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Abstract

To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and
calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural
environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the
accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form
coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that
uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot’s pose. Here we show
how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a
brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional
engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid
cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new
experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity.
Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a
phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence
demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose
estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like
firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique
role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal
experiments that test navigation in perceptually ambiguous environments.
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Introduction

Many animals demonstrate impressive navigation capabilities as

they travel long distances in search for food and then unerringly

return to their nests. Extensive experimentation has identified two

primary mechanisms animals use to navigate – path integration

[1,2] and landmark calibration [3,4]. Animals can update their

estimate of location using self-motion cues such as vestibular input

(path integration), and calibrate these estimates by sensing familiar

landmarks such as visual cues (landmark calibration). Neural

recordings from laboratory rats have revealed three types of

spatially responsive neurons involved in path integration and

landmark calibration: place cells [5], which respond to the rat’s

location; head-direction cells [6,7], which respond to the rat’s head

orientation, and grid cells [8–11], which respond at regularly

spaced locations in the environment. Outside of the laboratory

however, in large natural environments, both these mechanisms

are characterized by uncertainty: the path integration process is

subject to the accumulation of error, while landmark calibration is

limited by perceptual ambiguity. It is unknown how spatially

selective cells respond in the presence of uncertainty when animals

travel long distances.

In robotics, it has been well established that the uncertainty in

measurements of self-motion and landmarks must be explicitly

included when forming spatial representations of large real world

environments [12,13]. Probabilistic algorithms enable a robot to

explicitly represent spatial uncertainty by simultaneously maintain-

ing multiple estimates of a robot’s conjunctive location and

orientation (its pose) within its internal map. Each pose estimate

can be updated by ideothetic sensory information, such as wheel

encoder counts, until sufficient evidence from allothetic information

gathered over time can strengthen one hypothesis over the others.

One of the key advantages of being able to represent multiple

estimates of pose is that even ambiguous sensory information

becomes useful. While ambiguous cues will not immediately pinpoint

the robot’s exact pose, they can simultaneously maintain a subset of

the possible current pose estimates, reducing the robot’s uncertainly

about its possible location. Given that wild rats effectively navigate in

large and complex environments [14–16], it seems likely that they

too have neural mechanisms that allow them to represent more than

one estimate about their environment and spatial location.

In contrast to the pivotal place of uncertainty in robot

navigation research, mechanisms for dealing with uncertainty

have not been identified from cell recordings performed on
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laboratory rats. Three factors may be responsible: firstly, the small

size and simplicity of the test enclosures may not engage or reveal

such mechanisms; secondly, it is only possible to take simultaneous

recordings from a limited number of cells out of more than

200,000 projection neurons in layer II of entorhinal cortex (of

which only a fraction are actually grid cells) and 300,000

pyramidal cells in CA3 (place cells) [17,18]; and thirdly, cell firing

fields are averaged over extended periods of time, minimizing any

evidence of transient encoding of multiple spatial hypotheses.

Although the response of a specific cell can be characterized over

the entire testing enclosure, it is not yet possible to determine with

any certainty whether other unrecorded cells fired at the same

time to represent some alternative estimate for pose. It remains

unknown whether rats can maintain multiple estimates of their

location and orientation in the environment.

In this paper, we present a brain-based robot model of navigation

known as RatSLAM [19–21], which provides a novel insight into

the functional significance of grid cells. Based both on rodent

spatially-responsive cells and functional engineering principles, the

cells at the core of the RatSLAM computational model have similar

characteristics to rodent grid cells, which we demonstrate by

replicating the seminal Moser experiments [8]. Based on our robot

experiments in large real world environments, we hypothesize that

conjunctive grid cells provide a computational mechanism for

resolving measurement uncertainty in navigation by maintaining

multiple estimates of location and orientation. We describe a new

experimental paradigm designed to examine the behavioral and

neural responses of a robot (or animal) in the presence of

uncertainty. We apply the RatSLAM robot navigation model to

this paradigm to show that conjunctive grid cells can encode

multiple hypotheses of spatial location (and orientation) sufficient to

localize a robot in a perceptually ambiguous environment, and

analyze the neural activity underpinning the navigation perfor-

mance. Finally, we discuss the implications of the research for future

work in robotics and animal navigation research.

Methods

RatSLAM Model
We have developed a model of cells encoding spatial pose called

RatSLAM that forms the key spatial representation for large-scale

and long-term robotic navigation tasks [21,22]. The RatSLAM

model consists of a continuous attractor network (CAN) of rate-

coded cells encoding the robot’s location and orientation (analogous

to grid cells in entorhinal cortex) and an episodic spatial

representation (analogous to hippocampus) that is used to perform

advanced navigation [23,24]. For the work described in this paper,

only the core continuous attractor network is relevant. At the heart

of the model is a cluster of cells that forms a three dimensional

continuous attractor network, with connections wrapped at the

edges (Figure 1). Cells are connected to proximal cells by both

excitatory and inhibitory connections, with connections on the

edges wrapped around in a manner similar to that employed in the

place cell model of McNaughton [2]. Within the context of

sophisticated models that have been developed explicitly to model

grid cells (which RatSLAM was not), RatSLAM is closer in

characteristics to the attractor network models [25] rather than the

interference models [26]. In the Discussion we provide a

comparison of the RatSLAM model to the major continuous

attractor models of grid and other spatial cells.

As well as being regulated by internal dynamics, the cell activity

profile can change through a process of path integration when the

robot is moving, and also when the robot sees familiar visual cues.

