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Abstract

Objective: During cardiovascular disease progression, molecular systems of myocardium (e.g., 

a proteome) undergo diverse and distinct changes. Dynamic, temporally-regulated alterations of 

individual molecules underlie the collective response of the heart to pathological drivers and 

the ultimate development of pathogenesis. