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In Brief

Reliable inference of gene-gene

correlation from single-cell RNA-

sequencing data can be valuable in

reconstructing global gene networks and

further uncovering biological insights. In

our benchmarking study, we observed

that a considerable amount of correlation

artifacts was introduced during the data-

preprocessing steps from various

methods. We proposed amodel-agnostic

noise-regularization approach in the

correlation calculation procedure that

can effectively remove the spurious

correlations and empower studies

looking to dissect gene-gene association

in scRNA-sequencing data.
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THE BIGGER PICTURE In this study, we benchmarked five representative single-cell RNA-sequencing
data-preprocessing methods with a focus on their influence in inferring gene-gene expression correlations.
We found that substantial correlation artifacts have been introduced during the preprocessing steps due to
data oversmoothing, raising the issue that correlation computed from these preprocessed data may not be
reliable and should be treatedwith caution.We then proposed a noise-regularizationmethod to penalize the
oversmoothed data, which can effectively eliminate the artifacts while retaining the majority of the true cor-
relations. The regularized correlations can be further applied to construct gene-gene correlation networks,
which is helpful for obtaining mechanistic insights into the complex biological systems.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
With the rapid advancement of single-cell RNA-sequencing (scRNA-seq) technology, many data-prepro-
cessing methods have been proposed to address numerous systematic errors and technical variabilities
inherent in this technology. While these methods have been demonstrated to be effective in recovering indi-
vidual gene expression, the suitability to the inference of gene-gene associations and subsequent gene
network reconstruction have not been systemically investigated. In this study, we benchmarked five repre-
sentative scRNA-seq normalization/imputationmethods on HumanCell Atlas bonemarrow data with respect
to their impacts on inferred gene-gene associations. Our results suggested that a considerable amount of
spurious correlations was introduced during the data-preprocessing steps due to oversmoothing of the
raw data. We proposed a model-agnostic noise-regularization method that can effectively eliminate the cor-
relation artifacts. The noise-regularized gene-gene correlations were further used to reconstruct a gene co-
expression network and successfully revealed several known immune cell modules.
INTRODUCTION

Gene co-expression network analysis is a common approach to

gather biological information and uncover molecular mecha-

nisms of biological processes. Microarray and RNA-sequencing

(RNA-seq) data of bulk cells have been successfully used to infer

gene-gene correlations and further reconstruct gene co-expres-

sion networks.1,2 However, these approaches are limited to

measuring average gene expression across a pool of mixed

cell types. Single-cell RNA-seq (scRNA-seq) technology makes

it possible to profile gene expression at single-cell resolution,
This is an open access article under the CC BY-N
which allows for dissection of the heterogeneity within the super-

ficially homogeneous cell populations and identification of hid-

den gene-gene correlations masked by bulk expression

profiles.3,4

The rapid development of scRNA-seq technology provides the

opportunity to gain new insights into complex biological sys-

tems. However, due to various factors in single-cell experiments,

such as differences in cell lysis, reverse transcription efficiency,

and molecular sampling during sequencing,5 scRNA-seq data

are generally highly variable and noisy. To address these issues,

numerous data-preprocessing methods have been proposed for
Patterns 2, 100211, March 12, 2021 ª 2021 The Author(s). 1
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scRNA-seq data analysis, which generally fall into twomajor cat-

egories: (1) transcript abundance normalization and (2) dropout

imputation. The observed sequencing depth can vary dramati-

cally from cell to cell. Data normalization is hence required to re-

move the technical noise while preserving true biological signals.

scRNA-seq data are further complicated by high dropout rate,6,7

which refers to the phenomenon by which a large proportion of

genes have a measured read count of zero due to the technical

limitation in detecting the transcripts rather than true absence of

the gene. Data imputation has been proposed to handle the

dropouts and recover the undetected gene expressions.

scRNA-seq data-preprocessing methods have been bench-

marked for various tasks, such as cell clustering, detection of

differentially expressed genes, and trajectory analysis.8 The suit-

ability of these methods for reverse engineering gene networks

and, in general, for measuring gene-gene association, has not

been systemically evaluated. Andrews and Hemberg tested

several imputation methods on a small simulation dataset and

found that dropout imputation would generate false-positive

gene-gene correlations.9 However, the simulation dataset in

that study represented the simplest case without technical con-

founders; thus, the effect of data preprocessing on real data re-

mains unknown.