The path integration process uses vestibular information from the

robot’s wheel encoders to shift activity in the network. Sensory

input in the form of processed visual images is linked with co-

activated cells through simple associative links. When these same

visual cues are seen again, the linked cells are activated, and with

enough visual input can reset the activity state of the entire cell

network (Figure 1).

One complete iteration of the network consists of a full cycle of

internal network dynamics, path integration and visual input. The

number of cells is pre-determined, so their level of re-use grows

with the size of the environment. New cells do not form; instead

existing cells are recruited into the representation of the

environment when the path integration process shifts activity into

them.

Attractor Network Dynamics
The intrinsic attractor dynamics are designed to maintain a

single activity packet in the CAN. Local excitatory connections

increase the activity of units that are close in (x9, y9, h9) space to an

active unit, generating the main cluster. Inhibitory connections

suppress the activity of smaller clusters of activity. For each cell,

local excitation and inhibition is achieved through a 3D Gaussian

distribution of weighted connections, as shown by the solid arrows

in Figure 1. The distribution, e, is given by:

ea,b,c~e
{(a2zb2)

.
kexc

p e
{c2

.
kexc
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.
kinh
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.
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where kp and kd are the variance constants for place and direction

respectively, and a, b and c represent the distances between units in

x9, y9 and h9 co-ordinates respectively (constants are given in Table

S1). The variances for inhibition are larger than for excitation,

creating the so-called Mexican-hat function [27]. The connections

wrap across all faces of the cell network, as shown by the longer

solid arrows in Figure 1, so the indices a, b and c are given by:

a~w (x0{i)( mod nx0 )½ �

b~w (y0{j)( mod ny0 )
h i

c~w (h0{k)( mod nh0 )½ �

ð2Þ

Author Summary

Navigating robots face similar challenges to wild rodents
in creating useable maps of their environments. Both must
learn about their environments through experience, and in
doing so face similar problems dealing with ambiguous
and noisy information from their sensory inputs. Naviga-
tion research using robots has determined that uncertainty
can be effectively addressed by maintaining multiple
probabilistic estimates of a robot’s pose. Neural recordings
from navigating rats have revealed cells with grid-like
spatial firing properties in the entorhinal cortex region of
the rodent brain. Here we show how a robot equipped
with conjunctive grid-cell-like cells can maintain multiple
estimates of pose and solve a navigation task in an
environment with no uniquely identifying cues. We
propose that grid cells in the entorhinal cortex provide a
similar ability for rodents. Robotics has learned much from
biological systems. In a complementary way, in this study
our understanding of neural systems is enhanced by
insights from engineered solutions to a common problem
faced by mobile robots and navigating animals.

Grid Cells on Robots Solve Navigation Uncertainty
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where w() is a lookup function that provides the mapping between

cells at opposite boundaries of the hexagonal plane. The change in

a cell’s activity level DP is given by:

DPx’,y’,h’~
Xnx’{1ð Þ

i~0

Xny’{1

� �

j~0

Xnh’{1ð Þ

k~0

Pi,j,kea,b,c{Q ð3Þ

where nx9, ny9, nh9 are the size of the network in number of cells

along each of the dimensions x9, y9, and h9, and the constant Q
creates global inhibition. The final network stage thresholds

activation levels in P to non-negative values and normalizes the

total activation to one. When an experiment is started, a single cell

unit is seeded with an activation level of 1, and then 5 network

iterations are run in order to obtain a stable starting cluster of

active cells.

Path Integration
Although past versions of the RatSLAM model have used

asymmetric weights to neurally perform the process of path

integration, in this implementation path integration is achieved by

displacing a copy of the current activity state by an amount based

on nominal spatial areas and orientation bands of each cell.

Copying and shifting activity offers stable path integration

performance over a wider range of movement speeds and under

irregular system iteration rates. Like the excitatory and inhibitory

weight matrices, the path integration process can cause a cluster of

activity in the cells to shift off one face of the cell structure and

wrap around to the other. A nominal cell size dictates the rate at

which activity is shifted under path integration, given in Table S1.

For example, with a nominal cell size of 0.25 m60.25 m, if the

robot translates 0.25 meters, the network activity profile will shift

by one unit in the (x9, y9) plane.

Visual Processing of Landmarks
The path integration process is subject to the accumulation of

errors in odometry, which becomes a critical problem over time.

To correct path integration errors, RatSLAM learns unidirectional

excitatory connections between its internal representation of visual

landmarks seen at different bearings and ranges and cells that are

active when those visual landmarks are seen. In this way, when a

familiar visual landmark is seen, the learnt connections will

activate the cells associated with seeing that visual cue,

recalibrating the robot’s internal estimate of its location and

orientation. The connections between landmark representations

and the cells are stored in a connection matrix b, where the

connection between a particular visual cue Vi and cell Px9,y9,h9 is

Figure 1. Schematic of the RatSLAM navigation model. The core RatSLAM navigation model consists of a continuous attractor network of
location and orientation sensitive rate-coded cells. Each cell excites (solid line arrows) and inhibits (not shown) neighboring cells. A path integration
module integrates robot movement information by shifting cell activity (dashed line arrows, only some shown for clarity reasons). When the robot
sees a familiar visual cue, the vision processing system activates inputs into the cells associated with that visual cue (see Point A), enabling the robot
to re-calibrate its estimate of its location in the environment. The layout of cells in the (x9, y9) plane starts off corresponding approximately to the (x, y)
plane of the environment, but evolves under the influence of path integration and visual recalibration. The cell network can function in any
tessellating layout (i.e. square, rectangle, hexagon), but is optimal in a hexagonal configuration (as shown), which minimizes the perimeter to area
ratio and hence the number of wrapping connections for a given network size. In previous robot experiments the model has been shown to also
function successfully with square or rectangular configurations [23].
doi:10.1371/journal.pcbi.1000995.g001

