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ABSTRACT: In this research, a heterostructure of the CuO-ZnO-based solar cells
has been fabricated using low-cost, earth-abundant, non-toxic metal oxides by a low-
cost, low-temperature spin coating technique. The device based on CuO-ZnO without
a hole transport layer (HTL) suffers from poor power conversion efficiency due to
carrier recombination on the surface of CuO and bad ohmic contact between the
metal electrode and the CuO absorber layer. The main focus of this research is to
minimize the mentioned shortcomings by a novel idea of introducing a solution-
processed vanadium pentoxide (V2O5) HTL in the heterostructure of the CuO-ZnO-
based solar cells. A simple and low-cost spin coating technique has been investigated
to deposit V2O5 onto the absorber layer of the solar cell. The influence of the V2O5
HTL on the performance of CuO-ZnO-based solar cells has been investigated. The
photovoltaic parameters of the CuO-ZnO-based solar cells were dramatically
enhanced after insertion of the V2O5 HTL. V2O5 was found to enhance the open-
circuit voltage of the CuO-ZnO-based solar cells up to 231 mV. A detailed study on
the effect of defect properties of the CuO absorber layer on the device performance was theoretically accomplished to provide future
guidelines for the performance enhancement of the CuO-ZnO-based solar cells. The experimental results indicate that solution-
processed V2O5 could be a promising HTL for the low-cost, environment-friendly CuO-ZnO-based solar cells.

1. INTRODUCTION

Solar energy is one of the largest, flexible, and technologically
advanced, sustainable, low-carbon choices available to satisfy
the increasing global electric power demand. Photovoltaic
devices are the most extensively used solar technology to
utilize solar power. Electricity from photovoltaics could fill
around 20% of the market for global primary energy by 2050.1

Crystalline silicon (c-Si) is the most successful photovoltaic
technology available, which occupies about 90% of the current
world photovoltaic market share.2 The cost per efficiency of
the silicon solar cells is the main concerning issue to the
photovoltaic researcher community.3 This issue has driven the
researchers toward finding an alternative earth-abundant
absorber material for the fabrication of low-cost highly efficient
solar cells.
Inorganic metal oxides (IMOs) are earth-abundant materials

and can be synthesized using very simple and low-cost
environment-friendly chemical routes. With band gaps of
1.34−1.7 eV and a high absorption coefficient, CuO, a p-type
IMO, could be one of the promising candidates for
photovoltaic applications.4,5 CuO has some other excellent
features like high minority carrier diffusion length,6 tunable
electrical properties,7 etc. These features of CuO have enabled
its use in the sensor,8−12 photoelectrochemical cell,13−16

capacitive device,17−21 and photovoltaic5,22−26 applications.
According to the Shockley−Queisser limit, ∼30% power

conversion efficiency (PCE) could be obtained from the
single-junction CuO-based solar cells.20

A suitable n-type material is required with the CuO absorber
layer for the formation of a single p−n junction CuO-based
solar cell. ZnO is an extensively used electron transport
material in low-cost highly efficient solar cells.27−29 It is an
earth-abundant, non-toxic, and wide band gap n-type IMO
with high electron mobility.30 The energy band alignment of n-
type ZnO is suitably matched with p-type CuO.31,32 Therefore,
ZnO could be a promising electron transport layer (ETL) for
the CuO-based solar cells. Furthermore, few research groups
have experimented on ZnO-CuO-based solar cells in recent
years, but the reported efficiency of these solar cells is very
low.5,33−36 There are many effective ways to improve the
performance of the heterojunction solar cell (HSC) like band
gap tuning,37,38 band alignment engineering,5,39 crystallinity
improvement of the absorber layer,40 use of charge-selective
layers,41−43 etc. Kaphle and co-workers have worked on the
band alignment engineering of the ZnO-CuO-based hetero-
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junction solar cell and observed a considerable performance
improvement.5 Kuddus et al. have researched on the
performance enhancement of the ZnO-CuO-based hetero-
junction solar cell through the band gap tuning of CuO using a
silicon nanoparticle (Si-NP) dopant.36 Naveena et al. have also
experimented on the band gap tuning of CuO using an
ytterbium (Yb) dopant and observed a significant role of this
technique on the performance enhancement of the ZnO-CuO-
based heterojunction solar cell.34