In this study, we benchmarked five normalization/imputation

methods, which are representatives of their own methodology

groups, in respect of their influence on gene-gene correlation in-

ferences. The first method, global scaling normalization, normal-

izes a cell’s gene expression levels (usually measured by the

unique molecule index [UMI]) by its summed expression over

all genes, e.g., total UMI. This method is usually followed by

log transformation and Z-score scaling in the downstream ana-

lyses. Since the log transformation and Z-score scaling are

monotonic (rank-preserved) functions, we only included total

UMI normalization in our benchmarking (referred as NormUMI).

The second normalization framework utilizes ‘‘Regularized

Negative Binomial Regression’’ to normalize and stabilize vari-

ance of scRNA-seq data (referred as NBR). This method showed

remarkable performance in removing the influence of technical

noise while preserving biological heterogeneity.10 Three imputa-

tion methods were also included: (1) MAGIC, a data-smoothing

approach that leverages the shared information across similar

cells to denoise and fill in dropout values;11 (2) SAVER, a

model-based approach that models the expression of each

gene under a negative binomial distribution assumption and out-

puts the posterior distribution of the true expression;12 and (3)

DCA, an adapted autoencoder framework that is able to capture

the complexity and non-linearity in scRNA-seq data and infer

gene expressions.13

To evaluate the influence of these preprocessing methods on

gene-gene correlation inference, we applied them to bone

marrow scRNA-seq data from the Human Cell Atlas (HCA) Proj-

ect.14 We computed gene-gene correlation after the data pre-

processing and compared results among the methods. With

the exception of NormUMI, the normalization method with the

least data manipulation, all other normalization/imputation

methods presented a noticeable inflation of gene-gene correla-

tion coefficients and introduced correlation artifacts for gene

pairs that are not expected to be co-expressed. In addition,

gene pairs with the highest correlations inferred from these
2 Patterns 2, 100211, March 12, 2021
methods had weak enrichments in protein-protein interactions

from the STRING database,15 suggesting that many of these

correlations may be the false signals introduced during the

data preprocessing. Further data inspection using random and

non-associated gene pairs as negative control indicated that

the artifacts could be generated from data oversmoothing. In

machine learning, adding noise under certain conditions has

been previously shown to increase robustness of the results

and reduce overfitting.16–18 To this end, we implemented a

noise-regularization step to the preprocessed scRNA-seq data

by adding noise drawing from uniform distribution that is scaled

to the dynamic expression range of each individual gene. We

found that this additional step efficiently reduced gene-gene cor-

relation artifacts and improved overall evaluation metrics. We

used the regularized expression data to reconstruct gene co-

expression network and successfully revealed several known

immune cell modules. The canonical cell-type marker genes

were also rated higher in network topological properties, e.g.,

degree and PageRank, pinpointing their key roles in their respec-

tive cell clusters.

RESULTS

Computing gene-gene correlation using scRNA-
seq data
Previous benchmarking studies on scRNA-seq data-prepro-

cessing methods were mostly based on simulated datasets

with certain assumptions in the simulation process that might

not be representative of real-world data. Depending on the simu-

lation algorithm used, results might be biased toward certain

methods. For instance, the method SAVER, which uses negative

binomial distribution to model and impute the data, will stand out

if the simulated dataset is also generated based on a negative

binomial model. To avoid such biases, we employed real-world

bone marrow scRNA-seq data from the HCA Preview Datasets

as our benchmarking dataset14 for various data-preprocessing

methods. The full dataset contains 378,000 bone marrow cells,

which can be grouped into 21 cell clusters (Figure S1) covering

all major immune cell types. We randomly sampled 50,000 cells

from the original dataset and excluded genes expressing in

fewer than 100 cells (0.2%) in this subset. The final bench-

marking dataset contains 12,600 genes that could form over

79 million possible gene pairs.

Five representative data-preprocessing methods were

applied to the single-cell expression data matrix, including two

normalization methods (NormUMI and NBR) and three imputa-

tionmethods (DCA,MAGIC, and SAVER) (Figure 1). An important

merit of scRNA-seq is its ability to unbiasedly capture the whole

transcriptome of different cell types in a heterogeneous cell pop-

ulation. Expression of two genes could be highly correlated only

in one specific cell type and therefore revealed cell-type-specific

gene-gene associations. To capture the correlations across

different cell types, we computed Spearman correlation of

gene pairs within the ten largest clusters (>500 cells per cluster)

in our benchmarking dataset, which included CD4 T cell, CD8

T cell, natural killer cell, B cell, Pre-B cell, CD14+ monocytes,

FCGR3A+ monocytes, erythrocytes, granulocyte-macrophage

progenitors, and hematopoietic stem cells (Figures 1 and S1).

