
REVIEW

The two facets of gp130 signalling in liver tumorigenesis
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Abstract
The liver is a vital organ with multiple functions and a large regenerative capacity. Tumours of the liver are the second most
frequently cause of cancer-related death and develop in chronically inflamed livers. IL-6-type cytokines are mediators of
inflammation and almost all members signal via the receptor subunit gp130 and the downstream signalling molecule STAT3.
We here summarize current knowledge on how gp130 signalling and STAT3 in tumour cells and cells of the tumour micro-
environment drives hepatic tumorigenesis. We furthermore discuss very recent findings describing also anti-tumorigenic roles of
gp130/STAT3 and important considerations for therapeutic interventions.
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Introduction

The family of IL-6-type cytokines

The cytokine Interleukin-6 (IL-6) was originally cloned as a
B-cell stimulating factor [1] but was subsequently shown to be
identical with hepatocyte stimulating factor [2], indicating that
the cytokine may have very different activities within the hu-
man body. Today, we know that IL-6 is not only important for
the activation of the immune system and the orchestration of
innate and acquired immune response [3, 4] but also plays a

role in the maintenance of the central nervous system [5] and
in the regulation of metabolism [6, 7].

Biochemically, IL-6 is a four-helical protein with a typical
up-up-down-down topology, which is shared by many cyto-
kines [8, 9]. On target cells, IL-6 binds to the IL-6 receptor
(IL-6R)α, which belongs to the class of hematopoietic recep-
tors [8]. The complex of IL-6 and IL-6R α associates with a
second receptor protein, glycoprotein 130 kDa (gp130), which
upon dimerisation initiates signal transduction within the cell
(Fig. 1a) [10]. Interestingly, gp130 is also a signalling receptor
of the cytokines IL-11, IL-27, IL-35, ciliary neurotrophic fac-
tor (CNTF), cardiotrophin-1 (CT-1), leukaemia inhibitory fac-
tor (LIF), oncostatin M (OSM), and cardiotrophin-like cyto-
kine (CLC) (Fig. 1a) [9]. These cytokines form the family of
IL-6-type cytokines [9]. Of these cytokines, LIF, OSM, and
CNTF have been identified as additional hepatocyte stimulat-
ing factors responsible for the induction of the hepatic acute-
phase protein induction [11]. Consequently, intracellular sig-
nal transduction pathways of all these cytokines are very sim-
ilar although not identical [12].

gp130 signal transduction

Dimerisation of gp130 by the IL-6 and IL-6Rα complex leads
to activation of the tyrosine kinase JAK1, which is constitu-
tively bound to gp130. JAK1 phosphorylates the five tyrosine
residues within the cytoplasmic portion of gp130. The mem-
brane proximal tyrosine is the docking site for the phosphatase
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SHP2, which initiates the MAPK pathway and the PI3K path-
way (Fig. 1b). The four membrane distal phosphotyrosine
residues recruit STAT1 and STAT3, which upon phosphory-
lation homo- or heterodimerise and translocate to the nucleus
where they act as transcription factors for STAT target genes
(Fig. 1b). One of the earliest STAT target genes codes for the
protein SOCS3, which is recruited to the membrane proximal
tyrosine residue from where it inhibits JAK1 activity and pre-
vents SHP2 binding (Fig. 1b). Thereby, SOCS3 provides neg-
ative feedback inhibition of gp130 activation [10]. In addition
to the above mentioned signalling pathways, it was found that
Src family tyrosine kinases are recruited to the cytoplasmic
portion of gp130 and that this signal transduction is indepen-
dent of receptor- and STAT3-phosphorylation. Src family ki-
nases phosphorylate the transcriptional co-activator YAP
(yes-associated protein) leading to activation of YAP target
genes and tissue growth [13]. Interestingly, the JAK/STAT

pathway and the YAP pathway are strongly activated in the
regenerating liver [13, 14].

The cellular landscape of IL-6 family cytokine sender
and receiver in the liver

The liver consists of different cell types. Hepatocytes, the liver
parenchymal cells represent the largest cellular mass of the
liver and fulfil multiple functions, including a central function
in body metabolism, detoxification, and the synthesis of bile
and plasma proteins. Biliary epithelial cells (BECs) are lining
the intra- and extrahepatic bile ducts. Both epithelial lines can
be the origin of hepatic tumours. The liver also harbours dif-
ferent inflammatory cells of the adaptive and the innate im-
mune system, among them the Kupffer cells (KCs), that are
liver-resident macrophages derived from the foetal yolk sac.
Hepatic stellate cells (HSCs) are found in the perisinusoidal

Fig. 1 Physiological role of IL-6/gp130 in the liver. a Receptor complex
formation of IL-6 family cytokines. IL, interleukin; CLC, cardiotrophin-
like cytokine; CNTF, ciliary neurotrophic factor; CT-1, cardiotrophin-1;
OSM, oncostatin M; LIF, leukaemia inhibitory factor; WSX-1, IL-27
receptor subunit alpha. b Major signal transduction pathways initiated
by the IL-6/IL-6R/gp130 receptor complex. Receptor complex
formation is followed by activation Janus kinases (JAK) that
phosphorylate tyrosine residues on gp130 and on recruited downstream
molecules. Recruitment of SOCS3 blocks JAK activity and therefore

downstream signalling. MAPK, mitogen activated protein kinase;
STAT, signal transducer and activator of transcription; YAP, yes-
associated protein; SHP-2, Src homology region 2 domain-containing
phosphatase-2; SOCS3, suppressor of cytokine signalling 3. c Major
physiological functions of IL-6 in the liver. During regeneration, IL-6
induces proliferation and hypertrophy of hepatocytes (left side). IL-6 is
the major inducer of acute-phase proteins in the liver upon infection (right
side)
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space and serve as lipid and vitamin A storage. Upon liver
damage, HSCs differentiate into collagen-secreting
myofibroblasts [15].

