoms and the splitting between the two peaks of the phase noise spectrum of the output cavity 
field. Using this correspondence, the s-wave scattering frequency can be calibrated by the transverse frequency 
of the BEC which is experimentally controllable. It is expected the present theoretical scheme to be realized 
experimentally if the above-mentioned challenge is overcome. Finally, it should be noted that the present scheme 
can experimentally lead to much smaller group velocities in comparison to previous EIT-based experiments4,66,67.

Summary and conclusions
We have studied a hybrid optomechanical system consisting of a cigar-shaped BEC which is simultaneously 
pumped by a coupling and a probe laser where the coupling laser is resonant at the red sideband of the cavity 
effective frequency. If the pumping rate of the coupling laser is low enough, a shallow optical lattice is formed 
inside the cavity whose depth can be controlled by the coupling laser pumping rate. In the regime of weak optical 
lattice, the BEC wave function behaves as a single-mode quantum field in the Bogoliubov approximation which 
is coupled with the radiation pressure of the optical lattice and plays the role of the vibrational mode of a moving 
mirror in an optomechanical system.

Firstly, we have investigated the phenomenon of OMIT in such a hybrid optomechanical system and have 
shown how the system can switch from the NMS to the OMIT regime by increasing the s-wave scattering fre-
quency of atomic collisions when the cavity is pumped at a fixed rate. Then, we have shown that an ultraslow 
light with a time delay as high as 150 ms, which corresponds to a group velocity as low as 1 mm/s, is achievable 
by decreasing the optical lattice depth through decreasing the pumping rate of the cavity and also by increasing 
the strength of atom-atom interaction through the transverse trapping frequency of the BEC and controlling 
the number of atoms of the BEC.

Furthermore, by studying the behavior of the phase of the cavity output field as well as the reflection coef-
ficient of the cavity, we have also explicitly shown that the mentioned time delay occurs in the frequency region 
of coupling-probe detuning where the reflection coefficient of the cavity is maximum and therefore an ultraslow 
light with a considerable amplitude is physically observable in the output field of the cavity. Besides, We have 
also shown that there are two other ultraslow lights with larger time delays. However, they are not observable 
in the output of the cavity because they occur at frequencies that the reflection coefficient of the system is zero.
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