Grid Cells on Robots Solve Navigation Uncertainty
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given by:

btz1
i,x0,y0 ,h0~ max bt

i,x0,y0 ,h0 ,lViPx0 ,y0,h0
� �

ð4Þ

where l is the learning rate. When a familiar visual landmark is

seen these connections are activated, resulting in a change in cell

activity, DP, given by:

DPx0 ,y,0h0~
d

nl

X
i

bi,x0 ,y0 ,h0Vi ð5Þ

where the d constant determines the influence of visual cues on the

robot’s pose estimate, normalized by the number of visible

landmarks nl. Figure 1 represents the moment in time when a

familiar visual cue has just been seen, resulting in activation of cells

associated with seeing that visual cue at a specific egocentric

bearing and range, causing a shift in the location of the dominant

activity packet (A). The previously dominant activity packet can

also be seen (B).

Robot Platform
The virtual robot was modelled after a Pioneer 2DXe mobile

robot from Mobile Robots Inc, with the relevant sensors being a

forward facing camera and wheel encoders (Figure 2a). The

robot’s visual acuity was set at one cycle per degree to simulate

that of a normally pigmented rat, although the field of view was

less than that of a rat, at only 73.2 degrees horizontally, compared

with approximately 270 degrees in the rodent (Figure 2b). The

robot’s sensor system was able to recognize rectangular uniformly

colored visual cues and estimate their relative bearing and

distance. The wheel encoders on the robot’s wheels provided

self-motion information in the form of translational and rotational

velocities and formed the main source of vestibular information for

the RatSLAM model.

Replication of Grid Cells
Training and testing was performed in several virtual environ-

ments. All arena walls were 2.67 meters tall. All cues were

rectangular flat cues attached to the exterior arena walls,

measuring 0.5 meters in width and running the full height of the

wall. In the two circular arenas (3.2 m and 1.6 m diameter) the

robot was given random goal locations over a period of four hours

to mimic a rat’s collection of randomly thrown pieces of food. A

single rectangular cue was attached at a fixed location to the arena

walls. The sensitivity of the robot’s path integration mechanism

was varied to assess its impact on the simulated grid cell firing

fields in the large circle. The attractor network had 2304 cells with

36 layers of 64 cells in each hexagonal layer. 10 network iterations

per second were performed, so each four hour period consisted of

144000 network iterations.

Cue rotation experiments. The robot was trained for a

period of four hours in the large circular arena with a fixed cue

location. The cue was then rotated 90 degrees in a clockwise

direction and the robot was allowed to explore the arena for a

further four hours. The cue was then rotated back to its original

position, followed by another four hours of exploration.

Darkness experiments. The robot was trained for a period

of four hours in the small circular arena with a fixed cue location.

All lighting was then removed from the arena, and the robot was

allowed to explore the dark arena for a further four hours.

Lighting was then restored, followed by another four hours of

exploration. The cue remained in the same location for the

duration of the experiment.

Navigation under Ambiguity
We analyzed the navigational capabilities of the model in

perceptually ambiguous situations using a square corridor arena

measuring 4 meters in size with 1 meter wide corridors, with

2.67 meter tall interior and exterior walls (Figure 3a). The arena is

designed such that every location has a twin in another part of the

arena; the cues available at both locations are identical, meaning

that perceptual sensors cannot distinguish between the two

locations. The cues are rectangular flat cues attached to the

exterior arena walls, measuring 0.5 meters in width and running

the full height of the wall. Because the arena is small and simple in

its layout, a robot can use dead reckoning to learn the arena’s

spatial layout and landmark locations. However, if that robot is

Figure 2. The simulated robot and sample visual field. (a) The real-life robot that was modeled was a Pioneer 2DXe from MobileRobots, with a
forward facing camera providing the visual sensory input, and wheel encoders providing self-motion information. (b) A captured visual scene as the
robot perceives the world in the circular arena, with approximately one cycle per degree visual acuity.
doi:10.1371/journal.pcbi.1000995.g002

Grid Cells on Robots Solve Navigation Uncertainty
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removed and then replaced at a corner of the arena, it will have

multiple hypotheses as to its location, and can only determine the

correct location hypothesis by integrating sensory evidence over

time as the robot moves. The attractor network was run at a

higher rate of 14 iterations per second, in order to best capture the

transitions between hypotheses.

We let a robot explore the virtual environment shown in

Figure 3. During the exploration period, the robot was instructed

that it would be rewarded at the four cue locations if it turned to

look at the ‘correct’ wall for that location. The correct wall choice

depended on location within the arena but not cue color – at one

white cue the reward was dependent on the robot turning to look

at the outer wall, while at the other white cue the reward was

dependent on the robot turning to look at the inner wall (correct

choices shown in Figure 3). Consequently cue color was not

predictive of reward location.

After exploration, the robot was removed from the arena and

then replaced in one of the corners. 10 trials were run for each of

the four possible corner starting locations, for a total of 40 trials.

The robot was not given any prior knowledge about its initial

placement location. It was instructed to move around the arena in

a clockwise direction and to try to obtain rewards at the cue

locations. It was only given one chance at each cue location to be

rewarded before being forced to continue moving. Each trial

consisted of 4 decision trials, constituting one complete circuit of

the arena. The typical duration of each exploration period and

choice trial was 44 seconds.

Driving Navigation Using Grid Cells
When the robot arrived at a cue location after training, it based

its decision on which direction to turn to receive the reward on its

internal estimate of its most likely location, in terms of which

corridor it was most likely located in, as encoded by the ensemble

cell firing. The most likely corridor, Z, was calculated by:

Z~ max Cið Þi~4
i~1 ð6Þ

where Ci was the corridor occupancy likelihood for corridor i,

given by:

Ci~
Xx2

x1

Xy2

y1

Oxy ð7Þ

where (x1, y1), (x2, y2) denote the corridor boundaries as indicated

Figure 3. The perceptually ambiguous corridor arena and a schematic of the theoretically optimal navigation performance
possible. A virtual rat is used to demonstrate the optimal navigation performance in the arena. The three columns show (in order from left to right)
the plan view of the arena with rat location, the rat’s view of the arena at each location, and the optimal probabilistic representation of the rat’s
location and orientation. Note the ‘blocker’ partitions that block the cues from sight once they have been passed (no such blockers were required for
the robot due to its limited field of view). (a–b) Two equally weighted location hypotheses are maintained and updated until a second cue is sighted
in (c), leading to a single correct location hypothesis. The curved arrows show the reward locations for the behavioral experiment.
doi:10.1371/journal.pcbi.1000995.g003

Grid Cells on Robots Solve Navigation Uncertainty
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by the shaded areas in Figure S1, and the likelihood, O, of the

robot being located in a particular discrete square spatial bin

located at (x, y) is:

Oxy~
X

i

PiFxyi ð8Þ

where Pi is the activity level of cell i, and Fxyi is the discrete place

field bin of cell i at location (x, y). The bin size for the corridor

arena experiments was 0.25 meters. The attractor network was

scaled up to 10,368 cells with 36 layers of 288 cells in each

hexagonal layer, with approximate cell numbers to environment

size parity with the circular environments (circular environments –

2304 cells: 2m2 and 8m2 arena area, corridor arena – 10368 cells:

16m2 arena area).

Results

Cells Have Tessellating Firing Fields
To compare the spatial structure of firing fields in the model

with firing fields in dMEC (Figure 1b in [8]), we tested the model

in a circular enclosure with a diameter of 3.2 m. Cells developed a

grid of regular firing fields (see Text S1 for field formation

calculation) at locations corresponding to the vertices of a pattern

of tessellating equilateral triangles spanning the environment

surface (Figure 4c). Firing fields were clearly delineated from the

background activity, but varied in strength between locations.

Spatial autocorrelation analyses (see Text S1) of the activity

distribution showed a regular tessellating pattern similar to that of

grid cells [8,10] (Figure 4d).

To examine the geometric characteristics of the grid, we

repeated the analysis of the peaks in the autocorrelogram

performed in the original study [8]. Within each firing grid, the

distance from each peak to its nearest six peaks was almost

constant (mean spacing 6 s.d., s = 0.560.07 m). The angular

separation between the vertices of the hexagon formed by each

peak and its nearest six peaks was also in multiples of 60 degrees

(mean separation 6 s.d., 60u613u). Field sizes were estimated by

calculating the area of the peaks in the autocorrelogram exceeding

a threshold of 0.2. Field sizes varied from 44 cm2 to 744 cm2

(mean area 6 s.d., s = 2676159 cm2). Shrinking or expanding the

environment had no effect on the spacing or size of the fields. The

consistency in spacing, orientation and field size in a single

network of cells matched the observed invariance in these

properties at individual recording locations in dMEC [8]. All

cells displayed strong directional tuning (Watson U2 test,

U2 = 143.7 to 778.1, mean 586.7, see Text S1), with a mean

angular standard deviation of 56.5u (Figure 4e).

To determine whether the model could replicate the observed

increase in grid spacing and field size as distance increases from

the postrhinal border, we recorded from three cell networks with

varying sensitivity to motion cues (ideothetic cues). Field size and

spacing varied jointly (correlation = 0.98), both increasing as the

network sensitivity to robot motion decreased (Figure S2). Mean

field size increased from 174 cm2 to 562 cm2, as field spacing

increased from 34 cm to 73 cm. Gross variations in movement

speed however had no effect on either field size or spacing.

Grids are Anchored to External Cues
To compare the effect of allothetic and ideothetic cues, we

conducted a number of trials in a circular arena with a single cue

card on the wall and no distal cues (see Grids are anchored to external

cues [8]). The cell firing grids were stable in successive trials in the

same arena, supporting the strong influence of allothetic cues

found in the rat trials. To further test the influence of allothetic

cues, we allowed the model to develop stable firing fields in the

environment, then shifted the cue by 90 degrees along the arena

wall. The firing fields before and after cue rotation were dissimilar

(correlation = 0.057, see Text S1), but became correlated if one

field was rotated by 90 degrees (correlation = 0.60, Figure 5b).

When the cue card was returned to the original configuration, the

firing fields returned to their initial configuration (correla-

tion = 0.60). The directional tuning of cells rotated with the cue

(Figure 5d). Field spacing remained constant through the cue

rotation (Figure 5c). Field size increased after the rotation then

remained constant.

Figure 4. Cell firing field spacing and orientation was constant within the network. (a) The recorded cell locations. (b) The robot
trajectories. (c) Cell firing fields (d) Firing field auto-cross correlations are shown. Firing field phase varied within the cell network, with only a few cells
required to completely cover the environment. (e) Polar plots showing directional tuning of cells (left) and duration of time spent at each head
direction (right). The first two rows show results for two cells from the same network, the third row shows a cell from a network with a different
fundamental grid orientation.
doi:10.1371/journal.pcbi.1000995.g004

Grid Cells on Robots Solve Navigation Uncertainty
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Grids Degrade after Cue Removal
In rodent experiments, grids were reported to be maintained in

total darkness for 30 minutes (see Grid structure persists after cue

removal [8]). In robot experiments however, allothetic cues are

required to correct for path integration errors that accumulate

over time. To test the effects of cumulative path integration error,

we tested whether grids were maintained after all allothetic cues

were removed. In sequential light-dark-light experiments, firing

fields formed a regular tessellating pattern during the initial

illuminated stage (Figure 6a). When the environment was

darkened, firing fields steadily became irregular and distorted.