Under physiological conditions, expression of IL-6 family
cytokines is barely detectable in the liver. However, upon
infection, challenge with microbial antigens or tissue damage,
levels of IL-6 and IL-11, and OSM can increase tremendous-
ly. Under these conditions, myeloid cells, in particular, KCs
are the major source of IL-6 and OSM. However, it was also
demonstrated that non-parenchymal cells recruited via IL-17
are important sources of IL-6 during liver regeneration [16]
and hepatic fibrosis [17]. During chronic liver disease also
senescent hepatocytes and BECs secrete IL-6 (see also be-
low), while OSM is also secreted by hepatic progenitor cells
[18]. IL-11 is secreted by activated HSCs [19] [20] and lipid-
loaded hepatocytes [20] in the course of non-alcoholic fatty
liver disease (NAFLD).

The signal-transducing subunit gp130 of IL-6 family recep-
tor complexes is ubiquitously expressed in the body.
Expression of gp130 in hepatocytes seems to be downregulat-
ed by bile acids which may contribute to hepatocyte death
during cholestasis [21]. While gp130 is ubiquitously
expressed in the liver, response to a particular cytokine family
member is limited by the expression of its cognate α receptor.

IL-6 needs to bind to the IL-6R α in order to induce
dimerisation of gp130 and initiation of intracellular signalling
[9]. The membrane-bound IL-6R α is subject to limited pro-
teolysis by proteases such as ADAM10 and ADAM17 [22,
23], and in this way, generated soluble IL-6Rα still binds IL-6
and can elicit IL-6 signals on cells, which do not express IL-
6R α [9]. This mode of signalling has been named IL-6 trans-
signalling [24]. The IL-6 trans-signalling pathway not only
vastly enlarges the spectrum of IL-6 target cells but also in-
creases the signalling strength and prolongs IL-6 signals on
cells, which do express the IL-6R α [25] due to the typically
higher expression of gp130 as compared to IL-6R α [9].

In the liver, all cell types are able to respond to IL-6, and
expression of IL-6R α was detected on hepatocytes, BECs
[26], and HSCs [27]. Using a novel mouse model of cell-
autonomous gp130 activation, we recently showed that hepa-
tocytes but not BECs or HSCs react most prominently to
gp130 activation [28]. However, this does not exclude that,
under pathological conditions, IL-6-type cytokines regulate
biological behaviour of BECs or HSCs.

Physiological role of IL-6 family cytokines in the liver

IL-6 regulates multiple functions in the liver, including infec-
tion defence, metabolism, and regeneration. In the acute phase
of an infection, plasma levels of inflammatory cytokines such
as TNFα, IL-1β, and IL-6 sharply increase, followed by en-
hanced secretion of proteins belonging to the family of acute-
phase proteins (Fig. 1c) [29]. These proteins are able to

prevent systemic spreading of an infection by pathogen
opsonisation, enhancing blood coagulation and complement
activation and the initiation of adaptive immunity. The neces-
sity of IL-6/gp130 signalling for the induction of acute-phase
proteins was initially demonstrated in mice deficient for IL-6
[30]. By using mice either deficient for gp130 [31–33] or with
cell-autonomous gp130 activation [28], it was shown that
gp130 activation in hepatocytes is sufficient to trigger acute-
phase proteins secretion. There is experimental evidence that
production of acute-phase proteins is even enhanced by IL-6
trans-signalling [28, 34, 35]. Recently, inactivating mutations
in IL6ST, encoding gp130 [36] and inactivating mutations in
IL6RA [37] were observed and demonstrated that, also in
humans, IL-6/gp130 signalling is essential for the secretion
of acute-phase proteins. Through the induction of hepcidin
in hepatocytes, IL-6/gp130 signalling impairs ferroportin-
mediated iron release from intestinal epithelial cells to further
dampen bacterial infections [38, 39]. Furthermore, gp130 sig-
nalling in hepatocytes induces the mobilisation and recruit-
ment of neutrophils via the secretion of the neutrophil attrac-
tant CXCL1 in mice or the functional orthologue IL-8 in
humans [28, 33, 40].

The liver has a unique capacity to regenerate and IL-6 was
identified as a major driver of liver regeneration. Shortly after
hepatectomy, liver vein levels of TNFα increase, followed by
a strong induction of IL-6 [41]. Consistently, IL-6-deficient
mice display impaired liver regeneration [42]. IL-6 promotes
liver regeneration by two means: prevention of hepatocyte cell
death and stimulation of hepatocyte proliferation (Fig. 1c).
While IL-6-deficient mice display a marked reduction in he-
patocyte proliferation [42], administration of recombinant IL-
6 acts as a direct hepatocyte mitogen [43]. This indicates that
albeit other growth factors such as HGF contribute to liver
regeneration, IL-6 is a key regulator of liver regeneration.
IL-6/gp130 signalling was shown to prevent hepatocyte apo-
ptosis upon DNA damage through stabilisation of Mcl-1 and
the prevention of p53 stabilisation [44, 45]. Activation of the
PI3K/AKT pathway contributes to the anti-apoptotic effect of
IL-6/gp130 signalling in hepatocytes [46, 47].