The introduction of a hole transport layer (HTL) has been
found to be an effective technique for the performance
enhancement of the heterojunction solar cell.44,45 Recently,
attractive featured transition metal oxides (TMOs) such as
nickel oxide (NiO),46,47 tungsten trioxide (WO3),

48,49 cuprous
oxide (Cu2O),

50,51 molybdenum trioxide (MoO3),
52,53 and

vanadium pentoxide (V2O5)
54−56 have been used in the

different organic and inorganic solar cells as the HTL. The low
resistive contact with the active layer, high optical transparency
in the visible range, good stability at ambient conditions, a
wide range of band alignments, and feasible deposition by a
facile solution process are the most fascinating features of these
TMOs.57−59 Kaphle et al. have found a significant performance
enhancement after the introduction of the MoO3 HTL in a
practical structure of the ZnO-CuO-based solar cell.5 Recently,
Lam has conducted a numerical study on the planar ZnO-CuO
based-solar cell using the Cu2O HTL and reported a maximum
achievable PCE of 12.18%.26 The valence band maximum
(VBM) and the conduction band maximum (CBM) of V2O5
are suitably matched with the VBM and the CBM of CuO,
which could accelerate the hole transport from the CuO
absorber layer to the output terminal of the solar cell as well as
block the photogenerated electrons at the CuO/V2O5
interface.55,60 Therefore, V2O5 could be a potential hole
extracting layer for the ZnO/CuO-based solar cell.
Simulation is a widely accepted technique for device

modeling, performance analysis, and understanding the overall
device physics of the designed heterojunction solar cells.61 The
key advantage of the numerical simulation is that the effect of
different physical parameters of the materials on the device
performance can be easily investigated. Such a type of
investigation provides the guidelines to obtain optimum
performance from a designed solar cell without fabricating it
in the laboratory. For numerical simulation of heterojunction
solar cells, a solar cell capacitance simulator (SCAPS),61,62

analysis of microelectronic and photonic structures
(AMPS),63,64 and Silvaco TCAD65,66 have been popularly
used in recent years.
In this research, low-cost CuO-ZnO-based solar cells have

been successfully fabricated using the spin coating technique.
The solution-processed V2O5 HTL has been introduced in the
CuO-ZnO-based solar cells. V2O5 has dramatically boosted the
VOC and device performance. A numerical simulation on the
defect features of the CuO absorber layer has also been
conducted using the SCAPS simulation program. A maximum
PCE of 1.69% has been recorded from the experimented CuO-
ZnO-based solar cell.

2. RESULTS AND DISCUSSION
2.1. Structural Properties. ZnO, CuO, and V2O5 thin

films were fabricated using prepared ZnO, CuO, and V2O5
solutions (Section 4.2), respectively, and annealed at a
temperature of 300 °C for 1 h in open air. XRD analysis of
these films was done for the confirmation of ZnO, CuO, and

V2O5, shown in Figure 1. From Figure 1, it is seen that the
peaks at 2θ values of 31.84, 34.52, 36.38, 47.64, and 56.7°

correspond to (100), (002), (101), (102), and (110) planes
evident to the ZnO wurtzite crystal structure (JCPDS card no.
36-1451). CuO confirmation peaks at 32.5, 35.4, 35.5, 38.7,
and 48.7° correspond to (110), (002), (1̅11), (111), and
(2̅02) planes, and these planes have revealed the monoclinic
crystal structure of CuO (JCPDS card no. 48-1548). In Figure
1, the sharp peak at a 2θ value of 20.12° corresponds to the
(010) plane, which indicates the orthorhombic structure of
V2O5 (JCPDS card no. 01-076-1803). The fabricated V2O5
film was also polycrystalline in nature. There are some peaks of
V2O5 that are not clear in Figure 1 due to their low intensity.
The cell performance is strongly dependent on the surface

morphology of the HTL that defines the interface between the
absorber layer (CuO) and the back metal contact (Ag).67 SEM
was performed to analyze the top surface morphology of two-
layer V2O5 on top of the CuO-ZnO-based HSC, shown in
Figure 2. A compressed, quite uniform, and almost pinhole-free
surface of V2O5 on CuO is observed from Figure 2. A similar
surface is expected to form at the back side of V2O5 at the

Figure 1. XRD patterns of the fabricated ZnO, CuO, and V2O5 thin
films annealed at 300 °C.

