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The recent discovery of protein modification by SAMPs, ubiquitin-like (Ubl) proteins from the archaeon Haloferax volcanii,
prompted a comprehensive comparative-genomic analysis of archaeal Ubl protein genes and the genes for enzymes thought to
be functionally associated with Ubl proteins. This analysis showed that most archaea encode members of two major groups
of Ubl proteins with the β-grasp fold, the ThiS and MoaD families, and indicated that the ThiS family genes are rarely linked
to genes for thiamine or Mo/W cofactor metabolism enzymes but instead are most often associated with genes for enzymes
of tRNA modification. Therefore it is hypothesized that the ancestral function of the archaeal Ubl proteins is sulfur insertion
into modified nucleotides in tRNAs, an activity analogous to that of the URM1 protein in eukaryotes. Together with additional,
previously described genomic associations, these findings indicate that systems for protein quality control operating at different
levels, including tRNA modification that controls translation fidelity, protein ubiquitination that regulates protein degradation,
and, possibly, mRNA degradation by the exosome, are functionally and evolutionarily linked.

1. Introduction

Ubiquitination (ubiquitylation) of proteins is an ancestral,
pivotal process in eukaryotes that governs protein trafficking
and turnover, signaling, heterochromatin remodeling, and
other processes [1–3]. All eukaryotes possess an elaborate
system that includes a variety of small proteins of the
ubiquitin (Ub) family, E1 Ub-activating, E2 Ub-conjugating,
and E3 Ub-ligase enzymes, as well as a broad diversity
of deubiquitinating enzymes (DUBs) [1, 2, 4]. Ubiquitin
conjugation through the formation of isopeptide bonds
by the e-amino groups of two conserved lysines of the
Ub molecule (K48 and K63) determines the fate of most
proteins in eukaryotic cells, in terms of both topogenesis
and degradation. The functioning of Ub-centered signaling
systems is regulated through the activities of numerous,
specific Ub-binding domains and proteins.

Ubiquitin is one of the most highly conserved eukaryotic
proteins, and the evolution of the Ub system is fairly well
studied [1, 5–8]. In particular, it has been shown that Ub

homologs in bacteria and most likely in archaea are involved
in thiamine and molybdenum (Mo)/tungsten (W) cofactor
biosynthesis along with functionally linked homologs of E1
enzymes; in addition, E2 family proteins and homologs of
metal-dependent DUBs of the Jab1/MPN family have been
detected in several bacteria in association with Ub-like (Ubl)
and E1-like proteins, leading to the hypothesis that these
proteins could give rise to the Ub-system of eukaryotes; in
contrast, E3 enzymes appear to be specific to eukaryotes
[1, 7]. Indeed, there are some steps of thiamine and Mo/W
cofactor biosynthesis that are biochemically equivalent to Ub
conjugation. These steps include incorporation of sulfur into
the respective molecules mediated by the Ubl sulfur-carrier
proteins of the ThiS or MoaD family. These Ubl proteins are
activated by adenylating E1-like enzymes of the ThiF and
MoeB families, and in the next step, sulfur is incorporated
by sulfur transferases of the IscS or rhodanese family, that
transfer sulfur to its target via an intermediate persulfide (-S-
S-H) formed by the active site cysteine [1, 7, 9–13].
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The eukaryote Ub proteins and the prokaryote ThiS/
MoaD family proteins possess the same β-grasp fold [14, 15]
and a conserved carboxyl-terminal glycine which is crucial
for the activation by E1-like enzymes [9, 10, 12, 13]. Recently,
a protein modification system, known as pupylation, that
is functionally equivalent but not homologous to the Ub
system has been discovered in Mycobacterium tuberculosis
[16, 17]. The two key components of this system are the
small protein Pup and the enzyme PafA that is essential for
Pup conjugation to the ε-NH2 groups of lysines on several
target proteins [16, 17]. The pupylated proteins are targeted
for degradation by the mycobacterial proteasome [18]. Until
recently, there were no indications that in archaea Ubl
proteins perform functions other than cofactor biosynthesis,
especially given that no archaeal E2-like proteins have
been detected [7, 8]. Furthermore, there were some doubts
that ThiS-like proteins in archaea are actually involved in
thiamine biosynthesis because, unlike the bacterial case,
the respective genes do not belong in the same gene
neighborhoods with other thiamine biosynthesis genes, and
an alternative pathway for thiamine biosynthesis has been
proposed to function in archaea and eukaryotes [7, 19, 20].

In a striking recent development, the involvement of
two Ubl proteins called SAMPs (small archaeal modifier
proteins) in protein conjugation has been demonstrated in
the halobacterium Haloferax volcanii [21]. Because SAMPy-
lated proteins seem to accumulate in proteasome-deficient
mutants and the targets of SAMPylation include ubiquitous
metabolic and house-keeping systems of archaea, Humbard
et al. hypothesized that the eukaryotic Ub system evolved
from the SAMPylation machinery or a related archaeal
system [21]. These groundbreaking results prompted us to
perform an in-depth comparative genomic and sequence
analysis of archaeal Ubl proteins and associated gene prod-
ucts; this analysis led to a number of functional predictions
and a shift of the perspective on the likely ancestral functions
of Ub-like proteins.

2. Materials and Methods

The recent update of the arCOG database [22] that includes
70 complete archaeal genomes (ftp://ftp.ncbi.nih.gov/pub/
wolf/COGs/arCOG/) was used for the analysis of phyletic
patterns of the relevant genes. The same database was also
used for sequence retrieval. The NCBI Refseq database
[23] was used for retrieval of information on genomic
context. Protein sequence database searches were performed
using PSI-BLAST [24] with an inclusion threshold E-value
of 0.01 and no composition-based statistical correction.
Additional sequence database searches were performed using
the HHPred program which includes secondary structure
prediction as part of the search [25]. The PSI-BLAST and
HHPred searches allow prediction of protein fold through
similarity to proteins of known structure.

Multiple alignments of protein sequences were con-
structed using the Promals3D program [26], followed by
a minimal manual correction on the basis of local align-
ments obtained using PSI-BLAST [24]. Protein secondary
structure was predicted using the PSIPRED program that

constructs multiple alignments of the query proteins with
their homologs (whenever available) and employs these
alignments for prediction [27]. Maximum likelihood (ML)
phylogenetic trees were constructed by using MOLPHY pro-
gram [28] with the JTT substitution matrix to perform local
rearrangement of an original Fitch tree [29]. The MOLPHY
program was also used to compute RELL bootstrap values
from 10,000 replicates.

3. Results and Discussion

3.1. Ubl Proteins in Archaea and Their Classification. For the
purpose of this paper, we define Ubl proteins broadly and in
functional terms, rather than in terms of homology, that is,
as small proteins that function as sulfur carriers in coenzyme
biosynthesis and other metabolic reactions or that modify
other proteins through conjugation that includes isopeptide
bond formation. So defined, the Ubl proteins include the Ub
homologs that adopt the β-grasp fold, the Pup-like proteins,
and the additional proteins that are inferred to function via
a similar mechanism on the basis of gene fusions, genomic
neighborhoods and distinct sequence motifs (see below).

In order to identify potential Ubl proteins in archaea
as completely as possible, we employed two approaches.
First, we performed PSI-BLAST searches against the archaeal
subset of the NR database using as queries representatives of
all previously identified Ubl protein families [1, 7, 8]. All pro-
teins identified by these searches were linked to the updated
arCOG database (see [22] and Section 2). The list of arCOGs
that encompass potential Ubl proteins is given in Supple-
mentary Table S1 available at doi:10.1155/2010/710303. This
search allowed us to detect a few missing members of Ubl
protein families, including a ThiS-like protein (NEQ520) in
Nanoarchaeum equitans, an organism that was not previously
noticed to encode Ubl proteins. The second approach was
based on the identification of C-terminal motifs in multiple
alignments of arCOGs. It has been shown that Ubl proteins
(both β-grasp proteins and Pup-related proteins) possess a
functionally essential double glycine (GG) motif at the C-
terminus [1, 7, 8, 21]. Additionally, we noticed that one of the
β-grasp related arCOGs from Halobacteria (arCOG00539)
contains a double cysteine (CC) C-terminal motif. So we
reconstructed consensus sequences for multiple alignments
of all arCOGs and searched families that consisted of
small proteins (<200 aa) with a conserved GG or CC C-
terminal motif. Altogether we identified 8 arCOGs that met
these criteria: 6 of which belong to the β-grasp fold, the
7th one (arCOG06308) possesses a TATA-binding protein-
(TBP-) like fold (these proteins contain a C-terminal GG
motif and are unique to Halobacteria), and the 8th one
is an uncharacterized family (arCOG08988) with a “CC”
C-terminal motif that is also specific to Halobacteria. The
proteins in the latter family are predicted to possess a pattern
of secondary structure elements (helix-helix-β-strand) that
is clearly distinct from the β-grasp fold or the TBP-like
fold but resembles the Pup domain [7, 8]. The phyletic
patterns of all these arCOGs show that, among Archaea,
Ubl proteins (primarily, the β-grasp domain proteins) are
missing only from the genomes of several methanogens,
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namely, Methanococcus jannaschii, Methanopyrus kandleri
and Methanococcus aeolicus.

We analyzed all arCOGs that include β-grasp fold Ubl
proteins by constructing a multiple alignment (Supple-
mentary Figure S1) and a phylogenetic tree (Figure 1: The
maximum likelihood tree was reconstructed using MOLPHY
program [28] from 76 informative positions in the multiple
alignment. The RELL bootstrap values are indicated for
selected major branches: the branches supported at ≥50%
are marked by black circles. The sequences are denoted by
their GI numbers, abbreviated species name, and arCOG
number to which this sequence has been assigned in
arCOG database. Color codes for sequences are given as
follows: blue—euryarchaea; orange—crenarchaea; brown—
thaumarchaea; pink—korarchaea; black—Nanoarchaeum
equitans. Major haloarchaeal branches are shaded. Proteins
analyzed in the recent study of SAMPylation [21] are denoted
by Haloferax volcanii protein identifiers and colored red. For
the MoaD subtree, the expected associations with one or
more MoCo biosynthesis genes are shown by green circles.
Other gene neighbors are indicated on the right side of the
tree (red) by indication of gene name, by full protein name,
or by arCOG. Genes associated with Ubl are the following:
E1-Ubl activating enzyme, ThiF/HesA family; AOR, tungsten
cofactor containing enzyme aldehyde ferredoxin oxidore-
ductase; SseA, Rhodanese-related sulfurtransferase; GloB,
glyoxalase; SfsA, sugar fermentation stimulation protein;
OcmC, peroxiredoxin.). In this case, a highly reliable tree
topology could not be obtained owing to the small size of
the Ubl proteins resulting in a small number of informative
positions. This caveat notwithstanding, the tree consisted
of the two major previously established branches that
correspond, respectively, to the ThiS and MoaD families
[7]; moreover, the topology is reasonably compatible with
the archaeal taxonomy and with the classification of the
Ubl protein derived from the arCOGs (Figure 1). Therefore,
this tree provides a useful framework for classification
and potential functional inferences. The MoaD branch
includes almost twice as many proteins as the ThiS branch.
Several lineage-specific duplications are traceable in the
MoaD branch including Crenarchaea- and Halobacteria-
specific duplications. Several cases of likely horizontal gene
transfer are also noticeable, for example, several euryarchaeal
branches within the crenarchaeal part of the MoaD branch
and, conversely, some crenarchaea embedded within the
euryarchaeal part of the ThiS branch. The proteins in
arCOG00540 that is specific to Sulfolobales, which so far
have not been annotated as Ubl proteins, and those in
arCOG00537 that is specific to Thermoproteales appear
to cluster within the ThiS branch, pointing to additional
duplications in crenarchaea. The tree also reveals a probable
error in arCOG assignments for Thaumarchaea because two
Thaumarchaeal proteins (GI: 161528937 and GI: 118195088)
belong to arCOG00535 rather than arCOG00536. Given
the diversity within both branches in the Ubl protein
tree, it seems most likely that the last archaeal common
ancestor (LACA) encoded at least two Ubl proteins with
the β-grasp fold that represented the ThiS and MoaD
families.

3.2. Gene Context and Domain Fusion Analysis for Ubl Pro-
teins. Gene context and domain fusion analysis are central
tools of inference under the “guilt by association” approach
that is broadly used for prediction of functional connections
for uncharacterized genes [30–33]. Most domain fusions
can be automatically retrieved from arCOGs because the
algorithm of arCOG construction includes splitting proteins
into domains unless a fusion is conserved to the extent
that it dominates the corresponding arCOG [22]. To analyze
neighborhoods we retrieved three upstream and three down-
stream genes for each Ubl gene from a representative set of
archaeal genomes (Supplementary Table S2) and identified
the most common gene associations (Figure 1, Table 1, and
Supplementary Table S3). Generally, we observed the same
trends that have been pointed out previously [7, 20]. Most of
the genes from the MoaD subfamily in archaea are associated
with MoCo biosynthesis enzymes and the gene for aldehyde
ferredoxin oxidoreductase (AOR) which utilizes the tungsten
cofactor (a derivative of the molybdopterin cofactor). Like
in bacteria, many MoaD-family domains are fused to the
MoaE enzyme which is responsible for sulfur transfer to
activated MoaD-like protein. We also confirmed the absence
of contextual association of ThiS genes with any of the genes
for thiamine cofactor biosynthesis.

In addition, we identified several strong connections that
have not been noticed previously, partly, because recently
sequenced genomes help us to ascertain the evolutionary
conservation of these associations. Mostly, these new asso-
ciations are links between ThiS family genes and genes for
proteins involved in translation. The most notable case is the
association with PP-loop family ATPases that catalyze various
tRNA modifications. In particular, the connection with
the MesJ protein (arCOG0042) recurs in several archaeal
lineages (Figure 1). The MesJ protein is nearly ubiquitous
in prokaryotes and, in bacteria, is responsible for lysidine
formation [35].

Recently, a tRNA modification pathway in yeast and in
the nematode Caenorhabditis elegans that includes the Ubl
protein URM1, two PP-loop ATPases (Nsc6p and Ncs2p),
and two additional enzymes whose orthologs in bacteria
are involved in thiamine biosynthesis (E1-like protein and
rhodanese) has been characterized [36–38]. It has been
shown that URM1 acts as a sulfur carrier protein for
thiolation of uridine in the wobble position of some
tRNAs; this modification results in an increased transla-
tional fidelity, in particular, preventing frame shift errors
[37, 39]. Strikingly, three proteins that are homologous
to URM1 pathway components (HVO 0558, arCOG01676;
HVO 0025, arCOG02019; HVO 0580, arCOG00042) are
SAMPylated with both SAMP1 and SAMP2 in H. volcanii
[21]. The HVO 0580 protein, which is the ortholog of
Nsc6p and a member of arCOG00042, is SAMPylated only
with SAMP2 (HVO 0202), a ThiS family protein. Our
observations complement these results and suggest that, even
in those archaea where there is no genomic association
between Ubl and PP-loop ATPases of arCOG00042 genes
(which is the case in Halobacteria), these proteins function
in concert.
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 70606476   Sulac  arCOG00540
 15897228   Sulso  arCOG00540

 146305007  Metse  arCOG00540
 126353936  Calma  arCOG00537

 99900649   Thete  arCOG00537
 18313032   Pyrae  arCOG00537
 126459632  Pyrca  arCOG00537

 171185745  Thene  arCOG00537
 41615302   Naneq  arCOG00535

 18977854   Pyrfu  arCOG00535
 242399115  Thesi  arCOG00535

 212224959  Theon  arCOG00535
 170290827  Korcr  arCOG00535

 148642612  Metsm  arCOG00535
 15679735   Metth  arCOG00535
 84489151   Metst  arCOG00535

 150400275  Metva  arCOG00535
 134045956  MetmC  arCOG00535
 45358218   Metmp  arCOG00535

 73670982   Metba  arCOG00535
 21226239   Metma  arCOG00535
 20092115   Metac  arCOG00535
 20091769   Metac  arCOG00535
 20091575   Metac  arCOG00535

 91772430   Metbu  arCOG00535
 118431725  Aerpe  arCOG00535

 110622000  Uncme  arCOG00535
 116754290  Metsa  arCOG00535

 11498344   Arcfu  arCOG00535
 55379215   Halma  arCOG00535

 257387202  Halmu  arCOG00535
 169236841  Halsa  arCOG00535
 15791089   Halsp  arCOG00535
 76801103   Natph  arCOG00535

 222478868  Halla  arCOG00535
 257052995  Halut  arCOG00535

 219851847  Matpa  arCOG00535
 124485790  Metla  arCOG00535

 154151659  Metbo  arCOG00535
 124027477  Hypbu  arCOG00535

 16082411   Theac  arCOG00535
 13540947   Thevo  arCOG00535

 48477609   Picto  arCOG00535
 15921923   Sulto  arCOG00535
 70607385   Sulac  arCOG00535
 146304182  Metse  arCOG00535

 124026993  Hypbu  arCOG00535

 218884697  Deska  arCOG00535
 126466483  Stama  arCOG00535

 118195088  Censy  arCOG00536
 161528937  Nitma  arCOG00536

 33356745   Pyrab  arCOG00535
 212223374  Theon  arCOG00535
 240102862  Thega  arCOG00535
 242399406  Thesi  arCOG00535

 33359535   Pyrfu  arCOG00535

 18313447   Pyrae  arCOG00536

 212223899  Theon  arCOG00538

 18977977   Pyrfu  arCOG00538
 33356700   Pyrab  arCOG00538

 242398470  Thesi  arCOG00538

 222479689  Halla  arCOG00536
 16081733   Theac  arCOG00536

 257051106  Halut  arCOG00536

 15790749   Halsp  arCOG00536
 169236492  Halsa  arCOG00536
 257387698  Halmu  arCOG00536
 76803138   Natph  arCOG00536
 55379974   Halma  arCOG00536

 222480407  Halla  arCOG00536
 110669083  Halwa  arCOG00536

 76801893   Natph  arCOG00536

 222479963  Halla  arCOG00536
 55378769   Halma  arCOG00536

 73668043   Metba  arCOG00536
 20092879   Metac  arCOG00536
 21226933   Metma  arCOG00536
 91773385   Metbu  arCOG00536

 110667803  Halwa  arCOG00536
 110621538  Uncme  arCOG00536

 76802608   Natph  arCOG00536
 55378770   Halma  arCOG00539

 76801420   Natph  arCOG00539
 222480314  Halla  arCOG00539

 11499216   Arcfu  arCOG00536
 116753334  Metsa  arCOG00536

 154151667  Metbo  arCOG00536
 219851939  Matpa  arCOG00536

 88601825   Methu  arCOG00536
 126179282  Metcu  arCOG00536
 124485303  Metla  arCOG00536

 134045266  MetmC  arCOG00536
 45358920   Metmp  arCOG00536

 150399418  Metva  arCOG00536
 170289930  Korcr  arCOG00536

 88603453   Methu  arCOG00536
 219852168  Matpa  arCOG00536

 124485016  Metla  arCOG00536
 126178288  Metcu  arCOG00536
 18976915   Pyrfu  arCOG00536

 33356787   Pyrab  arCOG00536
 242399827  Thesi  arCOG00536

 212224774  Theon  arCOG00536
 240102133  Thega  arCOG00536
 126459675  Pyrca  arCOG00536
 18313123   Pyrae  arCOG00536

 119872459  Pyris  arCOG00536
 171185791  Thene  arCOG00536

 99901685   Thete  arCOG00536
 126458782  Pyrca  arCOG00536
 18314025   Pyrae  arCOG00536
 171185694  Thene  arCOG00536

 99901683   Thete  arCOG00536
 126354836  Calma  arCOG00536

 124027886  Hypbu  arCOG00536
 21228746   Metma  arCOG00536
 20090565   Metac  arCOG00536

 124027033  Hypbu  arCOG00536
 218883903  Deska  arCOG00536
 119719092  Thepe  arCOG00536

 11499688   Arcfu  arCOG00536
 240103969  Thega  arCOG00536

 18976717   Pyrfu  arCOG00536
 14521166   Pyrab  arCOG00536

 242398989  Thesi  arCOG00536
 13541625   Thevo  arCOG00536

 16081944   Theac  arCOG00536
 212223928  Theon  arCOG00536
 126465571  Stama  arCOG00536

 170290391  Korcr  arCOG00536
 15920744   Sulto  arCOG00536

 70606737   Sulac  arCOG00536
 238618682  Sul04  arCOG00536
 15899146   Sulso  arCOG00536

 146303428  Metse  arCOG00536
 156937613  Ignho  arCOG00536

 126465328  Stama  arCOG00536
 218884204  Deska  arCOG00536

 218884045  Deska  arCOG00536
 119719232  Thepe  arCOG00536

 242399599  Thesi  arCOG00536
 124027961  Hypbu  arCOG00536

 119872163  Pyris  arCOG00536
 18312133   Pyrae  arCOG00536

 145592561  Pyrar  arCOG00536
 99900700   Thete  arCOG00536

 48478128   Picto  arCOG00536
 13541400   Thevo  arCOG00536
 16082053   Theac  arCOG00536
 11497643   Arcfu  arCOG00536

 156937055  Ignho  arCOG00536
 14600831   Aerpe  arCOG00536

 218883523  Deska  arCOG00536
 242399593  Thesi  arCOG00536

 110621949  Uncme  arCOG00536
 11498162   Arcfu  arCOG00536
 161529056  Nitma  arCOG00536

 118195731  Censy  arCOG00536
 170289639  Korcr  arCOG00536

 218884699  Deska  arCOG00536
 126465688  Stama  arCOG00536

 HVO_0202 SAMP2  Halvo  arCOG00535
55379215 Halma arCOG00535

257387202 Halmu arCOG00535
169236841 Halsa arCOG00535
15791089 Halsp arCOG00535
76801103 Natph arCOG00535

222478868 Halla arCOG00535
257052995 Halut arCOG00535

HVO_0202 SAMP2 Halvo arCOG00535

ThiSMoaD

Fusion with KEOPS subunit Cgi121

 arCOG05553, membrane protein 

ribosomal protein S17e

AOR and OsmC family

arCOG01641, TRAM protein 

arCOG03852, uncharacterized

E1 and arCOG00535, Ubl of MoeD family

arCOG00042, MesJ-like tRNA modifying enzyme

arCOG00042, MesJ-like tRNA modifying enzyme

arCOG00042, MesJ-like tRNA modifying enzyme

arCOG00042, MesJ-like tRNA modifying enzyme

arCOG00042, MesJ-like tRNA modifying enzyme

arCOG04721, GNAT acetyltransferase

ATP-grasp enzyme PAC2

 HVO_0623  Halvo  arCOG00539

 HVO_2177  Halvo  arCOG00536

 HVO_2619 SAMP1  Halvo  arCOG00536
257051106 Halut arCOG00536

15790749 Halsp arCOG00536
169236492 Halsa arCOG00536
257387698 Halmu arCOG00536
76803138 Natph arCOG00536
55379974 Halma arCOG00536

222480407 Halla arCOG00536
110669083 Halwaww arCOG00536

HVO_2619 SAMP1 Halvo arCOG00536

p
55378770 Halma arCOG00539

76801420 Natph arCOG00539
222480314 Halla arCOG00539

HVO_0623 Halvo arCOG00539

76801893 Natph arCOG00536

222479963 Halla arCOG00536
55378769 Halma arCOG00536

HVO_2177 Halvo arCOG00536

AOR

AOR

AOR

AOR

AOR

AOR

E1

E1

arCOG00498 and 4115,
GloB- and SfsA-like proteins

arCOG02172, 6-pyruvoyl-tetrahydropterin synthase 

arCOG02172,
6-pyruvoyl-tetrahydropterin synthase 

AOR

arCOG00042,
MesJ-like tRNA modifying enzyme

E1

E1

E1

E1

E1

arCOG06307, 8, 9,
all uncharacterized

AOR

SseA

Figure 1: The phylogenetic tree and gene associations for the archaeal Ubl proteins of the β-grasp fold.
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Table 1: Components of Ubl-related pathways in archaea predicted in this papera.

Reference arCOG Representative of the
reference arCOG

arCOGs identified by
genomic context analysis

Lineage Comment

Genomic associations of genes for UBL (β-grasp) proteins

arCOG00540 70606476
arCOG01885
arCOG07188
arCOG00286

Sulfolobales

Predicted operon contains genes for
30 S ribosomal protein S17e, small
uncharacterized protein, and a distinct
membrane-associated HerA-like
ATPase of the SSO0283 family.
Thermosome beta subunit is a
divergently encoded gene located
within a conserved region which
includes a variety of informational
genes.

arCOG00537 18313032 arCOG05553 Thermoproteales Membrane protein

arCOG00535 15791089 arCOG04721 Halobacteria GNAT N-acetyltransferase

arCOG00535 15679735 arCOG00042 Many diverse archaea tRNA(Ile)-lysidine synthase MesJ

arCOG00535 70607385 arCOG03852 Sulfolobales Uncharacterized protein

Genomic associations of arCOG06308 (TBP-like fold protein with [GG] C-terminal motif)

arCOG06308 76801892
arCOG06307

Halobacteria Two small uncharacterized proteins
and MoaD-like Ubl proteinarCOG06309

arCOG00536

Genomic associations of arCOG08988 (uncharacterized protein with [CC] C-terminal motif)

arCOG08988 257373014 arCOG04404 Halobacteria
ComK-like protein, in bacteria, is
involved in regulation of competence;
in archaea, its role is unclear [34].

Genomic associations of genes for E1-like enzymes (ThiF/MoeB)

arCOG01677 15679158

arCOG04863

Methanococcales

First two genes are distant CinA
C-terminal domain homologs; next is
an NAD-binding domain containing
protein and an NIF3 homolog.

arCOG04865

arCOG04864

arCOG04454

Genomic associations of genes for the Jab protease

arCOG01139 257387955 arCOG01222 Many diverse archaea Cytidylyltransferase family protein
aThe table lists genes (arCOGs) that are consistently found within genomic neighborhoods of genes that encode components of Ubl-related pathways. On the
basis of theses associations and, in some cases, their domain content as well, the protein products of these neighboring genes are predicted to be functionally
related to Ubl systems as well.

In Thermococcales, several Ubl genes are associated
with genes encoding peroxiredoxins of the OcmC family
(Figure 1), and indeed, a highly similar homolog of these
proteins accumulates in proteasome mutants and is SAMPy-
lated in H. volcanii [21, 40].

Several representatives of Sulfolobales encode a distinct
family of Ubl proteins (arCOG00540) that are most similar
to the eukaryotic URM1 family (Supplementary Figure S2)
and therefore can be predicted to be involved in a URM1-
like pathway. These Sulfolobus proteins are encoded in a
distinct neighborhood which also includes genes for the
ribosomal protein S17, an uncharacterized small protein
of arCOG07188, a distinct membrane-associated HerA-like
ATPase of the SSO0283 family [41], and a gene for an
HSP60 family chaperonin, a thermosome subunit [42],
which is transcribed in the opposite direction compared
to the rest of the above genes (Table 1). Considering the

data on SAMPylation of proteins encoded by genes adjacent
to Ubl genes, it seems likely that the URM1 homologs
in Sulfolobales regulate translation, proteolysis, and/or cell
division through SAMPylation of, respectively, S17, HSP60,
or HerA proteins, in addition to or instead of functioning in
tRNA modification.

Another notable observation is the fusion of a Ubl
domain with the KEOPS complex subunit Cgi121. This
fusion is conserved in all available genomes of Thaumarchaea
(formerly known as mesophilic Crenarchaea [43]. The
KEOPS (kinase, endopeptidase, and other peptides of small
size) complex consists of 5 subunits (the names are those
of the respective yeast genes that have been studied in most
detail): Mn2+-dependent serine/threonine protein kinase
Bud32p, ATPase of the ASKHA family (Kae1p), and three
additional subunits: Pcc1p, Gon7p, and Cgi121p whose
functions remain unclear. KEOPS complex has been shown
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to be involved in telomere maintenance and transcription
in yeast [44–47]. The orthologs of the Kae1 and Bud32p
subunits are present in all Archaea, the Pcc1p ortholog is
missing only in a few archaeal genomes, and the Cgi121p
ortholog is absent in Sulfolobales/Desulfurococcales and
Nanoarchaeon. Taken together, comparative-genomic find-
ings suggest that the counterpart of the KEOPS complex
performs an essential function in archaea. The structure of
this complex has been solved but the details of its functioning
are still scarce although there are indications that it is
critical for the maintenance of genome integrity in archaea
[45–47]. The gene for the Pcc1 subunit shows a strong
genomic association with genes that encode subunits of the
archaeal exosome, the RNA degradation machine [48, 49].
Furthermore, the exosome genes themselves are associated
with genes for proteasome subunits suggesting that RNA
and protein degradation in archaea are tightly coordinated
[48]. Very recently, it has been shown that in bacteria
homologs of the KEOPS complex subunits are required for
a distinct, widespread tRNA modification, the formation of
N6-threonylcarbamoyladenosine (t6A) [50]. These findings
suggest the possibility of regulation of the KEOPS complex
by SAMPylation or coordinated functioning of the KEOPS
complex, along with the Ubl-based system, proteasome, and
exosome, in RNA and protein turnover control in archaea.
Interestingly, the gene for the Cgi121-Ubl fusion protein
is apparently cotranscribed with a gene for the ribosomal
protein S17 in Nitrosopumilus maritimus and some other
unfinished genomes of marine Thaumarchaeota, resembling
the gene neighborhood in Sulfolobales described above.

The emerging trend of the association of Ubl proteins
with genes involved in key information processing function
in archaea suggests that several less frequent associations seen
in a variety of different genomes also merit attention. For
example, in two Thermoplasma genomes, the genes for ThiS
family proteins are associated with the gene for the pro-
teasome assembly chaperone PAC2 (Figure 1). In Pyrococci,
ThiS family genes are associated with RNA-binding TRAM
domain (Figure 1). Proteins containing TRAM domains are
common in archaea; in particular, it is notable that a TRAM
domain is fused to the essential enzyme 2-methylthioadenine
synthetase that is involved in the thiolation of both tRNA
and ribosomal proteins in bacteria [51–53]. In this case,
again, the Ubl protein might possess a dual function: it
could be involved in thiolation of tRNA (and/or ribosomal
proteins) as a sulfur carrier or could regulate this process
by SAMPylation or both. Finally, the only Ubl protein in
Nanoarchaeon is located in the neighborhood of several
informational genes including the proteasome alpha subunit
and tRNA modification enzymes (Supplementary Table S2).

Surprisingly, it appears that either the functional speci-
ficity of Ubl proteins from different subfamilies can be easily
switched or functional flexibility is an intrinsic feature of
these proteins. For instance, the two functionally charac-
terized SAMP proteins of H. volcanii belong to the two
distinct branches of archaeal Ubl proteins, ThiS and MoaD
(Figure 1). This hypothesis seems to be further supported
by gene context and the dendrogram analysis, in particular,
the association of Ubl proteins of the MoeB family with

tRNA-modifying PP-loop ATPases and association of the
ThiS family genes with the AOR enzyme (Figure 1).

3.3. Gene Context and Domain Fusions of E1-Like Enzymes.
All known pathways involving Ubl proteins require E1
enzymes which activate these proteins via adenylation
of the carboxy-terminal glycine residue of the Ub/Ubl
polypeptide [54]. E1 enzymes possess a core Rossmann-
fold ATP-binding domain [5]. Four distinct families
of E1-like enzymes have been identified in archaea,
namely, MoeB/ThiF/MOSC3 like, MJ0639-like, PaaA-like,
and GodD-like enzymes [5] which in arCOGs are assigned to
arCOG1676, arCOG1677, arCOG4786, and arCOG02882-
2883,5002, respectively. However, PaaA and GodD-like
enzymes are probably not involved in pathways that rely
on Ubl proteins [5] and therefore are not considered here.
Representatives of arCOG1676 are present in most archaea
with the exception of the same methanogens that lack
Ubl proteins (see above). However, all these methanogens
encode a representative of the closely related arCOG1677
(Supplementary Table S1). The reconstructed phylogeny of
arCOG1676 shows that the major euryarchaeal branch is well
separated from the major crenarchaeal branch (Supplemen-
tary Figure S3). Some euryarchaea seem to have acquired
from different bacterial sources additional E1-like enzymes;
in Thermoplasma, these enzymes apparently have replaced
the ancestral form.

Most of the archaeal E1-like enzymes possess the same
domain architecture (E1 core and a TBP-like C-terminal
domain) as most of the bacterial homologs. There are also
several other telling fusions shared with bacteria: Ubl-E1-
TBP in Thaumarchaeota and Jab-E1 in methanogen RC1
(Jab is a predicted protease and/or DUB—see below). In
addition, a unique architecture, with a small C-terminal
small domain containing two conserved cysteines, is seen
in Sulfolobus genomes. Analysis of gene neighborhoods for
arCOG01676 did not reveal any new strong functional links.
We detected many associations with Ubl-like genes and fewer
links with enzymes of MoCo biosynthesis, thiamine biosyn-
thesis enzyme ThiI, and cysteine synthase, all of which have
been described before (see [5] and Supplementary Tables S2
and S3). However, it should be emphasized that the essential
function of ThiI-like enzymes in prokaryotes is 4-thiouridine
(S4U) modification of tRNAs [55], so it seems plausible
that in archaea, which apparently synthesize thiamine via
a distinct pathway [7, 19, 20], tRNA modification is the
only function of ThiI. Furthermore, recently it has been
shown that E1 enzymes and Ubl-proteins are also involved
in thiolation of tRNA in Thermus thermophilus [56]. Thus,
the same function can be proposed for at least some of the
E1-MoaD associations seen in archaea.

Interestingly, several representatives of the second E1-
like family (arCOG01677) in methanogens are located
in a conserved neighborhood which includes a gene
for PP-loop superfamily enzyme, a predicted subunit of
tRNA(5-methylaminomethyl-2-thiouridylate) methyltrans-
ferase (arCOG00037) [57]. However, the strongest potential
functional association of arCOG1677 family genes remains
enigmatic. In most methanogens, these genes are associated
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with genes for arCOG04865, which is homologous to the
C-terminal domain of CinA, and arCOG04454, a NIF3
homolog (Table 1). In bacteria, CinA is a competence-
induced gene often located in the same operon with RecA
[58]. The NIF3 gene encodes a conserved metal-binding
regulatory protein whose exact function remains unknown
[59]. Given that arCOG01677 genes are never associated with
genes for Ubl proteins, it seems unlikely that this group
of E1-like enzymes is functionally linked to Ubl-dependent
pathways.

3.4. Gene Context and Domain Fusions of Jab Proteases
and Rhodanese-Like Enzymes. Metal-dependent proteases of
the Jab family that in eukaryotes function as the primary
proteasome-associated DUBs [4, 60, 61] and rhodanese-
related enzymes that are involved in sulfur transfer reactions
together with Ubl proteins [62] show similar but not
identical distributions in archaea (Supplementary Table
S1). These proteins are missing in many crenarchaea and
methanogens. In archaea, the homologs of Jab proteases are
rarely associated with Ubl genes or other genes involved
in Ubl-related pathways. However, Jab genes are often
associated with a gene for a cytidylyltransferase (Table 1
and Supplementary Tables S2 and S3), an association that
could be of particular interest given that E2 and E3 enzymes
required for Ub conjugation in eukaryotes have not been
detected in archaea [6, 7]. A nucleotidyltransferase poten-
tially could transfer an adenylated (activated) Ubl to a target
protein, that is, perform the function of Ub ligase without
sulfur-containing intermediates. The Jab protease is likely to
function as a DUB similarly to its homologs in eukaryotes.
Thus, it is tempting to propose the cytidylyltransferase-Jab
tandem of enzymes as a candidate for an archaeal Ubl-
conjugation/deubiqiutination system.

Sulfur transferases of the rhodanese family catalyze the
incorporation of sulfur into activated Ubl proteins via an
intermediate persulfide. Rhodanese domains are often fused
to ThiI like enzymes that also contain an N-terminal RNA-
binding THUMP domain (Supplementary Tables S2 and S3).
Many bacteria posses the same domain architecture and,
as pointed out above, these enzymes are probably involved
in tRNA modification. Only a few other associations of
rhodanese-like proteins could be related to Ubl pathways
(with AOR genes, for example), but most of other proteins of
the rhodanese family are involved in either sulfur metabolism
or redox pathways, which are likely Ubl independent.

4. Discussion

Comparative-genomic analysis indicates that most archaea
encode members of two major groups of Ubl proteins
with the β-grasp fold, the ThiS and MoaD families. The
ThiS family genes are rarely found together with genes
for thiamine and Mo/W cofactor metabolism enzymes but
instead are often associated with various highly conserved
and probably essential genes with functions related to
translation, especially, tRNA modification. Thus, most if not
all ThiS family proteins are predicted to function as sulfur

carrier proteins for reactions similar to those recently char-
acterized for the URM1 pathway in yeast [37]. In contrast,
genomic associations suggest that the primary function of
the MoaD family proteins is indeed the Mo/W cofactor
biosynthesis. The absence of Ubl proteins and E1-like Ubl-
activating enzymes of the arCOG1676 in such autotrophic
archaea as M. jannaschii and M. kandleri and the absence
of association of Ubl genes with thiamine biosynthesis genes
(other than ThiI family enzymes which are probably involved
in tRNA modification) is compatible with the existence of an
alternative thiamine biosynthesis pathway in archaea.

Surprisingly, despite their apparent functional prefer-
ences, ThiS and MoaD family members appear to be
interchangeable in pathways that employ Ubl proteins either
as sulfur carriers or for protein modification. This possibility
is born out both through analysis of gene associations for
both subfamilies as described here and by the experimental
data on the two SAMP proteins of Haloferax volcanii one of
which belongs to the ThiS family and the other one to the
MoaD family [21].

The most prominent associations revealed by compara-
tive genomics for the archaeal Ubl proteins are with enzymes
of tRNA modification. This finding leads to the hypothesis
that the majority of the β-grasp Ubl proteins in archaea,
at least those of the ThiS family, are involved in sulfur
insertion steps of the biosynthesis of modified nucleotides.
Given the ubiquity of a variety of tRNA modifications
across cellular life [63], this is likely to be the ancestral
function of the Ubl proteins that subsequently were recruited
for other chemically similar reactions, such as MoCo and
thiamine biosynthesis, as well as protein modification. This
hypothesis is compatible with the role of the eukaryotic
Urm1 protein in specific tRNA modification and with fusion
of the Ubl domain to the KEOPS complex subunit Cgi121,
given the requirement of KEOPS for the t6A modification.
Experimental study of the involvement of Ubl proteins in
tRNA modification appears to be an extremely promising
research direction.

From a more general perspective, tRNA modification
is undoubtedly a major mechanism of the quality control
of translation [64, 65]. Considering also the association
of another KEOPS subunit (Pcc1) with the exosome and
the proteasome, it is tempting to view the Ubl proteins as
general devices for protein quality control, both at the most
fundamental level of translation fidelity and at the secondary
levels of regulated protein and RNA degradation. In eukary-
otes, the latter mechanisms assumed hugely diversified roles
which required the evolution of the enormously complex
Ub-centered signaling systems.

The comparative-genomic analysis of the genes for Ubl
proteins and the enzymes that appear functionally linked
to them suggests that archaea might possess still unchar-
acterized Ubl-related functional systems. In particular, the
association of the Jab protease with a cytidylyltransferase-
like enzyme appears to be a candidate for a Ubl conjuga-
tion/deubiquitination system. In addition, archaea are likely
to possess functional analogs of Ubl proteins that are struc-
turally and hence evolutionarily unrelated to the β-grasp
fold. This group includes small proteins of the TBP-like fold
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that bend at a GG doublet and are often fused to E1 family
enzymes, in a strong indication of their Ubl-type activity,
along with putative homologs of the bacterial Pup protein.

In conclusion, the comparative-genomic analysis trig-
gered by the seminal discovery of the SAMPylation reactions
in H. volcanii reveals unexpected potential complexity of
archaeal Ubl-centered systems and offers several directions
for further experimentation, the most important of which
arguably is the validation of the hypothesis on the involve-
ment of Ubl proteins in tRNA modification. In addition,
this analysis opens up an unexpected and potentially fun-
damental area of inquiry into the evolution of cells, namely,
the ancestral connection between systems of protein quality
control that operate at different levels.

Species Abbreviations

Aerpe: Aeropyrum pernix K1
Arcfu: Archaeoglobus fulgidus
Calma: Caldivirga maquilingensis IC-167
Korar: Candidatus Korarchaeum cryptofilum OPF8
Metbo: Candidatus Methanoregula boonei 6A8
Censy: Cenarchaeum symbiosum
Deska: Desulfurococcus kamchatkensis 1221n
Ferac: Ferroplasma acidarmanus fer1
Halma: Haloarcula marismortui ATCC 43049
Halsa: Halobacterium salinarum R1
Halsp: Halobacterium sp.
Halmu: Halomicrobium mukohataei DSM 12286
Halwa: Haloquadratum walsbyi
Halut: Halorhabdus utahensis DSM 12940
Halla: Halorubrum lacusprofundi ATCC 49239
Haltu: Haloterrigena turkmenica DSM 5511
Hypbu: Hyperthermus butylicus DSM 5456
Ignho: Ignicoccus hospitalis KIN4/I
Metse: Metallosphaera sedula DSM 5348
Metsm: Methanobrevibacter smithii ATCC 35061
Metin: Methanocaldococcus infernus ME
Metvu: Methanocaldococcus vulcanius M7
Metbu: Methanococcoides burtonii DSM 6242
Metmp: Methanococcus maripaludis S2
Metva: Methanococcus vannielii SB
Metla: Methanocorpusculum labreanum Z
Metcu: Methanoculleus marisnigri JR1
Metsa: Methanosaeta thermophila PT
Metac: Methanosarcina acetivorans
Metba: Methanosarcina barkeri str. Fusaro
Metma: Methanosarcina mazei
Metst: Methanosphaera stadtmanae
Matpa: Methanosphaerula palustris E1-9c
Methu: Methanospirillum hungatei JF-1
Metth: Methanothermobacter thermautotrophicus
Naneq: Nanoarchaeum equitans
Natph: Natronomonas pharaonis
Nitma: Nitrosopumilus maritimus SCM1
Picto: Picrophilus torridus DSM 9790
Pyrae: Pyrobaculum aerophilum
Pyrar: Pyrobaculum arsenaticum DSM 13514
Pyrca: Pyrobaculum calidifontis JCM 11548

Pyris: Pyrobaculum islandicum DSM 4184
Pyrab: Pyrococcus abyssi
Pyrfu: Pyrococcus furiosus
Pyrho: Pyrococcus horikoshii
Stama: Staphylothermus marinus F1
Sulac: Sulfolobus acidocaldarius DSM 639
Sulso: Sulfolobus solfataricus P2
Sulto: Sulfolobus tokodaii str. 7
Thega: Thermococcus gammatolerans EJ3
Theko: Thermococcus kodakarensis KOD1
Theon: Thermococcus onnurineus NA1
Thesi: Thermococcus sibiricus MM 739
Thepe: Thermofilum pendens Hrk 5
Theac: Thermoplasma acidophilum
Thevo: Thermoplasma volcanium
Thene: Thermoproteus neutrophilus V24Sta
Thete: Thermoproteus tenax
Uncme: Uncultured methanogenic archaeon.
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BLAST and PSI-BLAST: a new generation of protein database
search programs,” Nucleic Acids Research, vol. 25, no. 17, pp.
3389–3402, 1997.

[25] A. Hildebrand, M. Remmert, A. Biegert, and J. Söding, “Fast
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