Albeit hepatocytes express IL-6Rα and therefore respond to
IL-6 classic signalling, hepatocyte proliferation, and hence, liv-
er regeneration is enhanced by IL-6 trans-signalling. This ob-
servation can be explained by the fact that hepatocytes express
far more gp130 than IL-6R α. Consequently, in the presence of
IL-6R α and soluble IL-6R α (sIL-6R), a larger fraction of
gp130 molecules is stimulated than by IL-6 alone [46, 48–50].

While earlier reports demonstrated that recombinant hu-
man IL-11 protects from hepatocyte damage induced by oxi-
dative stress, drugs, or ischemia/reperfusion [51–54], more
recent reports show that IL-11 rather promotes liver damage
via ROS production [20], activates HSCs [19, 20], and hence,
promotes liver fibrosis in the setting of chronic liver disease.
Similarly, OSM was shown to prevent hepatocyte damage by
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oxidative stress [55–57] and to promote hepatic fibrosis by
upregulation of TGFβ and PDGF in hepatic macrophages
[58], and by stimulating myofibroblast migration [59].

Pro-tumorigenic roles of IL-6/gp130

Regulation of IL-6 secretion during tumorigenesis

Hepatic tumours, in particular HCC, are classical examples of
inflammation-driven cancers [60], and composition of the
tumour-associated immune compartment is key to carcino-
genesis and metastasis [61]. Tumour-associated myeloid cells,
in particular KCs, were identified as major source for IL-6 [62,
63]. Expression and secretion of IL-6 in KCs are suppressed
by activated oestrogen receptor (ER) αwhich explains at least
in part the gender disparity in HCC formation in humans [62].

A common requirement for the secretion of IL-6 from
tumour-associated macrophages (TAM) of the intestine and the
liver is an autocrine EGFR activation loop [64, 65]. Interestingly,
EGFR overexpression [66] and upregulation of EGFR ligands
such as transforming growth factor (TGF) α [67] and epiregulin
(EREG) [68] were reported in human and murine HCC.

Obesity is linked to an increased risk of tumour develop-
ment and was shown to promote HCC formation via enhanced
TNF α and IL-6 secretion [69]. Alterations in the intestinal
microbiota composition called “dysbiosis” are common to
obesity, age-dependent inflammation [70], and chronic liver
disease [71]. Venous blood that drains from the intestine first
passes the liver and KCs serve as gatekeepers that protect
against intestinal-derived pathogens. Microbiota-associated
molecular patterns (MAMPs) are sensed by toll-like receptors
(TLR) on KCs leading to recruitment of the adaptor molecule
MyD88 and/or TIR domain-containing adapter molecule 1
(TICAM-1/TRIF) and activation of downstream signalling
(Fig. 2a). It was shown that, during HCC formation, intestinal
dysbiosis enhanced EREG secretion in a TLR4-dependent
manner [68]. It is therefore not surprising that KC-mediated
IL-6 secretion during hepatic carcinogenesis is hampered in
mice deficient for MyD88 or toll-like receptor (TLR) 4 [62,
72]. In this context, the serine-threonine protein kinase (STK)
4 counteracts TLR signalling and concomitant IL-6 secretion
through phosphorylation of the TLR downstream signalling
molecular IRAK1 [73] and is therefore considered as tumour
suppressor for HCC [74].

B-Cells are present in HCC [61] and were shown to under-
go immunoglobulin class switch recombination [75]. IgG se-
creted by these plasma cells binds to Fcγ receptor on TAMs
thereby enhancing IL-6 secretion [75]. Similarly, BEC
autoreactive antibodies in patients with primary sclerosing
cholangitis, a chronic liver disease that predisposes to cholan-
giocarcinoma formation, bind to and induce secretion of IL-6
from BECs [76].

Cancer-associated fibroblasts (CAFs) are key components of
the tumour micro-environment [77]. Also in the liver, HCC often
develops in cirrhotic liver that is promoted by activated HSCs
[15, 78]. During liver fibrosis, HSCs are a cellular
source of IL-6, and IL6 transcription is enhanced via
the hepatic leukaemia factor (HLF) transcription factor
(Fig. 2a) [27]. CAFs isolated from prostate cancer [79]
and intrahepatic cholangiocarcinoma were also shown to
highly secrete IL-6 [80].

Senescent cells secrete diverse molecules, including cyto-
kines such as IL-6, which is called the senescence-associated
secretory phenotype (SASP). During chronic liver disease,
hepatocytes can become senescent. Both senescent hepato-
cytes [81, 82] and cholangiocytes [83] were shown to secrete
IL-6. Consequently, surveillance of senescent hepatocytes is
the key to the prevention of HCC formation [84]. But also
non-senescent hepatocytes were shown to upregulate IL6 ex-
pression via co-binding of nuclear factor (NF)-κB and the
polycomb repressor complex (PRC) 2 member enhancer of
zeste homolog (EZH) 2 [85].

Beside paracrine activation, hepatic tumour cells can encoun-
ter cell-autonomous activation of gp130. Inflammatory hepato-
cellular adenoma (IHCA) is a benign form of hepatic tumours
and is characterised by the accumulation of inflammatory cells,
including B-cells [86, 87]. In most of IHCA cases, constitutive
activation of the gp130/STAT3 pathway has been found, includ-
ing activating deletion mutations IL6ST, encoding gp130 [87],
and activating point mutations in STAT3 [88]. However, while
activating mutations of IL6ST are found in 60% of IHCA cases,
they are detectable only in a small fraction of HCC tumours.
Nevertheless, persistent gp130 activation was found in murine
HCC progenitor cells (HcPCs), tumour cells that express typical
markers of hepatic progenitor cells. Persistent activation of
gp130 in these cells was mediated via autocrine IL-6 secretion
which was upregulated by LIN28 [89]. Similarly, an autocrine
IL-11 loop is established by a TGFβ-induced long non-coding
(lnc) RNA-ATB in metastasing HCC (Fig. 2b) [90].

Effect of IL-6 on (pre-)malignant hepatic cells

Serum levels of IL-6 are high in chronic liver disease predis-
posing to hepatocarcinogenesis, suggesting that IL-6/gp130
signalling is a major driver of hepatocarcinogenesis. And in-
deed, not only IL-6-deficient [62] mice but also mice with
hepatocyte-specific gp130-deficiency [91] display strongly
impaired tumour formation not only in a murine DNA
damage-driven HCC model but also in an obesity-driven liver
tumour model. Furthermore, hepatocyte carcinogenesis was
shown to be accelerated via enhanced genomic instability
[92, 93]. While impaired DNA damage response during
chronic inflammation is mainly mediated by TNF α [70,
94], survival and proliferation of genomic unstable hepato-
cytes are driven by gp130 trans-signalling by preventing
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p53-induced hepatocyte apoptosis (Fig. 2b) [45, 93, 95]. Not
only IL-6 but also IL-11 seems to contribute to gp130-driven
carcinogenesis as it was demonstrated that recurrence of ex-
perimental HCC upon hepatectomy was impaired in IL11ra-
deficient mice [96].

Albeit the cellular origin of HCC is still under debate, the
occurrence of cells with a liver stem/progenitor cell phenotype
was reported in human and experimental HCC [63, 89, 97]
that were able to reconstitute hepatic tumours in transplanta-
tion experiments [89]. These cells were termed HCC

progenitor cells (HcPCs). HcPCs seem to depend on inflam-
matory signalling, and ectopic lymphoid structures in the liver
were shown to promote survival and outgrowth of HcPCs
[97]. During an early stage of hepatocarcinogenesis, HcPCs
depend on paracrine IL-6 derived from KCs or TAMs [63,
89], while at a later stage of carcinogenesis, HcPCs develop
an autocrine IL-6 loop through Lin28B-mediated suppression
of the inhibitory miRNA let7 (Fig. 2b) [89]. Furthermore, in
metastatic HCC, establishment of an autocrine IL-11 loop
promotes metastatic colonisation (Fig. 2b) [90].

Fig. 2 Pro-tumorigenic role of IL-6/gp130 signalling in the liver. a
Mechanisms of IL-6 upregulation in cancer-associated fibroblasts
(CAFs, upper right panel) and myeloid cells (lower right panel). a
Hepatic artery; BEC, biliary epithelial cells; CV, central vein; HLF,
hepatic leukaemia factor; EGFR, epidermal growth factor receptor;
EREG, epiregulin; ER, oestrogen receptor; HC, hepatocyte; iMB,
intestinal microbiota; MyD88, KC, Kupffer cell; NFkB, nuclear factor k
B; PV, periportal vein; S, sinusoid; TC, tumour cell; TLR4, toll-like

receptor 4. b Direct cancerogenic effects of IL-6 and IL-11 on tumour
cells. CCA, cholangiocarcinoma; EZH2, enhancer of zeste homolog 2;
HcPC, HCC progenitor cells; let7, lethal 7; Lin28B, Lin28 homolog B;
TAM, tumour-associated macrophages. c IL-6 promotes tumorigenesis
and metastasis via the induction of an immunosuppressive tumour micro-
environment. PD-L1, programmed cell death 1 ligand 1; SAA, serum
amyloid A
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Similar to carcinogenic hepatocytes, proliferation and
stemness of intrahepatic cholangiocarcinoma (CCA) cells are
enhanced by IL-6/gp130 signalling through the upregulation of
EZH2 that mediates histone H3 methylation (Fig. 2b) [80]. This
correlates with enhanced expression of gp130 and IL-6R α in
CCA cells as compared to BECs [98]. The observation that pro-
liferation of human CCA cell lines is reduced in the presence of a
neutralising anti-IL-6 antibody [98] suggests that CCA cells also
can adopt autocrine IL-6/gp130 signalling.

The fact that constitutive activation of the gp130/STAT3 path-
way is found in inflammatory liver adenoma and hepatic tumour
progenitor cells suggests that constitutive activation of gp130 in
hepatocytes or liver progenitor cells is sufficient to drive liver
tumorigenesis. In order to address this hypothesis, we previously
generated an artificial constitutive active gp130 variant by replac-
ing the extracellular domain of gp130with the c-Jun leucine zipper
[99], which we termed “Lgp130”. We generated mice with a Cre-
inducible expression cassette in theROSA26 locus.WhenLgp130
was expressed in B-cells, it was sufficient to drive B-cell malig-
nancies [100]. However, when Lgp130 was expressed in hepato-
cytes, we did not observe tumour formation in aged mice, despite
persistent gp130/STAT3 activation [28]. These data suggest that
gp130/STAT3 signalling alone does not confer malignant trans-
formation. However, constitutive gp130 signalling was able to
promote oncogenic transformation in human foetal hepatocytes
when combined with DNA double strand breaks [95].