Figure 2. Top surface and cross-sectional SEM image of the CuO-
ZnO-based HSC with the two-layer V2O5 HTL.
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CuO/V2O5 interface. Therefore, the CuO/V2O5 interface as
well as the V2O5/Ag interface could help to form a good ohmic
contact between the CuO absorber layer and the Ag back
contact, which in turn will reduce the device series resistance.
The chemical compositions present in the CuO-ZnO-based

HSC with the two-layer V2O5 HTL were analyzed using EDS,
which are listed in Table 1. Table 1 indicates that oxygen (O),
vanadium (V), copper (Cu), zinc (Zn), indium (In), and tin
(Sn) were present in the CuO-ZnO-based HSC with the two-
layer V2O5 HTL.

2.2. Optical Properties. The optical transmittance spectra
of V2O5 thin films annealed at 250, 300, and 350 °C in open air
for 1 h are illustrated in Figure 3. It is observed that the
transmittance increases between the wavelength of 520
and1100 nm with increasing the annealing temperature,
which is due to the thermochromism property of V2O5.

68

The optical band gap has been found to be around 2.45, 2.4,
and 2.3 eV from the V2O5 thin films annealed at 250, 300, and
350 °C, respectively, by using the Tauc formula, (αhυ)2 = c(hυ
− Eg), which is depicted in Figure 3b. The variation of the
band gap might be due to the change of stoichiometry of V2O5
with the temperature change.
2.3. Electrical Properties. The energy band diagram and

the schematic diagram of the CuO-ZnO-based HSCs with the
V2O5 HTL are depicted in Figure 4. The junction property of
the CuO-ZnO-based HSC with two-layer V2O5 was charac-
terized by capacitance−voltage (C−V) measurement using an
impedance analyzer. Figure 5 delineates the Mott−Schottky
plot of the CuO-ZnO-based HSC with the two-layer V2O5
HTL. The ascertainment of the built-in potential (ψbi) of the
CuO-ZnO-based HSC with V2O5 was done by fitting and
extrapolating the linear portion of the plots, and ψbi was found

to vary from 0.68 to 0.76 V at frequencies of 500 Hz, 1 kHz,
and 10 kHz. According to the p−n junction solar cell theory,
the built-in potential is nearly equal to the open-circuit voltage
(Voc) under a sunlight illumination of 100 mW/cm2.69

The J−V characteristics of the fabricated CuO-ZnO-based
HSCs with and without V2O5 were investigated under an
illumination of 1.5 AM (100 mW/cm2) simulated sunlight
conditions. As the main focus of this research is to observe the

Table 1. Elemental Composition of the CuO-ZnO-Based
HSC with the Two-Layer V2O5 HTL Observed from the
EDS Spectra

element Zn Cu V O In Sn

weight % 12.07 45.73 10.51 16.28 1.29 14.13
atomic % 8.17 31.85 9.13 45.08 0.5 5.27

Figure 3. (a) Optical transmittance spectra and (b) Tauc plots of V2O5 thin films annealed at 250, 300, and 350 °C.

Figure 4. (a) Energy band diagram and (b) schematic diagram of the
CuO-ZnO-based HSCs with the V2O5 HTL.

Figure 5. Mott−Schottky plot of the CuO-ZnO-based HSC with the
two-layer HTL at frequencies of 500 Hz, 1 kHz, and 10 kHz.
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influence of the solution-processed V2O5 HTL on the
performance of CuO-ZnO-based HSCs, different parameters
of V2O5 like thickness and deposition temperature should be
optimized. Here, the thickness of V2O5 was experimented with
the number of deposited layers keeping deposition temper-
ature constant. Figure 6 depicts the J−V characteristics of

CuO-ZnO-based HSCs without the V2O5 HTL and with one-
layer, two-layer, and three-layer V2O5 HTLs. All the photo-
voltaic parameters were significantly improved after the
insertion of the V2O5 HTL in between the CuO absorber
layer and the Ag electrode of the CuO-ZnO-based HSCs. The
solar cell with a two-layer V2O5 HTL showed optimum
performance. The CuO-ZnO HSC without a V2O5 HTL
exhibited a VOC, JSC, fill factor (FF), and PCE of 0.389 V, 2.54
mA/cm2, 34%, and 0.332%, respectively. Meanwhile, a
maximum PCE of 1.69% with a VOC, JSC, and FF of 0.62 V,
6.78 mA/cm2, and 40.2%, respectively, was observed from the
CuO-ZnO-based HSC with a two-layer V2O5 HTL. The
thickness of the two-layer V2O5 HTL was around 230 nm,
which was measured from the cross-sectional SEM image
shown in Figure 2. It is observed from Figure 6 that the VOC of
the CuO-ZnO-based HSC with two-layer V2O5 is very close to
its built-in potential estimated from the Mott−Schottky plot
(shown in Figure 5). This close match of built-in potential with
the VOC indicates that the losses of built-in potential were
compensated after insertion of the V2O5 HTL due to the
formation of a good ohmic contact with the Ag electrode.
The photovoltaic parameters with the number of the

deposited V2O5 layer are listed in Table 2. It is observed
from Table 2 that the VOC, JSC, FF, and PCE change with the
deposited layer number of the V2O5 HTL, which might be due
to the change of series and shunt resistance of the solar cell.70

Generally, the series resistance (RS) of the solar cell comes
from the absorber layer and contact electrodes.71 The insertion
of the V2O5 HTL creates two interfaces CuO/V2O5 and V2O5/
Ag, and these interfaces might contribute to the lowering of the
series resistance of the ITO/ZnO/CuO/V2O5/Ag hetero-
structure. The series resistance (RS) of the CuO-ZnO-based
HSCs without and with the V2O5 HTL was estimated from the
slope of the J−V curve at a current density (J) of 0 mA/cm2

and is listed in Table 2. The estimated series resistance
indicates that the two-layer V2O5 HTL remarkably reduced the
contact resistance around three times.

2.4. Theoretical Analysis of Defect Properties of the
CuO Absorber Layer. The non-radiative Shockley−Read−
Hall (SRH) recombination is the main factor that is
responsible for most of the power loss in photovoltaics.72

The presence of the deep level defect in the absorber layer is
the primary source of the SRH recombination.73 High defect
density in the absorber layer reduces the photogenerated
carrier lifetime and device performance. SRH recombination
can be defined by the following equation

( )( )
R

np n

p n n2 cosh E E
kT

SRH
i
2

i
i Aτ

=
−

+ − −
(1)

where τ, EA, k, and T are the carrier lifetime, defect activation
energy level, Boltzmann constant, and device working
temperature, respectively.
Carrier lifetime can be estimated using the following

equation

N V
1

t th
τ

σ
=

× × (2)

where σ, Nt, and Vth are the carrier capture cross section, defect
density, and thermal velocity of the carrier, respectively.
The fabricated CuO-ZnO-based HSC with two-layer V2O5

was theoretically validated using the SCAPS simulation tool.
The J−V characteristics and quantum efficiency curves of the
theoretically validated device are depicted in Figure S2. The
whole simulation study was conducted using the default
parameters listed in Table S1. The CuO absorber layer defect
properties were numerically analyzed using the SCAPS
simulation program. The photovoltaic performance of the
theoretically validated CuO-ZnO-based HSC was studied by
varying the CuO absorber layer thickness from 400 to 1400 nm
and CuO deep level defect density from 1010 to 1018 cm−3,
while the hole capture cross section (σp) and defect activation
energy (EA) were kept constant at 10−15 cm2 and 0.6 eV,
respectively. It is observed from Figure 7c that the VOC
decreases with the increase in defect density above 1014

cm−3. Figure 7a indicates that the SRH recombination
increases with the increase in defect density, which in turn
increases the non-radiative loss of the VOC.

74 It is also obvious
from Figure 7b that the carrier lifetime at the CuO absorber
layer decreases with the defect density. Figure 7 indicates that
the defect density up to 1014 cm−3 is tolerable and above which
PCE is drastically reduced with the defect density.
From eqs 1 and 2, it is clear that the EA and hole capture

cross section σP of the CuO absorber layer have a considerable
effect on the SRH recombination and the carrier lifetime. It is
observed from Figure 8a that the SRH recombination increases
with the EA. As shown in Figure 8b, the carrier lifetime
decreases with σp. The performance of the theoretically

Figure 6. J−V curve of CuO-ZnO-based HSCs without the V2O5
HTL and with one-layer, two-layer, and three-layer V2O5 HTLs.