The highest correlation among these ten clusters was recorded



Figure 1. Overview of the benchmarking

framework

Five scRNA-seq data-preprocessingmethodswere

applied to bone marrow single-cell expression data

matrices. The gene-gene correlations were first

calculated directly from the matrices after data

preprocessing (denoted as route 1). We evaluated

the methods by their derived gene-gene correlation

enrichments in the STRING PPI database as well as

the consistency between methods. The evaluation

results indicated that the data-preprocessing pro-

cedure introduced artificial correlations. We then

introduced a noise-regularization step (denoted as

route 2): random noise generated based on gene

expression level (regions in red) was applied to the

expression matrices before proceeding to correla-

tion calculation. This noise-regularization step

effectively reduced the spurious correlations, and

the refined gene-gene correlations could be used to

construct gene co-expression networks.
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as the final correlation for each gene pair (see Experimental

procedures).

Data preprocessing introduced spurious correlations
We first compared the distribution of the overall gene-gene cor-

relations calculated from data matrices processed by the five

methods. Since most of the gene pairs are not expected to

have any association, we anticipated that the correlation distri-

butions should peak around zero. However, with the exception

of NormUMI, all other methods produced much higher median

correlation values (NormUMI r = 0.023, NBR r = 0.839, MAGIC

r = 0.789, DCA r = 0.770, SAVER r = 0.166) (Figure 2A). We pro-

ceeded to assess whether a higher correlation, after a specific

data-preprocessing method, would reflect a higher chance of

either functional or physical interaction between the two genes.

Proteins encoded by a co-expressed gene pair are more

frequently interacting with each other than a random pair. There-

fore, if the resulting higher correlations are true positives, they

should have relatively higher enrichment in the protein-protein

interaction (PPI) database, while the spurious correlations would
dilute the enrichment. We used the

STRING database,15 which contains

5,772,157 interacting gene pairs, to eval-

uate the PPI enrichment of the top corre-

lated gene pairs derived from each

method. We selected top gene pairs

(ranked by correlation coefficients) from

each method and calculated the overlap-

ping fraction of these pairs with the

STRING database (Figure 2B). Our results

showed that NormUMI had the highest PPI

enrichments: 80% and 47% overlapped

with STRING in the top 100 and 10,000

gene pairs, respectively. On the contrary,

the top gene pairs from NBR had very

low overlap with STRING (<2%), while

MAGIC and DCA had similar PPI enrich-

ments, ranging from 11% to 22%. SAVER
yielded relatively better results, but the enrichments were merely

half of those acquired by NormUMI. We also randomly sampled

gene pairs and overlapped the random pairs with PPI to estimate

the background enrichment level (Figure S2). The estimated

background enrichment level was �3.6%, indicating that PPI

enrichment of NBR was even lower than the background.

Although this is a rather naive method that directly relates phys-

ical interactions with gene co-expression, the results here should

still provide a fair comparison among the data-preprocessing

methods given that the same assumption is made for all of them.

Bona fide gene-gene co-expression should be identified

regardless of the data-preprocessing methods. To test this, we

compared the consistency of highly correlated gene pairs

derived from the five data-preprocessing procedures. We did a

pairwise comparison of the top 5,000 gene pairs selected from

each method and found that the overlapping gene pairs among

methods were minimal. Only one gene pair was shared between

NormUMI and NBR out of the top 5,000 pairs. The highest over-

lap was between NormUMI and SAVER, with only 351 pairs

(�7%) shared by the two methods (lower triangle in Figure 2C).
Patterns 2, 100211, March 12, 2021 3



Figure 2. Spurious gene-gene correlations

are introduced during data preprocessing

(A) The distributions of the calculated correlations

varied by preprocessing methods. NormUMI had a

distribution centered close to zero, while NBR, DCA,

and MAGIC all had apparently inflated correlation

distributions. Vertical dotted lines indicate correla-

tion medians.

(B) Enrichment curves of the top correlated gene

pairs in PPI for eachmethod. x axis indicates the top

n gene pairs ranked by Spearman correlation co-

efficients; y axis indicates the fraction of the n gene

pairs appearing in the STRING PPI database. Nor-

mUMI had the highest enrichment, followed by

SAVER, MAGIC, DCA, and NBR.

(C) There was low consistency between the

methods in inferring highly correlated gene pairs.