Effect of IL-6 on tumour micro-environment

The tumour micro-environment of hepatic tumours is composed
of different inflammatory cells, and there is growing interest in
the application of immunotherapeutic in hepatic cancers [61]. For
the detailed inflammatory composition of HCC tumour micro-
environment, the reader is referred to recent excellent reviews
[61, 101, 102]. There is increasing evidence that IL-6 family
cytokines are involved in shaping the inflammatory tumour
micro-environment in hepatic cancers. Different CD4+ T helper
(Th) subpopulations, including Th17, were recently identified in
tumoural and peritumoural tissue and described to exert a pro-
tumorigenic function [103–106]. IL-6 was previously shown to
trigger Th17 differentiation in combination with TGFβ by the
upregulation of IL-21, and the establishment of an autocrine IL-
21 loop resulting in stable STAT3 activation that in combination
with RAR-related orphan receptor (ROR) γt is necessary for the
expression of IL17 [107]. Very recently, it was demonstrated that
pathogenic pro-inflammatory Th17 in the intestine are induced
by STAT3-activating cytokines in combination with serum am-
yloid A (SAA) proteins that are secreted by adjacent intestinal
epithelial cells [108]. Given the fact that gp130/STAT3 activa-
tion in hepatocytes is sufficient to induce SAA1 and 2-secretion
[28], it is likely that, also in HCC, the appearance of pro-
tumorigenic Th17 cells is orchestrated by IL-6 (Fig. 2c).

Expression of inhibitory molecules including programmed
cell death protein (PD)-1 and T cell immunoglobulin and mucin
domain (TIM) 3 is increased on CD4+ and CD8+ T-cells in HCC
tissue [61]. Inhibitory molecules on T cells guard against
autoreactivity but are also a sign of T cell exhaustion, a state of
lymphocyte dysfunction. Tumour cells use this mechanism to
evade surveillance through the adaptive immune system. IL-6
was shown to promote expression and stability of T cell inhibi-
tory molecules. In HCC cell lines, IL-6 increased the surface
localisation of PD-L1 (Fig. 2c), the ligand for the inhibitor mol-
ecule PD-1. gp130/JAK activation induced PD-L1 phosphoryla-
tion, and in turn, altered glycosylation that resulted in an en-
hanced stability of PD-L1 on the cell surface [109].
Furthermore, CAFs isolated from HCC were shown to recruit
and activate neutrophils [110] via secretion of IL-6 and induction
of STAT3 activity in neutrophils (Fig. 2c). These activated neu-
trophils [110], also myeloid-derived suppressor cells [85], damp-
ened an anti-tumour T-cell response through the upregulation of
PD-L1 (Fig. 2c). Similarly, IL-6 derived from glioblastoma
cells induced PD-L1 in tumour-associated myeloid cells
[111]. It is therefore not surprising that combination of
anti-PD-1 antibodies with anti-IL-6 antibodies impairs
the immunosuppressive tumour micro-environment and
is a promising strategy also for the therapy of HCC
[110, 112, 113].

Interestingly, it was recently shown in a murine model of
primary sclerosing cholangitis that IL-17 from Th17 cells pro-
motes the expression of PD-L1 on BECs [114] thereby not
only dampening auto-inflammation on one side but also po-
tentially preventing proper anti-tumour response in
cholangiocarcinoma.

KCs were suggested to promote survival of liver sinusoidal
cells in an IL-6/gp130-dependent manner [115]. Accordingly,
it was shown that tumour vascularisation in murine HCC
models is enhanced by IL-6 trans-signalling [45, 116] and
thereby further promoting hepatic tumourigenesis (Fig. 2c).

IL-6 signalling also plays an essential role for the prepara-
tion of a hepatic metastatic niche. On one hand, IL-6 induced
PD-L1 expression on colorectal cancer cells thereby blunting
anti-tumour effector function of CD8+ T cells [117]. On the
other hand, gp130/STAT3-dependent secretion of SAA pro-
teins by hepatocytes promoted metastatic colonisation of pan-
creatic cancer cells in the liver [118].

The impact of other IL-6 family cytokines on
hepatocarcinogenesis

While there is clear evidence that IL-6 contributes to hepatic
tumour formation, the role of other IL-6 family cytokines is
less clear. However, there is evidence that OSM and CLC
contribute to hepatic tumorigenesis, while LIF and IL-27 rath-
er seem to play a tumour suppressive role.
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The OSMR is expressed on HcPCs and proliferation and
hepatocytic differentiation of these cells is promoted by OSM
[119]. Neutrophils that accumulate in hepatic tumour tissue pro-
duce OSM upon paracrine stimulation with TNFα secreted by
TAMs [120]. As a consequence, OSM is hypothesized to pro-
mote hepatocarcinogenesis and intrahepatic metastasis. CLC, se-
creted by CAFs, was recently identified to accelerate hepatocel-
lular carcinogenesis [121] and engagement of CNTFR induces
MAPK activation in HCC cell lines in vitro [122].