The correlation between the new and original firing fields

decreased as the time spent in darkness increased, dropping to a

correlation of 0.1 within 24 minutes (Figure 6d). In the second

illuminated stage, the original regular firing fields returned

(correlation = 0.82). The period of darkness resulted in complete

firing field degradation, even within the 30 minute duration of the

original study. The disparity may be due to the role that non-visual

cues play in maintenance of firing patterns in rodents (reported to

be minimal [8]), or could be caused by path integration in the

model being inferior to rodent path integration.

Ambiguous Corridor Arena
In the behavioral task in the ambiguous corridor arena, when

first replaced at a corner, the robot only had a 53% (n = 40 trials)

success rate in obtaining a reward at the first cue it encountered

Figure 5. Firing fields under cue rotation, and in a second experiment with the original cue configuration. (a) Firing fields before and
after rotation are seemingly unrelated, but become correlated if the B firing field is rotated 90 degrees counter-clockwise. (b) Cross-correlation plots
corresponding to fields shown in (a). (c) Spatial correlation, field spacing and size for the different cue configurations (means 6 s.e.m.). (d) The
directional tuning of a specific cell rotated 90u after the cue rotation, and rotated back in a second experiment with the original cue configuration
(left), and the duration of time spent at each head direction (right).
doi:10.1371/journal.pcbi.1000995.g005

Figure 6. Firing fields drift in darkness and re-stabilize in the illuminated environment. (a) Firing fields in each experiment phase. (b)
Cross-correlation plots of firing fields in light and darkness. (c) Spatial correlation of firing fields in light and dark periods. (d) Spatial correlation over
time during darkness. Note the initial rapid decline in correlation. (all data, means 6 s.e.m. See Text S1 for further details.)
doi:10.1371/journal.pcbi.1000995.g006

Grid Cells on Robots Solve Navigation Uncertainty
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(Figure 7a). However, by the second cue the success rate increased

to 93%, and remained high for subsequent cues (98% and 90%).

To help identify the effect of the visual cues on performance, we

repeated the experiments in the same environment with a

completely ambiguous cue configuration (Figure 7b). The success

rates were not significantly different from chance (first to fourth

cue encountered; 60%, 58%, 63%, 48% respectively), and did not

improve as the robot encountered subsequent cues after the first.

We next analyzed the firing fields and directional tuning of the

cells (Figure 8). Although some cells displayed the characteristic

grid-like firing pattern within one maze corridor (Figure 8b,

p1c27434), other cells fired in multiple corridors (Figure 8b,

p1c8467). Furthermore, many cells had bimodal directional tuning

curves. To evaluate whether firing fields in different corridors was

typical, we analyzed the population statistics over all 80 trials. The

percentage of cells in the entire network that had firing fields for

the semi-ambiguous and completely ambiguous corridor arena

configurations were 20.2% and 20.1%, respectively. While the

majority of these active cells coded for locations in only one

corridor, more than 6% of active cells coded for locations in two

different corridors, as shown in Figure 9a (calculated using

Equation 7 with a threshold of Ci.0.01).

To further analyze the orientation tuning curves and compare

the level of uncertainty in the cell population’s encoding of the

robot’s orientation in the circular open field environment and

ambiguous corridor environment, we analyzed the orientation

tuning curves of each cell (each cell in general encoded multiple

locations as expected for grid-like cells) (Text S1). In the 1.6 meter

circular arena, almost every cell that was active encoded only one

distinct robot orientation (Figure 9b). In stark contrast, in the

ambiguous corridor arena, more than 60% of active cells encoded

more than one distinct robot orientation, with more than 20%

encoding three or more distinct orientations.

As can be seen in p1c27434 in Figure 8b, cells could have

multiple distinct peaks in their orientation tuning curves which

encoded slightly different robot orientations in the same corridor.

To confirm whether the multimodal tuning curves were primarily

due to slightly separated orientation peaks in one corridor only, we

constructed the distribution of minimum inter-peak angular

distances for every cell with a multimodal tuning curve for one

of the ambiguous corridor trials (Figure 9c). More than 75% of the

inter-peak angular distances were between 80 and 100 degrees,

confirming that most of the multimodal tuning curves encoded the

robot’s orientation in different corridors, rather than within the

same corridor where robot orientation was highly similar.

By summing the place fields of all active cells weighted by cell

activity, it was possible to visualize the robot’s location estimates

(Figure 10a) as encoded by the ensemble cell firing (Figure 10b, see

Video S1). After replacement in the maze at corner C facing

corner D (with a black cue visible), cell firing encoded

approximately equally for corridors CD and AD (t = 2.5s, labeled

‘1’ and ‘2’ in the figure). As the robot moved along corridor CD,

path integration shifted the location estimates (t = 7.2s) until the

robot turned the corner at D (t = 12.4s). After sighting the second

black cue, cells with firing fields encoding the correct location

estimate 1 increased in activity, while cells with firing fields

Figure 7. Robot behavioral performance in environments of varying perceptual ambiguity. (a) ‘‘Semi-ambiguous’’ corridor arena cue
configuration. Reward directions specified during exploration and improving robot performance after replacement at choosing the correct reward
direction. At the first decision point, by which time the robot has only seen one cue, performance is at chance. By the second decision point and
beyond, however, the robot chose correctly approximately 90% of the time. (b) ‘‘Completely ambiguous’’ corridor cue configuration. Reward
directions and steady robot performance with a theoretically indistinguishable cue configuration. Error bars show 95% confidence intervals. The
robot performed no better than at chance.
doi:10.1371/journal.pcbi.1000995.g007
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encoding the incorrect location estimate 2 reduced in activity. Cell

firing also supported, but less strongly, a new location estimate 3 at

C. After further robot movement (t = 15.9s), cell firing primarily

supported the correct location estimate 1, to a lesser degree

supported the new location estimate 3, and no longer supported

location estimate 2.