Lower triangle indicates the overlapping of the top

5,000 gene pairs between the two denoted

methods. The largest overlap was between Nor-

mUMI and SAVER, which has only 351 (�7%) gene

pairs ranked in the top 5,000 in both methods. Up-

per triangle compares the exact rank of the shared

gene pairs betweenmethods, which also shows low

levels of agreement.
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We further compared the ranks of the shared pairs between the

methods and found that there was also no clear trend in their top

inference (upper triangle in Figure 2C). While this is not a fully

quantitative assessment, it is clear that the high correlations

derived from these data-preprocessing methods are likely to

be artifacts.

Negative control
We next inspected several ‘‘negative control gene pairs’’ to

obtain some insights into the potential cause of the spurious cor-

relations. We defined a negative control pair using the following

criteria: the two genes should not (1) appear as an interacting pair

in the STRING database, (2) share any gene ontology term,19,20

and (3) be on the same chromosome. As an example, one of

the negative control gene pairs, MB21D1 and OGT, had high

correlation after data processing by NBR (r = 0.843), DCA (r =

0.828), and MAGIC (r = 0.739) in cell cluster #2. We also calcu-

lated the mutual information (MI) of the negative gene pairs,

which can assess the strength of the association between two

variables even when the relationship is highly non-linear.21 In
4 Patterns 2, 100211, March 12, 2021
this negative pair example, NBR (MI =

2.10 nat), DCA (MI = 0.72 nat), and MAGIC

(MI = 0.663 nat) also showed much higher

mutual information than the other two

methods, NormUMI (MI = 5 3 10�5 nat)

and SAVER (MI = 0.053 nat). Scatterplots

of the gene pair expression values after

data preprocessing are shown in Figure 3.

Of the five methods, NormUMI was the

only method that retained the zero counts

from the raw data. From NormUMI, 6,110

cells out of 6,534 cells (93.5%) had zero

values in both genes, 3 (0.04%) cells had

non-zero values in both genes, while
1.3% and 5.2% cells had non-zero for MB21D1 and OGT,

respectively. The other imputation methods intensely altered

the zeros from the original expression matrix. We observed

that after these procedures, the processed data all presented

some degree of oversmoothing, especially in the double-zero re-

gions in the original data, which created the correlation artifacts

(Figure 3). Although NBRwas not an imputation method and only

shifted the zero values minimally, artificial rank correlations were

introduced due to the difference in the adjusted magnitude

per cell.

Noise regularization reduced spurious correlations
Regularization is a commonly used approach to prevent overfit-

ting/oversmoothing in machine learning, and a previous work

has demonstrated an equivalent form of regularization by intro-

ducing noise.16 Here, we proposed a method utilizing noise to

penalize oversmoothed expression data and further reduce

spurious correlations. To implement the method, we added

random noise to every single feature in the expression matrix

processed by the above preprocessing methods. Taking the



Figure 3. Spurious gene-gene correlation caused by data oversmoothing
Scatterplot of expression values of non-associated gene pair, OGT and MB21D1, preprocessed by different methods. There is no existing evidence to indicate

that these two genes are correlated, and only 3 out of 6,534 cells in cluster #2 had non-zero expression value in both genes in the original expression matrix.

However, after preprocessing, NBR, DCA, and MAGIC all produced high correlations (0.843, 0.828, and 0.739) and high mutual information (2.1, 0.72, and 0.663

nat) between these two genes. The visualization suggested that this correlation artifact may be caused by data oversmoothing.
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expression value of gene i in cell j, denoted as V, as an example,

we generated the noise by the following steps: (1) calculate the

expression distribution of gene i after data-preprocessing pro-

cedure; (2) determine the 1 percentile of expression value of

gene i, termed as M, to be used as the maximum of noise level

(Figure 1); (3) generate a random value from a uniform distribu-

tion, ranging from 0 to M, and add this random value to V.

After applying noise regularization to the data matrices pro-

duced by each preprocessing method, we recomputed the

gene-gene correlations. The correlation medians shifted toward

zero for all five methods (Figure 4A), indicating a reduction in the

correlation inflation. There were also substantial improvements

in the PPI enrichment for all methods (Figure 4B). NBR, which

previously had the lowest enrichment, yielded the highest PPI

enrichment after noise regularization. In the top 100, 1,000,
and 10,000 gene pairs in NBR, 99.0%, 96.8%, and 67.7% could