Expression of LIFR is lost during malignant progression of
hepatic tumours [123], suggesting that LIF plays a tumour
suppressive role. However, little is known on the underlying
mechanisms.

Expression of IL-27 is upregulated in HCC patients [124].
In HCC cell lines, IL-27 induces robust STAT1 rather than
STAT3 phosphorylation and a STAT1-dependent expression
profile [125]. As a consequence, IL-27 induced expression of
MHC I, suggesting more effective antigen presentation, but
also, expression of PD-L1 was elevated [126]. However, the
effect of IL-27 on growth of hepatic tumours in vivo is far
from being understood, as IL-27 did not prevent the orthotopic
growth of an HCC cell line in mice [127].

Anti-tumorigenic roles of IL-6/gp130/STAT3

The fact that IL-6 is a pleiotropic cytokine with a unique ligand–
receptors interaction and natural “built-in” shed and intracellular
inhibitors make it not unexpected that its effect on tumorigenesis
is context-dependent and not “monochromatic”. Although most
investigations show the pro-tumorigenic effect of IL-6, it also
encounters several properties that directly or indirectly execute
its anti-tumorigenic properties.

Numerous mechanisms and associations were reported be-
tween increased IL-6 expression and signalling and levels and
suppression of tumorigenesis. These include the following: 1.
the role of IL-6 in liver fibrosis, 2. the role of IL-6 in senes-
cence, and 3. the tumour suppressive effects of STAT3.

Prevention of hepatic fibrosis

Fibrosis is a complexed condition involving different cytokines,
including IL-6 [128]. Liver fibrosis is perceived as a contributing
factor to the development of liver injury, and vice versa, liver
injury, which is usually the initiating event, causes the develop-
ment of liver fibrosis [129]. Furthermore, fibrosis is a significant
factor for liver disease outcome and a risk for the development of
hepatocellular carcinoma (HCC) [78]. It was already shown 20
years ago that IL6 deficiency causes enhanced liver fibrosis upon
the development of liver injury [130]. IL-6 KO mice are shown
to be more susceptible to liver steatosis and injury under a high-
fat diet [131, 132]. In a CCl4 model of liver fibrosis, the attenu-
ation of fibrosis by sorafenib correlated with increased STAT3

phosphorylation in hepatocytes which was dependent on KC-
derived IL-6 [133]. In addition, it was shown that, upon deletion
of STAT3 in hepatocytes, there is an exacerbation of liver fibro-
sis during cholestasis. Unidentified factors released from hepato-
cytes, dependent on STAT3, play a protective role in liver
fibrogenesis through an inhibitory effect on activated HSCs
(Fig. 3a) [134]. The mechanism of how IL-6 prevents and re-
verses hepatic fibrosis is still under investigations. One proposed
mechanism is that bipotential murine oval liver cells, thought to
be hepatic progenitors, secret IL-6 which could induce the apo-
ptosis of HSCs [135]. In alcoholic liver disease in humans, it was
also suggested that IL-6 has an anti-fibrotic effect through the
STAT3 signalling pathway [136]. An additional potential mech-
anism is through the inhibition of inflammation in specific cases,
as was reported in the lipopolysaccharide/d-galactosamine (LPS/
d-Gal)-induced acute liver injury in rodent model, in which IL-6
has an anti-injury property [137]. Alcoholic liver disease is asso-
ciated with HCC [138]. The protective role of IL-6 was also
shown in an ethanol-induced oxidative stress model in which
hepatocytes via induction of metallothionein protein expression
dependent on IL-6 were protected against ethanol injury also by
other mechanisms [139, 140].

Direct anti-tumour effects

The pleiotropic nature of IL-6 mediates many cellular pheno-
types, which are context-dependent. These are involved in
metabolism, differentiation, and survival. Heme oxygenase-1
(HO-1) has a number of anti-injury properties mediated by
catabolic by-products such as biliverdin, which suggests that
HO-1 is a tissue protector. A recent report shows that HO-1 is
a tumour suppressor gene, which is induced by IL-6 [141].

STAT3, although perceived as a traditional target for
treating cancer, until today, this is not translated into clinical
usage [142]. This is also true for the use of STAT3 inhibitors
for the treatment of HCC. None of the STAT3 inhibitors
passed phase III clinical studies for HCC. Lysosomes are rec-
ognized today as pivotal in many cellular processes. Cellular
transformation is associated with lysosomal modifications,
potentially also promoting tumorigenesis [143]. STAT3 me-
diates lysosomal-mediated programmed cell death in mamma-
ry epithelial cells, by formation of large vacuoles containing
triglyceride, inducing leakage of cathepsins which culminates
in cell death [144]. Altogether, this teaches us that STAT3
phosphorylation downstream to IL-6 signalling could sup-
press breast cancer development and progression.

The role of STAT3 is also dichotomic. In the liver, STAT3 is
activated in cholangiocytes enhancing cholangiocytic cancer stem
cell for proliferation downstream to the signalling of CD24 and
NANOG [145]. Loss of STAT3 in lung and pancreatic cancers
was associated with mesenchymal transition of epithelial cells and
an aggressive tumour phenotype.Whereas, STAT3activation con-
ferred a differentiated cells epithelial phenotype and reversed the
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cancerous phenotype [146]. STAT3 was also shown to encounter
tumour suppressive effects in other types of tumours including
papillary thyroid carcinoma [147], glioblastoma [148], in colon
carcinoma STAT3 suppresses the development of ApcMin cancer
possibly through the downregulation of Snail-1, suppressing an
epithelial-mesenchymal transition of colorectal cancer cells [149,
150]. A similar observation was reported in KRAS mutation in-
duced lung adenocarcinoma, in which disruption of STAT3 in-
duced tumorigenesis [151]. Furthermore, in smokers with KRAS
mutation, lung adenocarcinoma STAT3 correlated with poor sur-
vival and advanced malignancy. The experience and disappoint-
ment with STAT3 inhibitors were also apparent for prostate can-
cer. Prostate cancer is the most frequent cancer in males, and the
phosphatase and tensin homologue (PTEN) gene is the most fre-
quently mutated gene in this malignancy. Mice with a conditional
mutation of PTEN in the prostate epithelium are a commonly used
mouse model for prostate cancer. Unexpectedly, genetic inactiva-
tion of STAT3 or IL-6 in prostate-specific PTEN knock-out mice
led to accelerated tumour progression and metastasis [152]. This
result helped to explain the result from clinical trials, in which
patients with advanced prostate cancer were treated with a neutral-
izing IL-6 antibody without any significant survival advantage
[153]. In the prostate-specific PTEN knockout mouse model, it

was shown that the loss of IL-6/STAT3 signalling bypassed cel-
lular senescence by disrupting the ARF-p53 axis indicating that
alternative reading frame protein (ARF)was a novel STAT3 target
gene [152]. In linewith the animal studies, it was shown in prostate
cancer patients that loss of STAT3 and ARF correlated with in-
creased risk of tumour recurrence. These results yield a molecular
explanation how the IL-6/STAT3 axis, which in many tumours
has an oncogenic potential, can also act in the maintenance of
senescence and thereby act as a tumour suppressor (Fig. 3b) [152].

In a Myc-dependent breast cancer mouse model, STAT3
deficiency was associated with enhanced epithelial-to-
mesenchymal transition and metastasis, indicating a potential
anti-metastatic property of STAT3 [154]. In summary, al-
though STAT3 is perceived a pro-tumorigenic mediator of
signalling upon its phosphorylation, growing number of re-
ports teach to the fact that the role of STAT3 in tumorigenesis
is more context-dependent.

Effect of IL-6/gp130 signalling on CCA

Intrahepatic cholangiocarcinoma is a very aggressive cancer
and the second most common among liver cancers. Recent
publications report quite controversial findings on the role of

Fig. 3 Anti-tumorigenic effects of IL-6/gp130 signalling. a IL-6, secreted
by KCs or LPCs, prevents hepatic fibrosis and thereby reduces the risk of
HCC development through enhancing hepatocyte repair/proliferation and
inhibition of HSCs. DAMPs, death-associated molecular patterns; HSC,
hepatic stellate cell; LPC, liver progenitor cell. b IL-6 can have direct anti-
tumorigenic effects by (I) inhibiting EMT, (II) induction of p53-mediated
senescence, or (III) the induction of cathepsin-mediated cell death. ARF,
alternative reading frame; CTSL, B, cathepsin (CTS) L, B; EMT,

epithelial-to-mesenchymal transition; LYSO, lysosome; SNAI1, snail
homolog 1; SPI2A, serine protease inhibitor 2A. c While IL-6 enhances
survival and proliferation of cholangiocarcinoma cells, it prevents
migration and invasion. Activation of FxR in cholangiocytes prevents
the secretion of IL-6. CAF, cancer-associated fibroblast; CCA,
cholangiocarcinoma; FxR, farnesoid X receptor; HC, hepatocyte; TC,
tumour cell
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IL-6 in cholangiocarcinoma. IL-6 is proposed to be secreted
from CAFs of this tumour, inducing epigenetic changes in
cholangiocytes and thereby enforcing a malignant transforma-
tion driving the initiation of intrahepatic cholangiocarcinoma
[80]. However, a recent report observed a negative correlation
between IL-6 levels and intrahepatic cholangiocarcinoma
[155]. In addition, farnesoid X receptor (FXR), which is
downregulated in intrahepatic-cholangiocarcinoma cell lines
and human samples, has a negative correlation with aggres-
siveness and poor prognosis of patients with intrahepatic-
cholangiocarcinoma. FXR expression was negatively corre-
lated with IL-6 in intrahepatic cholangiocarcinoma tissues.
FXR inhibited intrahepatic cholangiocarcinoma aggressive-
ness through the suppression of IL-6 [156]. However, it was
shown that inhibition of IL-6 trans-signalling by the adminis-
tration of recombinant sgp130Fc reduced cholangiocarcinoma
cell line viability and induced apoptosis, whereas both migra-
tion and proliferation increased [157]. In one type of cholan-
giocarcinoma, carcinoma of the gallbladder (GBC), IL-6R α
(gp80), was downregulated and correlated positively with an
improvement of overall survival. Overall, these complex ob-
servations of the role of IL-6 in human cholangiocarcinoma,
showing both pro-tumorigenic and anti-tumorigenic proper-
ties, are “reproduced” in other types of cancers as well.
These complexed observations render a simple therapeutic
approach. This complexity imposes a case-by-case investiga-
tion and understanding prior to developing therapeutic
approaches.