Discussion

Our results identify conjunctive grid cells as excellent

candidates for the computational mechanism that addresses

measurement uncertainty in spatial encoding. Our computa-

tional approach enabled us to observe transient population

coding of multiple location hypotheses, a phenomenon which

would not be easily observable in firing field plots from rodent

recordings of a few dozen cells with data averaged over tens of

minutes. Furthermore, the experimental arena and task provide

a novel investigative tool for testing the neural and behavioral

responses of navigating rodents in the presence of perceptual

ambiguity.

For animal experiments with only behavioral analysis, but no

neural recordings, we note that the experimental arena choice task

shown in Figure 3 could be improved to make it more ‘‘schema-

proof’’. Currently, a schema of ‘‘see two of the same cues in

sequence, turn inward, see two different cues in sequence, turn

outward’’ would solve the task, while only localizing the animal to

one of two possible locations. Having four reward locations at each

cue, or changing the sequence of correct choices to (travelling

clockwise in Figure 3 from the top white cue) white – turn

outwards, white - turn inwards, black – turn inwards, black – turn

outwards, requires any successful schema to uniquely identify the

animal’s location within the arena. Ideally, any rodent experi-

ments would also involve neural recordings to more directly

ascertain the rodent’s spatial encoding during the experiment, and

of course the robot in this paper was not given any ability to form

schemas to solve the task.

Figure 8. Cells encoded for both multiple distinct robot locations and robot orientations. Firing fields and directional tuning of four cells
for the experiment shown in Figure 7a. The arrows superimposed on the location firing fields show the two robot orientations encoded by each cell,
which correlate with the expected robot orientations at those locations during clockwise movement through the corridors. (a–c) show cells that each
encode multiple locations and orientations in different corridors, while (d) shows a cell that encodes for multiple locations and slightly different
orientations in the same corridor.
doi:10.1371/journal.pcbi.1000995.g008

Figure 9. Place field distributions and tuning curve properties for the cell populations in the experimental arenas. (a) More than 6% of
cells that were active at some time during the 80 trials encoded locations in two or more different corridors (semi-ambiguous: n = 83551 cells,
completely ambiguous: n = 83460 cells). (b) Directional tuning of the cell populations was almost entirely unimodal in the circular arena experiment
described in Figure 4 (n = 2304 cells). However, in the corridor arena, more than 60% of active cells encoded more than one distinct robot orientation
(n = 5006 cells). (c) Distribution of the minimum inter-peak spacing for all cells encoding multiple robot orientations in the semi-ambiguous corridor
arena (n = 3111 cells).
doi:10.1371/journal.pcbi.1000995.g009
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Comparison to Other Computational Models of Grid Cells
At the time of the invention of the RatSLAM system (2003),

there was little biological evidence of any type of grid cell. While

place cells were known to become directional over repeated

traverses of long narrow corridors [28], there were no known cells

with the inherent conjunctive properties of grid cells in layers III,

V and VI, and no cells that were known to fire at regular spatial

intervals. The robot model used conjunctive grid-like cells to

handle perceptually ambiguous situations and to effectively use

memory and computing resources through cell reuse [24], rather

than to model a particular type of spatially selective neuron [23].

This difference in driving motivation – robot navigation in large

and challenging environments, rather than high fidelity recreations

of observed biological phenomena – is significant. However, it is

still informative to compare and contrast RatSLAM with the

other, primarily unembodied computational models of grid and

other spatially-responsive cells.

The RatSLAM model falls under the continuous-attractor

network class of grid cell computational models [2,11,25,29,30],

as opposed to oscillatory interference models [26,31]. The cells

implemented in the RatSLAM model are rate-coded as opposed

to spiking cells such as used in [32]. The number of neurons in

the continuous attractor model (10368 in the corridor arena

experiments, 2304 in the circular arena experiments) is

comparable with other continuous attractor models such as

[11] (16384 cells), but far greater than in independent neuron

models such as [26]. While the core excitatory and inhibitory

network dynamics are pre-wired rather than learned, associations

between visual cues and internal spatial states are learned in an

online manner.

In the model by [2], a default configuration of a square cell

plane produces a rectangular grid of firing fields, rather than the

triangular (hexagonal) grid found in rodents. To generate a

triangular lattice grid firing field, a rectangular rather than square

arrangement of cells can be used. In contrast, the RatSLAM

model implements a hexagonal arrangement of cells with a cell

count (288 in one plane) that enables symmetrical weight

structures even with wrapping connectivity. To achieve irregular

patterns like those possible in the Fuhs [25] model, the network

connectivity would need to be structured differently. The cells in

the RatSLAM model are also entirely conjunctive grid cells, rather

than the place-only grid cells common in most other computa-

tional models. Consequently, relatively long training and testing

times (4 hour segments in the circular arena experiment) can be

needed in order to generate ‘‘complete’’ place field plots, as a cell

will only fire if the robot is both located and orientated at the cell’s

preferred location and orientation.