Table 2. The Comparison of Photovoltaic Parameters of
CuO-ZnO-Based Inorganic Thin-Film HSCs with Different
Thicknesses of the V2O5 Hole Transport Layer

V2O5 layer
number

VOC
(V)

JSC
(mA/cm2)

FF
(%)

PCE
(%)

RS
(Ω cm2)

0 0.389 2.54 34 0.332 122
1 0.475 5.18 42 1.029 44
2 0.62 6.78 40.2 1.69 28
3 0.515 5.87 35 1.054 57
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validated CuO-ZnO-based HSC was investigated by varying EA

from 0.1 to 0.6 eV (above EV) and σP from 10−17 to 10−8 cm2,
while the defect density of the CuO layer was kept constant at
1016 cm−3. As shown in Figure 8c,f, the VOC and PCE are
almost independent of the σP till an EA of 0.2 eV, while the VOC

and PCE decrease with increasing EA above 0.2 eV. The EA-
assisted decrement of the VOC and PCE is consistent with the
variation of SRH recombination, which is shown in Figure 8a.

The effect of σP was found to be dominant at EA > 0.45 eV.

Figure S3 indicates that the optical loss at the front surface of

the CuO-ZnO-based HSC is another factor that is responsible

for the low performance besides the defect properties of the

CuO absorber layer.

Figure 7. Variation of (a) SRH recombination and (b) carrier lifetime at the CuO layer with deep level defect density of the CuO absorber layer
and (c−f) photovoltaic parameters of the CuO-ZnO-based HSC as a function of thickness and deep level defect density of the CuO absorber layer.

Figure 8. Variation of (a) SRH recombination at the CuO layer with EA, (b) carrier lifetime at the CuO layer with σp, and (c−f) photovoltaic
parameters of the CuO-ZnO-based HSC as a function of EA and σp of the CuO absorber layer.
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3. CONCLUSIONS

Low-cost environment-friendly CuO-ZnO-based solar cells
have been successfully fabricated using a facile chemical route.
The solution-processed V2O5 HTL has been inserted in the
heterostructure of the CuO-ZnO solar cells using the spin
coating technique. The VOC was enhanced up to 231 mV after
deposition of the V2O5 HTL in between the CuO and Ag
electrode, which indicates that the V2O5 HTL has significantly
reduced the non-radiative SRH recombination at the CuO
surface. The performance of the CuO-ZnO-based solar cells
has also been numerically investigated using the SCAPS
simulation tool. It is obvious from the numerical investigations
that the CuO absorber layer defect parameters like Nt, EA, and
σp have a huge impact on the device performance. The overall
findings indicate that solution-processed V2O5 could be a
potential HTL for the low-cost CuO-ZnO-based solar cells.

4. EXPERIMENTAL SECTION

4.1. Materials. Diethanolamine (DEA, ≥98.0%), ethanol
(CH3CH2OH, 96%), zinc acetate dihydrate [Zn(CH3COO)2·
2H2O, 99.999%], copper acetate monohydrate [Cu-
(CH3COO)2·H2O, ≥99%], vanadium pentoxide (V2O5,
99.95%), and indium tin oxide (ITO)-coated glass substrates
(surface resistivity of around 8−12 Ω/sq) were purchased
from Sigma-Aldrich. All chemicals were used without further
purification.
4.2. Solution Preparation. The ZnO solution was

prepared by dissolving 0.65 g of zinc acetate dihydrate in 20
mL of ethanol. Then, the solution was stirred with the help of a
magnetic stirrer at 40 °C for the next 10 min. After that, 1 mL
of diethanolamine (DEA) as a stabilizer was added to this
solution, and the solution was also stirred for the next 30 min
at a temperature of 40 °C. Hence, a homogeneous solution of
ZnO was obtained. Applying a similar process, 0.6 g of copper
acetate monohydrate, 2 mL of DEA, and 20 mL of ethanol
were used to prepare the CuO solution. By a similar process,
the V2O5 solution was also prepared with 0.25 g of vanadium
oxide powder, 2 mL of DEA, and 20 mL of ethanol.
4.3. Cell Fabrication. The ITO glass substrates were used

to fabricate the HSCs. Before fabrication, the ITO glass

substrates were cleaned in an ultrasonic vibrator using acetone,
isopropanol, and distilled water for 15 min in sequence. Then,
the cleaned ITO glass substrate was placed on a spin coating
system, and 10 μL of the ZnO solution was drop cast on the
ITO glass substrate and spun for 30s at 1500 rpm. The film
was preheated at 150 °C for 10 min, and this process was
repeated for the deposition of each layer of ZnO. A similar
process was adopted for the deposition of the absorber layer of
CuO on the ZnO layer. Finally, after annealing at 300 °C for 1
h in open air, the ZnO-CuO-based HSC without an HTL was
fabricated. A patterned Ag paste was used to make the back-
side contact of the solar cells. Through a similar process, the
ZnO-CuO-based heterojunction solar cell with an HTL was
fabricated. The prepared solution of V2O5 was deposited on
the CuO layer as an HTL by spin coating, and finally, the film
was annealed at 300 °C for 1 h in open air. The fabrication
flow diagram is shown in Figure 9.

4.4. Characterization. The crystallographic analysis of
XRD patterns of ZnO, CuO, and V2O5 thin films was done
using an X-ray diffractometer (GBC, εMMA) with mono-
chromatic Cu Kα radiation having a wavelength of 1.540598 Å.
SEM images were also taken using a scanning electron
microscope (SEM, Zeiss, EVO 18). Energy-dispersive X-ray
spectroscopy (EDAX, AMETEK) in SEM was performed to
analyze chemical compositions present in ITO/ZnO/CuO/
V2O5. Transmittance spectra of V2O5 thin films were measured
by T-60 UV−visible spectroscopy, and current density versus
voltage (J−V) of the fabricated solar cells was measured using
a Keithley 2400 source meter under an illumination of 1.5 AM
simulated light. All characterizations were conducted at room
temperature (∼27 °C) and a relative humidity (RH) of ∼50%.
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S2); and J−V characteristics of the theoretically
validated CuO-ZnO-based HSC for various optical
losses (Figure S3) (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
Shamim Ahmmed − Solar Energy Laboratory, Department of
Electrical and Electronic Engineering, University of Rajshahi,
Rajshahi 6205, Bangladesh; Department of Electrical and
Electronic Engineering, North Bengal International
University, Rajshahi 6100, Bangladesh; orcid.org/0000-
0001-5847-2893; Email: shamim.apee.ru@gmail.com

Abu Bakar Md. Ismail − Solar Energy Laboratory,
Department of Electrical and Electronic Engineering,
University of Rajshahi, Rajshahi 6205, Bangladesh;
orcid.org/0000-0001-6856-5663; Email: ismail@

ru.ac.bd

Author
Asma Aktar − Solar Energy Laboratory, Department of
Electrical and Electronic Engineering, University of Rajshahi,
Rajshahi 6205, Bangladesh; orcid.org/0000-0002-7391-
9849

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.1c00678

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors gratefully acknowledge financial support from the
ICT Division, Ministry of Posts, Telecommunications and IT,
Government of the People’s Republic of Bangladesh.

■ REFERENCES
(1) International Renewable Energy Agency (IRENA). Global
Energy Transformation (GET): A Roadmap to 2050; 2019.
(2) Battaglia, C.; Cuevas, A.; De Wolf, S. High-Efficiency Crystalline
Silicon Solar Cells: Status and Perspectives. Energy Environ. Sci. 2016,
9, 1552−1576.
(3) Kumar Dalapati, G.; Masudy-Panah, S.; Kumar, A.; Cheh Tan,
C.; Ru Tan, H.; Chi, D. Aluminium Alloyed Iron-Silicide/Silicon
Solar Cells: A Simple Approach for Low Cost Environmental-Friendly
Photovoltaic Technology. Sci. Rep. 2016, 5, 17810.
(4) Kampmann, J.; Betzler, S.; Hajiyani, H.; Häringer, S.; Beetz, M.;
Harzer, T.; Kraus, J.; Lotsch, B. V.; Scheu, C.; Pentcheva, R.;
Fattakhova-Rohlfing, D.; Bein, T. How Photocorrosion Can Trick
You: A Detailed Study on Low-Bandgap Li Doped CuO Photo-
cathodes for Solar Hydrogen Production. Nanoscale 2020, 12, 7766−
7775.
(5) Kaphle, A.; Echeverria, E.; Mcllroy, D. N.; Hari, P. Enhancement
in the Performance of Nanostructured CuO−ZnO Solar Cells by
Band Alignment. RSC Adv. 2020, 10, 7839−7854.
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