Regulation of tumour cell senescence

Senescence is initiated following an external stress imposed on
the tissue. In the liver, this could be inflammation, infection, or
metabolic strain. Senescent cells arrest in the cell cycle, encounter
morphological changes, and produce a specific and complex
secretome, the senescence-associated secretory phenotype
(SASP) [158]. The development of DNA damage leads to cell
cycle arrest through the activation of p53, and the induction of
p21CIP1 and p16INK4a inhibits cyclin-dependent kinases CDK4,
CDK6, and CDK2 in some cases. IL-6 is a major component of
the SASP response although it is now known that SASP could
harbour hundreds of protein and non-protein substances with
inflammatory and immunological properties [159]. Induction of
senescence in cancer opens an opportunity to treat the malignan-
cy with senolytic agents that selectively induce cell death in
senescent cells [160]. This was recently shown to be effective
in liver cancer [161]. Although the role of IL-6 in senescence-
induced anti-tumour effects was reported in non-HCC [162], the
role of IL6 in senescence-mediated anti-tumour effects in differ-
ent types of liver cancers is still under investigation and seems to
be dependent on the tumour type (E.G., personal communica-
tion). However, in some pathological conditions upon stress,
senescence develops, as in alcoholic liver disease. It was recently

shown that M2 macrophages trigger hepatocyte senescence and
enhance alcohol-induced hepatocyte senescence, as indicated by
increased β-galactosidase activity, elevated CDKN1A mRNA
expression, and induction of nuclear p21. This group identified
IL-6 as the mediator of M2-induced hepatocyte senescence.
Senescent hepatocytes might display protective effect against
alcoholic liver disease, a pre-malignant condition upon becoming
chronic [163].

Therapeutic considerations

In the intensive investigations on the role of the IL-6/STAT3
pathway, although unfolded many mechanistic understand-
ings related to the development of liver cancer and other ma-
lignancies, no single drug was yet approved that is based on
these mechanistic findings. However, specific targets and ap-
proaches interfering with the IL-6/STAT3 pathway are
highlighted and are potentially important to indicate in this
review. The potential contribution of senescence to the devel-
opment of HCC has been investigated in an effort to identify
new therapeutic targets against HCC. Senolytic agents were
shown to have a beneficial effect on HCC [161] but, at the
same time, warranted further investigations [164].

There are some recent developments in the applications of
kinase inhibitors (sorafenib [165] and lenvatinib [166]) and
immunotherapies for HCC [61, 167]. However, these encoun-
ter many side effects and escapes from treatments and are
currently indicated for a more advanced disease. Due to the
intensive cancer surveillance programs worldwide, many
small tumours are detected in patients with cirrhosis at rela-
tively early stages [168]. For these patients, regional ap-
proaches including partial/segmental hepatectomy (PHx),
transcatheter arterial chemoembolisation (TACE), and radio-
frequency ablations (RFA) gained ground as an important
approach for treating HCC local/regional disease [169].
However, these approaches are also associated with high re-
currence frequency. We have shown in the MDR2 KO mice
model [170], which simulates inflammation-induced chronic
liver injury and cancer, that there is an enhanced
hepatocarcinogenesis following PHx [92]. This occurs with
enhanced DNA damage response, increased genomic instabil-
ity, escape of cell-cycle arrest, and senescence and causes
tumour growth acceleration subsequent to PHx, causing
HCC recurrence. In a recent investigation, to unfold the en-
hanced carcinogenic effect of PHx, it revealed that, under
these inflammatory conditions, there is a striking increase in
hepatocytes bearing micronuclei, a marker of genomic insta-
bility, which is suppressed by IL-6 blockade [93]. The vast
majority of patients in the western world develop HCC on the
background of cirrhosis, rendering PHx as a preferred thera-
peutic approach. However, PHx in cirrhotic patients is asso-
ciated with high mortality. This leads to the development of
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alternatives. RFA is a potential therapeutic approach for small
size tumours in cirrhotic livers [171]. However, RFA is asso-
ciated with HCC recurrence [172]. Based on these observa-
tions, we have recently dissected the mechanism of this recur-
rence in in vitro and in vivo models, showing a panel of in-
flammatory mediators responsible for enhanced hepatocyte
proliferation and HCC recurrence in mouse models exposed
to RFA, including STAT3, IL-6, c-MET, COX-2, and heat
shock proteins [173–182]. All these are currently undergoing
further investigation to identify the preferred therapeutic ap-
proach in combination of RFA to suppress HCC recurrence.

Perspective, future research

In the past decades, IL-6 has emerged as an important medi-
ator of tissue inflammation and regeneration. It was therefore
not surprising that IL-6 and STAT3 which act as the major
transcription factor downstream of the IL-6 receptor complex
were initially considered tumour promoters in many cancer
types including the liver. Several cell types and mechanisms
in the tumour micro-environment of the liver were identified
to regulate the expression and secretion of IL-6.

However, more recent research has shed more light on
the complexity of IL-6 signalling in cancer including liv-
er. It turned out that IL-6 not only has tumour-promoting
effects but acts also in tumour prevention. Therefore, fu-
ture research has to unveil a more detailed picture on the
kinetics and cellular context of IL-6 signalling in order to
precisely distinguish between pro- and anti-tumorigenic
effects of IL-6 signalling. This might include epigenetic
mechanisms, the identification of co-dependencies, and a
more detailed understanding of its role in anti-tumour
immunity.

Consequently, we will be able to design novel therapeutics
that are able to block tumorigenic effects of IL-6 without af-
fecting its physiological role in infection defence and tissue
regeneration.
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