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a b s t r a c t 

Purpose: Even with an efficacious vaccine, protective behaviors (social distancing, masking) are essen- 

tial for preventing COVID-19 transmission and could become even more important if current or future 

variants evade immunity from vaccines or prior infection. 

Methods: We created an agent-based model representing the Chicago population and conducted exper- 

iments to determine the effects of varying adult out-of-household activities (OOHA), school reopening, 

and protective behaviors across age groups on COVID-19 transmission and hospitalizations. 

Results: From September-November 2020, decreasing adult protective behaviors and increasing adult 

OOHA both substantially impacted COVID-19 outcomes; school reopening had relatively little impact 

when adult protective behaviors and OOHA were maintained. As of November 1, 2020, a 50% reduc- 

tion in young adult (age 18–40) protective behaviors resulted in increased latent infection prevalence per 

10 0,0 0 0 from 15.93 (IQR 6.18, 36.23) to 40.06 (IQR 14.65, 85.21) and 19.87 (IQR 6.83, 46.83) to 47.74 (IQR 

18.89, 118.77) with 15% and 45% school reopening. Increasing adult (age ≥18) OOHA from 65% to 80% of 

prepandemic levels resulted in increased latent infection prevalence per 10 0,0 0 0 from 35.18 (IQR 13.59, 

75.00) to 69.84 (IQR 33.27, 145.89) and 38.17 (IQR 15.84, 91.16) to 80.02 (IQR 30.91, 186.63) with 15% and 

45% school reopening. Similar patterns were observed for hospitalizations. 

This study was approved by the Institutional Review Board at the University of Chicago (IRB20–1656). 
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Conclusions: In areas without  

protective behaviors, particular  

ority for preventing COVID-19 t
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Despite availability of safe and efficacious vaccines for COVID- 

9, protective behaviors such as social distancing and masking are 

ecessary for preventing transmission until there is widespread 

accine distribution and uptake [1] . Due to widespread vaccine 

esitancy across the United States [2–5] , and more recently, in- 

ectious variants, there is a need for ongoing protective behaviors 

nd appropriately tailored public health messages. The degree and 

ate of resumption of prepandemic activities vary across popu- 

ation subgroups and geographic areas, depending on individual 

haracteristics such as age and occupation, and regional differ- 

nces in local epidemics and policies. Effective local public health 

olicies require understanding of how subpopulation changes in 

rotective behaviors impact overall transmission under different 

cenarios of out-of-household activity (OOHA) resumption and 

chool reopening. 

Age-related differences in COVID-19 transmission and mortality 

ave been widely documented [6–8] . Data suggest greater likeli- 

ood of symptomatic infection, disease severity, and case fatality 

mong older adults, while children and young adults more com- 

only experience mild or asymptomatic infections [ 9 , 10 ]. Suscep- 

ibility also appears to increase with age [10] . Earlier in the pan- 

emic, COVID-19 incidence was highest among older adults, but 

ecent national data indicate a declining median age of COVID-19 

ases (from 46 in May to 38 in August 2020) [11] . From June to

ugust, the highest incidence was observed among young adults 

ged 20–29; this group accounted for 20% of all cases during this 

eriod [11] . 

Because young adults have more social contacts, different mix- 

ng patterns, and higher rates of mild and asymptomatic infections 

han older adults, it is plausible that they contribute disproportion- 

tely to overall transmission, particularly since transmission often 

ccurs from individuals with asymptomatic or presymptomatic in- 

ection [12] . Age has been associated with varying degrees of ad- 

erence to behavioral risk reduction practices, social interactions, 
Table 1 

Effects of school reopening and adult behavior change on COVID-19 infections and hospi

Scenario Exposed ∗

School 

reopening 

Adult behavior 

change 

Prevalence per 

10 0,0 0 0(IQR) 

PR (behavior 

change) † 

S1 15% 0% 15.93 (6.18, 36.23) 1.00 (Ref) 