be found in the PPI database, corresponding to 99.0-, 50.9-, and

31.6-fold improvement, respectively. DCA on average had

�12% PPI enrichment in previous results. After noise regulariza-

tion, it produced 97.6% enrichment in the top 100 pairs and

55.8% in the top 10,000 pairs, corresponding to a �5-fold

improvement. NormUMI, which had the highest enrichment

before noise regularization, also benefited from a �1.1- to 1.3-

fold improvement. To test the robustness and reproducibility of

the noise-regularization results, we repeated the procedure ten

times with different random seeds to generate random noise

and observed that the PPI enrichment performances were stable

between repeats. The standard deviation of NBR in most points

was less than 0.1% (error bar represents 99% confidence inter-

val in Figure 4B).
Patterns 2, 100211, March 12, 2021 5



Figure 4. Noise regularization reduces

spurious correlations

(A) After applying noise regularization, previously

inflated correlation distributions from each method

shifted toward zero. Vertical solid lines indicate

correlation medians.

(B) There were substantial improvements of the PPI

enrichment in the top correlated genes. Error bars

indicate 99% confidence interval based on ten

replicates, assuming error follows a Gaussian dis-

tribution.

(C) Compared with previous unregularized data

(Figure 2C), there are higher levels of agreement

among different methods. For example, more than

50% gene pairs were shared between NormUMI

and NBR.
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Different methods also showed higher agreements after

applying noise regularization. Among the top 5,000 gene pairs,

2.851 (57%) overlapped between NormUMI andNBR (Figure 4C,

lower triangle), and there was a significant correlation between

the overlapped gene pairs (Spearman correlation, r = 0.50; Fish-

er’s exact test, p = 1.773 10�181, Figure 4C, upper triangle). We

also observed a higher degree of commonly identified gene-

gene correlations between the other preprocessing methods,

particularly between the top gene pairs.

Next, we compared the correlation coefficients of the top

5,000 gene pairs selected before and after noise regularization

in eachmethod (Figures S3 and S4). The most noticeable impact

of the regularization was observed in NBR, where correlations of

all the top gene pairs dropped dramatically after regularization. In

DCA/MAGIC/SAVER, a wide range of correlations was observed

after regularization, suggesting that not all gene pairs were

equally affected. On the contrary, the top 5,000 gene pairs

selected after regularization were also highly correlated before

the regularization.We further selected several positive and nega-

tive control gene pairs to examine the effect of regularization on

their gene expression and correlation (Figures S5–S7). In the
6 Patterns 2, 100211, March 12, 2021
negative control, the oversmoothed data

points were randomized and the correla-

tions were effectively diluted. In the posi-

tive controls (experimentally validated in-

teractions), expressions of the gene pairs

were not significantly changed, and the

correlations remained relatively high after

regularization. These results demonstrate

that noise-regularization steps do not un-

varyingly reduce correlation of all gene

pairs, and the real signals are robust

enough to tolerate the added noise.

Gene-gene correlation network
inferred from scRNA-seq data
Co-expression networks can be used to

identify gene modules with common bio-

logical functions, upstream regulators,

and physically interacting proteins.22 With

the gene expression measurement at sin-

gle-cell resolution, scRNA-seq has fostered
discoveries by improving our understanding of biological pro-

cesses under different cell contexts. Therefore, gene-gene

correlations revealed from single cells also have the potential to

reconstruct more comprehensive networks uncovering cell-

type-specific modules. Here, we used gene-gene correlations

derived from NBR with noise regularization, since it yields the

highest PPI enrichment among all the methods. To focus more

on cell-type-specific interactions, we removed housekeeping

genes that typically reflect the general cellular functions and are

expected to express in all cells regardless of the cell types. There

were 3,984 housekeeping genes removed from the original

12,600 genes. The 1,000 gene pairs with the highest correlations

were then taken from each cluster (cluster #0 to cluster #9) to

reconstruct the network. Degree and PageRank, two algorithms

from graph theory, were used to measure the importance of

each gene in the network. The degree of a gene in a network is

simply the number of links (interactions) the gene has.23 Important

genes tend to connect with many other genes and therefore

should have relatively high degrees. In addition to the quantity

of links, PageRank also takes into consideration quality of links

to a gene and measures the overall ‘‘popularity’’ of a gene.24



A

C

B Figure 5. Gene-gene correlation network in-

ferred from scRNA-seq data

(A and B) Comparison of degree (A) and PageRank

(B) of each gene in the correlation networks con-

structed before and after noise regularization.

Genes present in one network but not in the other

were assigned a zero value in the non-presenting

one. Selected genes with high degree/PageRank

before or after noise regularization were labeled.

Cell-type marker genes such as NKG7, CD79B, and

HBB had relatively higher degree and PageRank

after noise regularization.

(C) Network construction with refined gene-gene

correlations (NBR + noise regularization + removing

links not in PPI), where the node size is proportional

to its PageRank and the edge width is proportional

to Spearman correlation between the two genes

(nodes). Cell-type marker genes (colored nodes)

such as CD79A, CD79B, NKG7, GNLY, LYZ, and

STMN1 have high PageRank, indicating their

importance in different cell types. Cell-type-related

genes also formed cell-type-specific modules.
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We compared the gene co-expression networks recon-

structed from pre- and postregularized data. Results showed

that the latter network better represented the biological functions

in the topological structure and had a higher degree or PageRank

genes with more important functions in the immune system. For

instance, LYZ, CD79B, and NKG7, the canonical marker genes

for monocytes, B cells and natural killer cells, respectively,

yielded higher PageRank and degree in the network with noise

regularization. On the contrary, CD79B and NKG7 did not exist

at all in the network without noise regularization (Figures 5A

and 5B). We next overlaid existing PPI evidence to further refine

the network by retaining only gene pairs from the STRING data-

base.25,26 An algorithm providing efficient visualization of

different network modules, EntOptLayout,27 was applied, and

the network revealed several cell-type-related modules that

can be associated with the known biology in our benchmarking

dataset (Figure 5C). For instance, the upper right corner repre-

sents the B cell and pre-B cell module, with CD79A and

CD79B having higher PageRank values that are proportional to

the node size. Similarly, the natural killer cell module is repre-

sented in the lower right corner, and the middle right section

represents T cell as well as a transit from cytotoxic CD8 T cell

to natural killer cell (Figure 5C). These results demonstrate that,

after implementing noise regularization, scRNA-seq data can
be used to reconstruct gene co-expres-

sion networks that better reflect the under-

lying biology.

DISCUSSION

scRNA-seq technology has been gaining

increasingly more popularity over the past

decade. Proper and efficient data prepro-

cessing are crucial for downstream ana-

lyses such as cell clustering, differential

gene expression detection, and novel

cell-type discoveries.3,4 Here, we bench-
marked five data-preprocessing methods for scRNA-seq with

a focus on their influence in gene-gene correlation inference.

Our results demonstrated that in a human bone marrow single-

cell dataset, all the methods except NormUMI generated inflated

gene-gene correlations. Furthermore, the highly correlated gene

pairs had low enrichment in PPI, indicating that they were more

likely to be artifacts introduced during the data-preprocessing

procedure. Among these methods, NBR produced the lowest

PPI enrichment, while NormUMI, the method with the least

data manipulation, yielded much higher enrichment as

compared with the other four sophisticated methods. Thus,

our benchmarking results raise the issue that correlation

computed directly from these preprocessed data may not be

reliable and should be treated with caution.

Manual inspection of the negative control results suggested

that major causes of the spurious correlations may come from

overfitting or oversmoothing during data preprocessing. The

preprocessing methods, especially those imputing dropout

events, rely heavily on internal similarity information (either

gene-gene similarity or cell-cell similarity) within the original da-

taset. For instance, MAGIC uses the data-diffusion algorithm to

construct a more faithful neighborhood of cells and further im-

putes the missing values in one cell base on the expression

pattern of the neighborhood. Indeed, this could be circular to
Patterns 2, 100211, March 12, 2021 7
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measure the gene-gene correlation after applying these steps.

Given that these methods rely on the similarity of gene expres-

sion to amend gene expression, it is not surprising that they pro-

duce augmented gene-gene correlations.

To resolve the correlation artifact issues, we proposed a

model-agnostic noise-regularization method. False correlations

from the overly smoothed data can be eliminated by the added

noise while the true correlations should be robust enough to

tolerate the noise. Since the dynamic range of expression varies

gene by gene, magnitude of the added noise should also be set

relative to an individual gene’s expression level such that the true

signal of genes with a lower expression range can be preserved.

Thus, the level of random noise is determined as a percentile of a

gene’s dynamic range rather than a fixed value to be used for all

genes. We further investigated the effect of different noise

strengths (1, 5, 10, 20 percentile of the expression level), and

found that use of the 1 percentile produced the optimal PPI

enrichment (Figure S8). Finally, we generated random noise

that ranged from 0 to 1 percentile of the gene expression level

and applied them to the expression matrix. The noise-regulariza-

tion step remarkably reduced the correlation artifacts and gener-

ated more reliable gene-gene association. However, it should be

noted that the magnitude of the noise applied here was opti-

mized to maximize the PPI enrichment, which may result in a

higher true-positive rate. Since there is always a trade-off be-

tween sensitivity and specificity, whether this noise strength is

optimal for revealing novel correlations likely requires further

investigation.

Gene-gene correlations at the whole-transcriptome level for

bulk cells have been established to reconstruct gene-gene inter-

action networks and further uncover gene functions and genetic

modules.22,28,29 With the growing adoption of single-cell tech-

nology, the use of scRNA-seq to infer gene-gene correlations

and reconstruct global gene network is also burgeoning. Pio-

neering work by Iacono et al. used single-cell data-derived cor-

relation metrics to generate gene regulatory networks and found

that the networks could detect latent regulatory changes.30 A

deep-learning approach has also been developed to predict

transcription factor targets from single-cell expression data.31

In this study, we used single-cell gene-gene correlations derived

after noise regularization to reconstruct a gene network that pro-

duced clear immune cell-type-related modules. We also evalu-

ated the importance of each gene in the network by applying

well-established graph theory methods. We demonstrated that

the canonical cell-type markers yield higher degree and Pag-

eRank, in general, indicating their critical roles in different

cell types.

A limitation of this study is that thesemethods weremostly im-

plemented using their default parameters, which may not be

optimal for this dataset. Changing the parameters and hyper-

parameters could have noticeable impact on the results. An-

drews and Hemberg tested different imputation methods on a

simulation dataset and found that different parameters produced

different degrees of false correlation.9 Unfortunately, the choice

of parameters is often arbitrary and lacks clear guidelines. For

instance, MAGIC applies data smoothing based on data diffu-

sion between similar cells. Increasing the number of neighbors

will lead to smoother data, in most cases resulting in inflated

gene-gene correlations and more false positives in correlation-
8 Patterns 2, 100211, March 12, 2021
based analyses. In addition, the diffusion time (t) in the algorithm

also strongly affects the data smoothness. By default, this

parameter is determined according to the Procrustes disparity

of the diffused data. However, default setting apparently gener-

ated oversmoothed data in our study. Using a different param-

eter value (e.g., decreased to a fixed number, 6), we found that

the output can be visually improved, although a high amount of

spurious correlations still exists. This challenge is further compli-

cated when users need to consider combinations of several pa-

rameters. A similar issue is also noticed in the implementation of

DCA that requires a series of parameters, including many routine

deep-learning framework training parameters, such as learning

rate and strength of L1/L2 regularization. The default architec-

ture of DCA (three hidden layers with 64, 32, and 64 neurons)

was originally optimized on a simulation dataset with only 200

genes. When it is applied to real datasets that contain over

10,000 genes, whether the default number of neurons can still

capture the full picture and reconstruct reliable gene-gene net-

works becomes unclear. Furthermore, tuning the parameters

could potentially help to reduce the correlation artifacts, but

the tuned parameters may then be suboptimal for its original

tasks such as cell clustering and differential gene expression

analysis. In our framework, the noise regularization can serve

as an additional step to infer reliable gene-gene correlations,

and all other analyses can be performed directly on the data pre-

processed using their optimized parameters and without noise

regularization.

In summary, we compared five scRNA-seq data-preprocess-

ing methods on a real single-cell dataset and found that several

preprocessing procedures may have introduced a considerable

amount of spurious gene-gene correlations. Therefore, single-

cell analysis involving gene-gene correlations should be per-

formed with caution. To address the issues, we proposed a

model-agnostic method to regularize the preprocessed data,

which can effectively remove the spurious correlations and

empower studies looking to reconstruct co-expression networks

from scRNA-seq data.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Wei Keat Lim: weikeat.lim@regeneron.com.

Materials availability

This study did not generate new single-cell RNA-seq data.

Data and code availability

The R code for analyses in this study is available at Github: https://github.com/

RuoyuZhang/NoiseRegularization.

HCA scRNA-seq dataset

Bone marrow single-cell sequencing data were downloaded from the HCA

Data Portal (https://data.humancellatlas.org). The dataset contains profiling

of 378,000 immunocytes by the 10X Genomics chromium platform. Single-

cell analysis was performed using the Seurat R package (Version 3.0).32 In

the quality control step, low-quality cells were removed if they met one of

the following criteria: (1) expressed less than 100 genes; (2) expressed more

than 3,500 genes; (3) total UMI counts >10,000; (4) mitochondrial RNA per-

centage >10%. Remaining cells were clustered using k-nearest neighbor

(KNN) graph-based clustering approach, with the first 30 principal compo-

nents (PC) being used to construct the KNN graph. Clustering results were

visualized with UMAP (Uniform Manifold Approximation and Projection), also

using the first 30 PCs as inputs. In the subsequent correlation analysis, to

mailto:weikeat.lim@regeneron.com
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reduce the computational burden we randomly sampled 50,000 cells from the

original dataset. We further filtered out genes expressed in fewer than 100 cells

(0.2%), which left 12,600 genes remaining in the final benchmarking dataset.

Normalization or imputation methods

NormUMI was performed using the Seurat R package (version 3.0) without log

transformation.32 NBR, SAVER, and DCAwere run with default parameters ac-

cording to the software tutorials. Specifically, NBR was performed using

sctransform R package (version 0.2.0).10 Poisson regression was performed

for each gene under the negative binomial model. Regularized model param-

eters were used to transform observed UMI counts into Pearson residuals.

DCA was performed with the dca python package:13 the deep-learning frame-

work had three hidden layers with 64, 32, and 64 neurons. The learning rate

used was 0.001 and batch size was set to 32. SAVER was run with the SAVER

R package (version 1.1.1) without requiring additional parameters.12 MAGIC

was run with MAGIC R implementation (version 1.5-9)11 with the following pa-

rameters: number of principal component npca = 30, power of the Markov af-

finity matrix t = 6, and number of nearest-neighbor k = 30.

Gene-gene correlation and mutual information calculation

Spearman correlation of each gene pair was calculated from cells in cluster

0 to cluster 9 (top ten clusters with the largest cell number, which range

from 583 to 16,936 cells, Figure S1), respectively. A gene was considered pre-

sent in a cluster if its expression was detected in more than 1% of the cells or

50 cells in that cluster, whichever is greater. The correlation of a gene pair in

one cluster was considered an effective correlation if the two genes were

both considered as expressed in that cluster. The highest effective correlation

across the ten clusters was recorded as the final correlation for a given gene

pair. MI of the selected gene pairs wasmeasured using the infotheo R package

(version 1.2.0), data were discretized using the equal frequencies binning algo-

rithm, and the entropy was estimated with an empirical probability distribution.

Protein-protein interaction enrichment

Human protein-protein interaction data were retrieved from the STRING data-

base (version 11) (http://string-db.org).15 The STRING database consists of

comprehensively collected publicly available sources of protein-protein inter-

action information and is complemented with computational predictions. The

final database includes both direct (physical) and indirect (functional) interac-

tions. In this study, we used the Homo Sapiens version 11 (database9606.pro-

tein.links.full.v11.0) database, 5,772,157 PPIs involving both experimentally

verified and computationally inferred pairs. After applying different data-pre-

processing methods, gene pairs were ranked by their Spearman correlation

coefficients. The top n gene pairs were then taken and overlapped with the

STRING database. The fraction of the top n pairs appearing in the database

was recorded as the PPI enrichment.

Noise regularization

Assuming that V is the expression value of gene i in cell j in the expression ma-

trix processed by a specific method, a random noise value was generated and

added to V by the following procedures. (1) Determine the expression distribu-

tion of gene i across all the cells. (2) Take 1 percentile of the gene i expression

as the maximal noise level, denoted asM. IfM equals zero, 0.1 will be used as

the maximal noise level. (3) Generate a random number ranging from 0 to M

under uniform distribution and add this random number to V to get the

noise-regularized expression matrix. The noise regularization was applied to

the expression data preprocessed by NormUMI/NBR/MAGIC/SAVER/DCA.

Network reconstruction

Within each cluster, we ranked the gene pairs by their Spearman correlation

coefficients. In this study, since we were more interested in cell-type-specific

gene interaction modules, we removed housekeeping genes from the network

reconstruction. In general, housekeeping genes are required for basic cellular

functions and are thus expected to express regardless of cell types. The

housekeeping gene list used here was obtained from a previous publication,33

plus (1) typical housekeeping genes such as ACTB and B2M, (2) ribosomal, cit-

rate cycle, and cytoskeleton genes from Reactome,34 and (3) mitochondrial

DNA encoded genes. In total, 3,984 housekeeping genes were considered. Af-

ter removing housekeeping genes, the top 1,000 gene pairs from each cluster
were taken and put together to construct the draft network. The importance of

each node in the network was measured by degree and PageRank using the

igraph R package.35 We next refined the network by removing links that do

not overlap with PPI in the STRING database. The final network was visualized

using Cytoscape36 together with R package RCy3.37 The network layout was

generated using the EntOptLayout Cytoscape plug-in.27
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