The grid firing fields in RatSLAM rotate in response to cue

rotation, like the model by [25] and unlike the model of [2]. The

RatSLAM implementation described in this paper also only

simultaneously implements one scale of grid. Where other theories

postulate the combination of multiple grids with different periods

to uniquely represent position, in our robot navigation experi-

ments an additional episodic spatial representation is used to

perform advanced navigation tasks [33]. In this paper we were

able to simplify the task of navigation in the behavioral task by

constructing from the ensemble cell firing an estimate of the most

likely corridor the robot was located in, avoiding the need to

combine multiple grids to construct a unique position estimate.

Unlike the conjunctive nature of the cells and their reuse

through wrapping connectivity, without which the model cannot

function successfully in large environments (both in these

experiments and also robot navigation experiments [21,22]), the

network structure shape and hence geometry of the cell firing fields

is not critical to the robot’s navigation performance. This would

suggest that the conjunctive and grid-like properties of the grid

cells are functionally critical, while the hexagonal shape of the grid

may be a computational optimality.

Figure 10. The actual robot pose and corresponding location estimates encoded by the ensemble cell firing. Each firing plot
corresponds to various times after the robot was replaced at corner C facing D. (a) Schematic of the robot’s pose corresponding to each of the four
ensemble firing plots. (b) Location estimates as encoded by the weighted sum of the firing fields of all active cells at various times. The circle shows
the robot’s actual location. Cell firing initially (t = 2.5, 7.2 s) supported and maintained two approximately equal location estimates (1 and 2) – sighting
the first black cue did not provide sufficient information to disambiguate the robot’s location. After sighting of the second black cue (t = 12.4 s), cell
firing resolved to code primarily for the correct location 1 – location estimate 2 disappeared (t = 15.9 s) and there was limited firing for a new location
estimate 3. Figure 12 provides a schematic explanation of the ensemble cell firing.
doi:10.1371/journal.pcbi.1000995.g010
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Comparison to Place and Head-Direction Cells
Until the recent discovery of grid cells, the prime candidates for

spatial representation in the rodent brain were place cells and

head-direction cells. The techniques used for analyzing spatially

responsive neurons – averaging cell firing over an entire

experiment and recording from only a very small percentage of

the cells – are not conducive to discovering whether place and

head-direction cells temporarily fire to encode multiple locations

and orientations. Using the arena, we can analyze whether it is

even possible in principle given the neurophysiological separation

of the two cell types.

Consider first the cell firing profiles required to represent the

rat’s estimate of location after being replaced in the environment

at corner C facing corner D (but not knowing this) and having seen

the black cue, so that P(C)~P(D)~0:5 (Figure 3a). Two groups

of place cells would need to fire, one group coding for location C

and one group for location D. Two sets of head-direction cells

would also need to fire to represent the two possible rat

orientations separated by 90 degrees (Figure 11a). As the rat

moved one corner clockwise, place cell firing would need to update

to represent the movement of the two location estimates, one from

C to D, and one from D to A. The update would require that the

firing rates of place cells encoding location C gradually shift to cells

encoding locations west of C (and hence closer to D). At the same

time, the firing rates of cells encoding location D would need to

gradually shift to cells encoding locations north of D (and hence

closer to A). Mature place cells, however, generally have no

directional attributes (with exceptions such as on linear tracks

[34]), so the orientation information that dictates the direction that

place cell firing should shift would need to come from elsewhere,

such as the head-direction cells. Most importantly, the association

would need to be specific so that the firing of cells encoding

location C shifted west towards D rather than north towards B, and

the firing of cells encoding location D shifted north towards A

rather than west out of the arena (Figure 11b).

The neurophysiological separation of the place and head-

direction cells [5,7] renders this requirement a spatial memory

form of the binding problem [35]. While mechanisms such as

synchronization have been proposed as a way of binding the

information of different neurons in other domains [36], the

conjunctive properties of the recently discovered grid cells offer an

elegant solution to the spatial binding problem, as demonstrated in

Figure 11. Hypothetical propagation of firing profiles of head-direction and place cells in the corridor arena. (a) The head-direction
and place cell firing profiles that would be required to represent the multiple pose hypotheses for a rat placed at corner C facing towards corner D.
The mesh of place cells is arranged to cover the entire experimental arena, with each place cell positioned in the location it encodes. The (N)orth and
(W)est arrows show the two orientation estimates encoded by the head-direction cells, superimposed on the place cells. Without a conjunctive
representation, there is no way to encode which orientation estimate is associated with each location estimate. (b) One possible propagation of place
cell firing during movement from C to D without spatial memory binding between head-direction and place cells.
doi:10.1371/journal.pcbi.1000995.g011
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this work. Figure 12 shows a schematic mirroring the movement of

the location estimates encoded by the ensemble cell firing during

the actual experiment. The bound place and orientation

information stored in conjunctive grid cells enables independent

and correct propagation of the location estimates encoded by the

ensemble cell firing (Figure 12a–b). When the robot turns corner

D (Figure 12c), it sees a second black cue. Seeing a black cue is

consistent with only one of the two current location estimates

(labeled ‘1’), and the firing of cells encoding the unsupported

estimate (labeled ‘2’) reduces. Cell firing also supports a new

location estimate at C (labeled ‘3’). The existing location estimate

2, which has been further supported by sighting of the second

black cue, is more strongly supported by cell firing than the newly

formed location estimate 3. After further robot movement

(Figure 12d), the firing of cells encoding the unsupported location

estimate 2 ceases, leaving the dominant correct location estimate 1

and a secondary location estimate 3.

Role of Non-Conjunctive Cells
If conjunctive grid cells perform filtering of perceptual

ambiguity, which is the role suggested in this paper, why then

are only some grid cells in the rodent directionally tuned? In the

ambiguous corridor arena experiments described in this paper,

only some cells encoded locations in multiple corridors and

multiple distinct robot orientations, while others encoded only a

single orientation and place. Many navigational situations do not

require a rat to maintain and update multiple estimates of its pose

– often there are unique visual, tactile, olfactory, or auditory cues

which immediately disambiguate the rat’s location. Some

environments are small enough that the rat’s vestibular system

provides sufficiently accurate path integration information over

the short-term to navigate ambiguous sections successfully.

Furthermore, while a location may be adequately represented

with only a few non-directional grid cells and a few head-direction

cells, many more directional grid cells are required to represent

every possible orientation of the rat at that location. Conjunctive

cells may uniquely provide the rat with the computational

mechanism required to navigate in ambiguous environments,

but perform a more integrated role in simpler environments with

many distinct cues. The axonal projections from layers III and V

in EC, where the majority of conjunctive cells are located, to the

non-directional grid cells in layer II, may provide a location-only

read out of the multiple pose estimates stored in the conjunctive

cells [10].

Based on our experience in creating robot navigation systems,

and the current state of recording technology, we envisage future

research on perceptual ambiguity in navigation to combine

robotics and neuroscience. Firstly, experience from robot exper-

iments in real world environments can be used to guide the design

of new experimental paradigms for animals. In this paper, we have

presented a new paradigm inspired by robot experiments that can

only be solved if a robot (or rat) can at least temporarily maintain

Figure 12. Schematic of the firing profiles of grid cells in the semi-ambiguous corridor arena experiment. The schematic mirrors the
actual ensemble cell firing during the robot experiment (Figure 10). The robot’s actual location is shown by a large circle. Because both orientation
and location information is stored conjunctively with each grid cell, each cluster of active grid cells is associated with only one orientation estimate.
(a–b) As the robot moves west, grid cell firing propagates to represent the movement of the two robot location estimates in two independent
directions – one estimate moves west (1), the other moves north (2). (c) When the robot turns at corner D, only one existing location estimate (1) is
supported by the sighting of a black cue, and a new location hypothesis (3) is created at C. Because the existing location hypothesis (1) has been
further supported by sensory evidence, it is stronger than the newly formed location hypothesis (3). (d) The firing of cells encoding the unsupported
location estimate (2) reduces and eventually ceases, leaving the dominant correct location estimate (1) and a secondary location estimate (3).
doi:10.1371/journal.pcbi.1000995.g012
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and correctly update multiple estimates of their location. Secondly,

if rodents do indeed encode multiple coherent location and

orientation estimates for short periods of time, current place field

(and head direction cell preference) reconstruction techniques

would not show them due to the averaging of firing rates over

many minutes. One key advantage of a computational neural

model is the ability to reconstruct neural population codes at any

time during an experiment, using every neural unit, rather than a

small selection. Embodied robot models such as RatSLAM

provide a means by which to explore the functional implications

of neural firing, such as navigation performance, that cannot be

provided by recording techniques alone.

Conclusion
Extensive robot navigation experimentation in real world

environments has shown that being able to represent uncertainty

is a necessity for effective navigation. In the robotics domain this

ability is provided by probabilistic algorithms that facilitate the

maintenance of multiple estimates of robot pose. We have shown

that a model of conjunctive grid cells in an autonomous robot

performs an analogous role, allowing it to navigate in a

perceptually ambiguous environment. Conjunctive grid cells may

similarly provide rats with a solution to the fundamental

navigation problem of dealing with uncertainty, allowing them

to navigate effectively in the real world environments they

encounter every day.

Supporting Information

Figure S1 Schematic of the place field binning and corridor

zones used in the occupancy likelihood equation. The lightly

shaded rectangles show the areas used to calculate the corridor

occupancy likelihood, and the dashed grid shows the place field

bins, each 0.25 meters square.

Found at: doi:10.1371/journal.pcbi.1000995.s001 (0.69 MB TIF)

Figure S2 The sensitivity of a cell network’s path integration

process to motion cues affects field size and spacing. (a) Movement

trajectories. (b) Firing fields. (c) Average field sizes (d) Field

spacing. The lower the sensitivity to ideothetic sensory informa-

tion, the larger the resultant field sizes and spacing (all data, means

6 s.e.m.).

Found at: doi:10.1371/journal.pcbi.1000995.s002 (2.91 MB TIF)

Table S1 RatSLAM parameter values. The RatSLAM contin-

uous attractor network and visual learning system use a number of

parameters that ensure stable network dynamics.

Found at: doi:10.1371/journal.pcbi.1000995.s003 (0.03 MB

DOC)

Text S1 Cell recording and processing. This text describes the

techniques used for cell field formation, the field size and spacing

calculations, the error bar calculations, the spatial autocorrelation

and crosscorrelation calculations, and the directional tuning

analysis.

Found at: doi:10.1371/journal.pcbi.1000995.s004 (0.08 MB

DOC)

Video S1 Video of the multiple pose estimates encoded by the

ensemble cell firing (see Figure 10). After initial placement at

corner C (bottom right) facing corner D (bottom left), the robot

sees a black cue and cell firing encodes two equally likely location

estimates. These location estimates are updated as the robot moves

towards corner D. After turning corner D and seeing a second

black cue, the cell firing supporting the correct location estimate

strengthens, while the cell firing supporting the incorrect estimate

weakens and then ceases.

Found at: doi:10.1371/journal.pcbi.1000995.s005 (3.64 MB AVI)
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