S2 15% 25% 26.43 (9.79, 60.47) 1.66 §

S3 15% 50% 40.06 (14.65, 85.21) 2.51 §

S4 30% 0% 16.14 (6.71, 38.77) 1.00 (Ref) 

S5 30% 25% 27.91 (10.32, 67.11) 1.73 ‖ 
S6 30% 50% 44.21 (17.73, 99.24) 2.74 ‖ 
S7 45% 0% 19.87 (6.83, 46.83) 1.00 (Ref) 

S8 45% 25% 30.89 (11.47, 79.4) 1.55 ¶

S9 45% 50% 47.74 (18.89, 118.77) 2.40 ¶

IQR = interquartile range; PR = prevalence ratio. 
∗ Exposed refers to the latent state in the SEIR model, in which an individual is infecte
† Prevalence ratio for behavior change represents the PR associated with decreases in 
‡ Prevalence ratio for school reopening represents the PR associated with increases in 
§ Reference category = S1. 
‖ Reference category = S4. 
¶ Reference category = S7. 
# Reference category = S2. 
∗∗ Reference category = S3. 

166 
widespread vaccination coverage, interventions to maintain adherence to

ly among younger adults and in out-of-household settings, remain a pri-

ransmission. 

© 2022 Elsevier Inc. All rights reserved. 

obility, and potential exposure venues (e.g., day-care facilities, 

chools, workplaces) [ 6–8 , 10 ]. Such age-related differences in sus- 

eptibility and behavioral and environmental risk may impact epi- 

emic trends. However, existing data could be biased due to se- 

ection, changes over time in testing behaviors, and differential re- 

orting by age due to differences in severity and symptoms. Ques- 

ions therefore remain about the extent to which young adults 

ontribute to population-level transmission. 

This study used agent-based modeling to explore how interact- 

ng behavioral changes, individual risks, and contextual factors in- 

uence COVID-19 transmission to provide insights for public health 

olicies and interventions. Agent-based models enable the devel- 

pment of endogenous transmission vectors that are dependent on 

ge and other sociodemographic characteristics, facilitating com- 

arisons across a broader range of potential scenarios than com- 

artmental models allow. Such analysis is relevant for public poli- 

ymakers, given the possibilities of continued COVID-19 transmis- 

ion with the increasing presence of variants and particularly in 

reas with low vaccination rates. We examined the impact of age- 

elated differences in protective behaviors (e.g., social distancing, 

asking) on COVID-19 transmissions and hospitalizations during a 

eriod when OOHA resumption was beginning in Chicago, a large 

iverse Midwestern city severely impacted early on in the pan- 

emic and where there were large disparities in transmission and 

ortality from COVID-19. 

ethods 

odel population and processes 

We built a stochastic agent-based modeling, CityCOVID, based 

n our previously developed research [13–15] . CityCOVID contains 

.7 million agents representing the population of Chicago in terms 

f behaviors and social interactions and 1.2 million unique geo- 

ocations, including households, schools, workplaces, and hospitals. 

ityCOVID incorporates individualized disease progression dynam- 

cs with transitions between COVID-19 disease states that depend 
talizations as of November 1, 2020 

Hospitalized 

PR (school 

reopening) ‡ 
Prevalence per 

10 0,0 0 0(IQR) 

PR (behavior 

change) † 
PR (school 

reopening) ‡ 

1.00 (Ref) 2.05 (0.76, 4.76) 1.00 (Ref) 1.00 (Ref) 

1.00 (Ref) 2.97 (0.92, 6.42) 1.45 § 1.00 (Ref) 

1.00 (Ref) 3.67 (1.17, 8.46) 1.79 § 1.00 (Ref) 

1.01 § 2.32 (0.81, 5.33) 1.00 (Ref) 1.13 §

1.06 # 3.06 (1.11, 6.92) 1.32 ‖ 1.03 # 

1.10 ∗∗ 4 (1.32, 9.02) 1.72 ‖ 1.09 ∗∗

1.25 § 2.63 (0.77, 5.77) 1.00 (Ref) 1.28 §

1.17 # 3.59 (1.03, 7.8) 1.37 ¶ 1.21 # 

1.19 ∗∗ 4.67 (1.54, 10.51) 1.78 ¶ 1.27 ∗∗

d but not infectious. 

protective behaviors for a given level of school reopening. 

school reopening for a given level of adult behavior change. 
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n agent attributes and exposure to infected individuals through 

olocation, place-based risks, and protective behaviors such as so- 

ial distancing, masking, and handwashing. 

The agent population was built by extending existing synthetic 

opulation databases [ 16 , 17 ] to statistically match Chicago’s demo- 

raphic composition. Agent activity schedules were derived from 

he American Time Use Survey and the Panel Study of Income Dy- 

amics. The model was calibrated to local data obtained from the 

hicago and Illinois Departments of Public Health of daily COVID- 

9 attributed hospitalizations and death counts. CityCOVID was de- 

eloped to support City of Chicago, Cook County, and State of Illi- 

ois COVID-19 mitigation and planning and represents collabora- 

ion between the local health departments, Argonne National Lab- 

ratory, and the University of Chicago. The study was approved by 

he Institutional Review Board at the University of Chicago. 

odel assumptions 

The model assumes, based on calibration, that average adult 

OHA levels were reduced after Chicago’s March 21, 2020 stay-at- 

ome order to 57% (SD 8%) of pre-COVID-19 activity levels. OOHA 

ncluded any activities that occurred at a place other than the 

gent’s household, including going to work, school, grocery shop- 

ing, etc. Separately, the reduction in transmission risk (i.e., prob- 

bility of transmission) due to engagement in protective behaviors 

as estimated to be 90% (SD 3%). After reopening began on June 3, 

020, adult OOHA were gradually increased such that they asymp- 

otically approached 65% of prepandemic levels by September 1, 

020, which is consistent with published estimates [18] . During 

he summer, we assumed that school-age children (age < 18) en- 

aged in peer-to-peer activities at a 50% lower rate than activi- 

ies during the typical (prepandemic) school year. School reopening 

cenarios reflect situations where a given proportion of students 

eturn to in-person classes, in which they interact with children 

f the same age group, or alternatively, primarily online instruc- 

ion with informal out-of-school mixing with peers. Thus, for a 15% 

chool reopening scenario, during weekdays, only 15% of prepan- 

emic activities involving peer-to-peer interactions among school- 

ge children occur. This could involve interactions in classrooms, 

r, for students engaged in remote learning, could reflect a sce- 
Table 2 

Effects of school reopening and adult out-of-household activities on COVID-19 infections

Scenario Exposed ∗

School 

reopening 

Adult 

OOHA 

Prevalence per 10 0,0 0 0 

(IQR) 

PR (OOHA) † PR 

reo

A1 15% 65% 35.18 (13.59, 75) 1.00 (Ref) 1.0

A2 15% 70% 45.01 (20.44, 94.58) 1.28 § 1.0

A3 15% 75% 58.13 (23.6, 116.58) 1.65 § 1.0

A4 15% 80% 69.84 (33.27, 145.89) 1.99 § 1.0

A5 30% 65% 42.62 (16.26, 81.78) 1.00 (Ref) 1.2

A6 30% 70% 51.83 (22.06, 102.31) 1.22 ‖ 1.1

A7 30% 75% 60.92 (24.69, 127.91) 1.43 ‖ 1.0

A8 30% 80% 80.99 (29.95, 154.82) 1.90 ‖ 1.1

A9 45% 65% 38.17 (15.84, 91.16) 1.00 (Ref) 1.0

A10 45% 70% 47.39 (20.31, 111.64) 1.24 ¶ 1.0

A11 45% 75% 62.15 (25.2, 143.83) 1.63 ¶ 1.0

A12 45% 80% 80.02 (30.91, 186.63) 2.10 ¶ 1.1

IQR = interquartile range; OOHA = out-of-household activities; PR = prevalence ratio. 
∗ Exposed refers to the latent state in the SEIR model, in which an individual is infecte
† Prevalence ratio for OOHA represents the PR associated with increases in OOHA for a
‡ Prevalence ratio for school reopening represents the PR associated with increases in 
§ Reference category = A1. 
‖ Reference category = A5. 
¶ Reference category = A9. 
# Reference category = A2. 
∗∗ Reference category = A3. 
†† Reference category = A4. 

167 
ario in which they maintain contact with other children at 15% of 

heir typical prepandemic interactions. All scenarios assume that 

chool-age children engage in protective behaviors inside and out- 

ide of school. 

odel experiments 

Using the baseline assumptions described above, we experi- 

ented with independently varying adult protective behaviors and 

OHA under different school reopening scenarios to determine 

heir relative and combined impact on overall and age-specific 

OVID-19 transmission and hospitalization. Outcomes for analy- 

is are expressed as point prevalence of latent infection (i.e., the 

xposed state in the susceptible, exposed, infectious, recovered 

odel in which individuals are infected but not yet infectious) and 

ospitalizations. We developed multiple scenarios in which we ex- 

mined: 1) the impact of differential relaxation of adult protective 

ehaviors (from 90% to 87.5% to 85% transmission reduction due 

o protective behaviors) by age category ( < 18, 18–40, 40–60, ≥60) 

ver a 90 day period beginning September 18, 2020 under 15%, 

0%, and 45% school reopening levels (scenarios S1–S9; Table 1 ), 

nd 2) the effects of maintaining vs. increasing adult OOHA from 

5% to 70%, 75%, and 80% of prepandemic levels after further eas- 

ng of business restrictions on October 1, 2020 under 15%, 30%, 

nd 45% school reopening levels (scenarios A1–A12; Table 2 ). The 

evels of relaxation in protective behaviors were chosen to repre- 

ent medium (25%) and large (50%) changes in protective behav- 

ors relative to the baseline level (90%), which was determined by 

odel calibration. For example, a 25% relaxation in adult protec- 

ive behaviors to a change from 90% to 87.5% transmission reduc- 

ion (i.e., transmission probability = 1-transmission reduction; 90% 

ransmission reduction translates to 10% transmission probability, 

hich is relaxed by 25%–12.5%). Similarly, a 50% relaxation in adult 

rotective behaviors represents an increase in transmission prob- 

bility from 10% to 15%. The baseline school reopening scenario 

f 15% reflected what was occurring in Chicago during September- 

ecember 2020, when most schools implemented remote learning. 

he 30% and 45% school reopening scenarios reflect medium and 

arge increases in-person learning compared to the baseline sce- 

ario. For the original calibration period (through June 3, 2020) we 
 and hospitalizations as of November 1, 2020 

Hospitalized 

(school 

pening) ‡ 
Prevalenceper 10 0,0 0 0 

(IQR) 

PR (OOHA) † PR (school 

reopening) ‡ 

0 (Ref) 3.81 (1.31, 7.9) 1.00 (Ref) 1.00 (Ref) 

0 (Ref) 4.52 (1.58, 8.71) 1.19 1.00 (Ref) 

0 (Ref) 4.88 (1.76, 9.89) 1.28 1.00 (Ref) 

0 (Ref) 5.56 (2.19, 11.24) 1.46 1.00 (Ref) 

1 § 3.9 (1.38, 8.2) 1.00 (Ref) 1.02 §

5 # 4.54 (1.79, 9.32) 1.16 ‖ 1.00 # 

5 ∗∗ 5.12 (2.05, 10.32) 1.31 ‖ 1.05 ∗∗

6 †† 6.15 (2.35, 12.09) 1.58 ‖ 1.11 †† 

8 § 4.2 (1.44, 8.82) 1.00 (Ref) 1.10 §

5 # 4.39 (1.73, 9.9) 1.05 ¶ 0.97 # 

7 ∗∗ 5.5 (1.94, 11.42) 1.31 ¶ 1.13 ∗∗

5 †† 6.06 (2.31, 13.16) 1.44 ¶ 1.09 †† 

d but not infectious. 

 given level of school reopening. 

school reopening for a given level of adult OOHA. 
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elected the eight best candidate parameter combinations and ran 

en replicates for each combination over each of the three baseline 

cenarios, resulting in 240 base case simulations. The number of 

arameter combinations and replicates were chosen to provide an 

dequate range of model behaviors consistent with empirical data 

nd stable mean estimates while still being computationally feasi- 

le. Experimental scenarios were applied to each of the 240 sim- 

lations, and we computed the median, 50th and 95th percentile 

imulation intervals across all simulations. Details of baseline sce- 

arios and model experiments are shown in the Appendix. 

ffective reproductive number (R t ) 

We used the model to track secondary infections and calcu- 

ated the effective reproductive number (R t ), defined as the average 

umber of secondary infections resulting from an infected individ- 

al [19] . R t = 1 represents the threshold needed for an epidemic 

o be sustained. R t less than 1 indicates that an epidemic is dying 

ut, while R t more than 1 indicates that the epidemic is growing. 

s the epidemic progresses and the size of the susceptible popu- 

ation declines, R t can also decline due to the decreased likelihood 

f contact between an infectious individual and susceptible indi- 

iduals. For each infected agent, we calculated the total number of 

econdary infections generated from the initial infection over their 

ntire infectious career and averaged over the population to ob- 

ain R t, where the time t is associated with the start of an agent’s

nfectious career. This approach is consistent with the case or co- 

ort reproductive number described by Gostic et al. [20] based on 

ethods of Wallinga and Teunis [21] . This method of calculating 

 t aligns with our goal of understanding how newly infectious in- 

ividuals at different time points contribute to overall spread of 

nfection over their entire infectious career and how this may vary 

ccording to individual characteristics [20] . R t was calculated by 

ecadal age category to assess whether certain age groups con- 

ributed disproportionately to overall transmission. 

esults 

In the baseline scenarios (maintaining protective behaviors and 

urrent OOHA levels among adults) the model predicted overall 

eclines in infections and hospitalizations through the end of Oc- 

ober 2020 ( Figs. 1 and 2 ). However, trends varied widely depend- 

ng on adult protective behaviors and OOHA, with several scenarios 

uggesting upward trends in infections and hospitalizations by the 

nd of October. 

mpact of reductions in adult protective behaviors under various 

chool reopening scenarios 

From Sept 1, 2020 to November 1, 2020, latent infection preva- 

ence (i.e., exposed state in the susceptible, exposed, infectious, re- 

overed model) declined from 85.69 (IQR 48.23–133.9) to 15.93 

IQR 6.18, 36.23) per 10 0,0 0 0 and hospitalizations declined from 

.94 (IQR 4.68–9.51) to 2.05 (IQR 0.76, 4.76) per 10 0,0 0 0 for the

cenario with 15% school reopening and no reductions in adult 

rotective behaviors. Given high adherence to protective behaviors 

mong 18 to 40-year-old adults, increased school reopening had 

elatively little impact on overall transmission or hospitalizations 

 Fig. 1 , column 1). As of November 1, 2020, the model predicted la-

ent infection prevalence of 15.93, 16.14, and 19.87 per 10 0,0 0 0 for 

chool reopening scenarios of 15%, 30%, and 45% respectively when 

dult protective behaviors were maintained ( Table 1: S1, S4, S7; 

igure 4 ). The downward trend in infections and hospitalizations 

as reduced in a scenario with 45% school reopening coupled with 

arge reductions in protective behaviors among 18 to 40-year-old 
168 
dults (lower right-most panel of Fig. 1 , Table 1: S9). Latent infec- 

ion prevalence was 47.74 (IQR 18.89, 118.77) in S9 vs. 15.93 (IQR 

.18, 36.23) in S1). For each level of school reopening, reductions 

n adult protective behaviors had a substantial impact on transmis- 

ion ( Figure 4 ). Latent infection prevalence ratios (PR) for 25% and 

0% reductions versus no change in protective behaviors were 1.66 

nd 2.51 (S2 and S3 vs. S1; Table 1 ) for the 15% school reopening

cenario and 1.55 and 2.40 for the 45% school reopening scenario 

S8 and S9 vs. S7). 

mpact of increased adult OOHA under various school reopening 

cenarios 

School reopening had little impact on infections or hospitaliza- 

ions when current levels of adult OOHA were maintained ( Fig. 2 , 

olumn 1). Point prevalence of latent infection was 35.18 (IQR 

3.59, 75), 42.62 (IQR 16.26, 81.78), and 38.17 (IQR 15.84, 91.16) per 

0 0,0 0 0 for school reopening scenarios of 15%, 30%, and 45% when 

dult OOHA levels were maintained at 65% of pre-pandemic levels 

 Table 2 scenarios A1, A5, A9). Even in the presence of increased 

OHA among adults beginning October 1 (vertically from top to 

ottom, columns 2–4 of Fig. 2 ; Table 2 ) increasing school reopen- 

ng had little impact on infections and hospitalizations. In contrast, 

ithin each school reopening scenario, increasing adult OOHA had 

 substantial impact on infections and hospitalizations, with the 

argest impact of adult OOHA observed at school reopening levels 

f 45% (left to right, rows 1–3 of Fig. 2 ). Latent infection prevalence

atios for adult OOHA of 70%, 75%, and 80% vs. 65% were 1.28, 1.65, 

nd 1.99 with 15% school reopening (scenarios A2-A4 vs. A1) and 

.24, 1.63, and 2.10 with 45% school reopening (scenarios A10-A12 

s. A9, Table 2 ). As OOHA approached 80% of prepandemic levels, 

he model suggested a reversal of downward trends where both in- 

ections and hospitalizations began to increase by November 2020. 

ge-specific contributions to COVID-19 transmission 

There was a high degree of heterogeneity in the effective repro- 

uctive number (R t ) by age, suggesting important age differences 

n contribution to overall transmission. R t values for June-October 

020 suggest that children and young adults (age groups 0–10, 10–

0, and 20–30) contributed the most to transmission, with lower 

ontribution from adults 60 and older ( Fig. 3 ). From June to Au- 

ust, R t values more than 1 were observed for children and young 

dults (ages < 30). Among adults ages 20–30, increasing R t values 

ere observed beginning in mid-September with values remaining 

bove 1 for this age group through October 2020. 

iscussion 

Our model results are consistent with empirical data and sug- 

est that there was higher COVID-19 transmission among young 

dults (ages 20–30) compared to those aged more than 30 in 

hicago over the study period. We also observed R t more than 1 

or children (ages 0–10 and 10–20) during the summer of 2020. 

he fact that empirical data trends were corroborated by the 

odel suggests that the observed elevated rates among younger 

ge groups were not due exclusively to testing bias, because the 

odel tracks all infections, not just those that are detected through 

esting. Because empirical data on case counts are known to un- 

erestimate the true number of cases due to under-reporting and 

ower probability of detection of asymptomatic or mild infections, 

he model was calibrated to COVID-19 deaths and hospitalizations, 

hich are more consistently and accurately reported. Thus, the 

odel helps to answer an important scientific question that is not 

irectly measured or measurable by empirical data. 



A.L. Hotton, J. Ozik, C. Kaligotla et al. Annals of Epidemiology 76 (2022) 165–173 

Fig. 1. Impact of decreases in protective behaviors on COVID-19 infections and hospitalizations under various school reopening scenarios. Horizontally from left to right, 

effects of reductions (0%, 25%, 50% reduction) in protective behaviors among 18–40-year-old adults for a given level of school reopening (15%, 30%, and 45% reopening), from 

March 2020 to November 2020. Vertically from top to bottom, effects of increasing school reopening for a given level of protective behaviors among 18–40-year-olds. Yellow 

plots indicate point prevalence of latent infections and red plots indicate point prevalence of hospitalizations. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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The disproportionate contribution by young adults to over- 

ll transmission reflects both behavioral patterns and economic 

oles, as they are likely to be more mobile, have more social 

nteraction, and are more likely to be employed in service in- 

ustry jobs [22] . Our results suggest that changes in protective 

ehaviors such as social distancing and masking among adults 

ged 18–40 can markedly influence population COVID-19 trans- 

ission, with or without increases in school reopening. Further- 

ore, increased OOHA had an important impact on transmis- 

ion, even with relatively high adherence to protective behav- 

ors. Interventions to increase the proportion of children and 

dults of all ages who are fully vaccinated (including appropri- 

te boosters) with age-appropriate messaging about the impor- 

ance of ongoing protective behaviors are a key public health 

riority. 
169 
School reopening had little impact on epidemic trajectories in 

cenarios with strong adherence to protective behaviors among 18–

0-year-olds, suggesting that schools could safely reopen if protec- 

ive behaviors are maintained among adults, assuming protective 

ehaviors are practiced among children while at school. School re- 

pening had only slightly greater impact on overall transmission 

t lower levels of protective behaviors among adults. This sug- 

ests that there was not a synergistic effect (i.e., interaction) be- 

ween school reopening and adult behavior change, at least un- 

er the existing assumptions. Nonetheless, our findings underscore 

he importance of maintaining protective behaviors with increases 

n safe school reopening and widespread return to prepandemic 

OHA levels. 

Evidence suggests that vaccination of adults aged 20–49 (i.e., 

hose with the highest transmission) is most effective for reduc- 
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Fig. 2. Impact of increases in adult OOHA on COVID-19 infections and hospitalizations under various school reopening scenarios. Horizontally from left to right, effect of 

increasing adult OOHA (65%, 70%, 75%, and 80% of prepandemic levels) for a given level of school reopening, from March 2020 to November 2020. Vertically from top 

to bottom, effect of increasing school reopening for a given level of adult OOHA. Yellow plots indicate point prevalence of latent infections and red plots indicate point 

prevalence of hospitalizations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Effective reproductive number (R t ) by age group assuming 45% school reopening beginning September 3, 2020. R t is defined as the average number of secondary 

infections resulting from an infected individual in a population where not all individuals are susceptible. A value of 1 represents the threshold needed for an epidemic to be 

sustained; values less than 1 indicate that the epidemic is dying out and values more than 1 indicate that the epidemic is growing. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Effects of school reopening and adult behavior change on COVID-19 infections and hospitalizations as of November 1, 2020. Scenarios S1–S3 represent 15% school 

reopening, scenarios S4–S6 represent 30% school reopening, and scenarios S7-S9 represent 45% school reopening. Center vertical lines represent medians; left and right edges 

represent 25% and 75% quartiles respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Effects of adult OOHA on COVID-19 infections and hospitalizations under different school reopening scenarios as of November 1, 2020. Scenarios A1–A4 represent 

15% school reopening, scenarios A5–A8 represent 30% school reopening, and scenarios A9–A12 represent 45% school reopening. Center vertical lines represent medians; left 

and right edges represent 25% and 75% quartiles respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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ng cumulative incidence, whereas vaccination of adults aged 60 

nd older (i.e., those with greatest risk for severe disease) has 

he greatest impact on mortality [23] . Our results are consistent 

ith studies showing that young adults appear to contribute dis- 

roportionately to COVID-19 incidence, but it is unclear whether 

nd how age-related differences in vaccine availability, acceptabil- 

ty and uptake will impact disease trends. Furthermore, there is 

uch heterogeneity in transmission and mortality risk within age 

roups. Focusing on subgroups within younger and older popula- 

ions with greater mobility, larger contact networks, or those liv- 

ng in more densely populated housing could help to minimize 
171 
opulation-level disease burden while optimizing use of limited 

accine resources. Future modeling studies could provide insights 

bout how to combine such approaches to develop more nuanced 

accine targeting strategies. 

It is important to note that there was divergence between the 

odel results and empirical trends in COVID-19 in Chicago dur- 

ng the period from September to November 2020. There was a 

mall peak in infections around September 1, after which cases de- 

lined slightly before a significant upward trend beginning in mid- 

ctober with a peak in mid-November, in contrast to the down- 

ard trends reflected by the median trend lines in the model. 
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[

he divergence between the model predictions and observed data 

rends is not surprising, and the goal of the study was not to make 

onger-term predictions, which would not be warranted given the 

apidly changing landscape of COVID-19 and the sensitivity of 

odels to behavioral changes in response to the epidemic. Indeed, 

his highlights the differing goals of forecasting and scenario stud- 

es and the inherent difficulties of long-term forecasts in epidemi- 

logical modeling. Rather, we sought to understand the potential 

mpact of different scenarios involving varying levels of behavior 

nd activity changes among children and adults, and to present 

n approach for use of such analyses in other settings to gener- 

te information that could be useful in planning for future pan- 

emics. For example, scenario analyses can help to identify levers 

r thresholds for intervention targets, as well as identifying vari- 

bles that have little impact on model behavior. They can thus 

e useful for efficiently utilizing limited public health resources. 

 https://covid19scenariomodelinghub.org ) 

imitations 

Our results reflect Chicago’s local epidemic, and may not gen- 

ralize to other places, though similar modeling approaches could 

e applied elsewhere to understand how protective behaviors in 

arious population subgroups impact transmission dynamics. The 

esults should be interpreted in light of the model assumptions 

hat if altered could produce different results. For example, we as- 

umed that protective behaviors were maintained among children 

hile at school. This assumption appears plausible given that chil- 

ren’s behavior in school is closely monitored and peer-to-peer in- 

eractions are relatively constrained, making it easier to enforce 

rotective measures. However, altering this assumption might in- 

uence the relative impacts of school reopening and adult behav- 

or change. The model does not distinguish between behaviors of 

eenagers and younger children, though adherence to social dis- 

ancing and masking likely varies between younger and older chil- 

ren both inside and outside of school. Because younger children 

ave less autonomy they are potentially also less at risk for expo- 

ure through peer-to-peer interactions that occur outside of class- 

oom settings as compared to older children. Results may also 

e sensitive to seasonal changes or localized events that could 

ncrease new infections, such as large sporting events, increas- 

ng time spent indoors in winter, holiday travel or gatherings, 

r natural disasters (tornadoes, hurricanes, wildfires). Further re- 

earch is needed to understand how such events could impact 

ransmission overall and within subgroups over time. Our model 

id not incorporate differences in protective behaviors by other 

actors, such as occupation, household composition, or socioeco- 

omic status, that likely impact individuals’ ability to effectively 

educe risk. Such factors may explain the disproportionate burden 

f COVID-19 in Black and Hispanic communities that have been 

idely documented since the beginning of the epidemic [ 24 , 25 ]. 

nderstanding how environmental and structural factors increase 

isk among certain subgroups is important for efficiently utiliz- 

ng intervention resources and deploying strategies for increasing 

esting and vaccination. Additional modeling is underway to ex- 

lore how relationships between race/ethnicity, occupational risk, 

revention behaviors, and vaccine uptake impact COVID-19 trans- 

ission. Our model incorporates a high degree of complexity and 

ranularity which were not fully utilized in the current analy- 

is but will allow us to take advantage of increasingly detailed 

ata on mobility, health outcomes, and behaviors to model the 

opulation level impact of individual behaviors and their interac- 

ions. This is an ongoing area of work, and we also plan to more 

ully exploit the granularity of the model in future work, includ- 

ng analyses of mobility patterns and occupational vs. household 

ransmission. 
172 
onclusion 

Our results add new information on the impact of increas- 

ng school reopening and changes in adult protective behaviors 

nd OOHA on COVID-19 transmission in Chicago. Our findings 

emonstrate how increased OOHA among younger adults can 

ubstantially impact epidemic trends, particularly if combined 

ith decreases in protective behaviors and more widespread 

chool reopening. Until complete vaccination is widespread, fo- 

used interventions to promote adherence to protective behaviors 

n out-of-household settings among younger adults are a public 

ealth priority. 
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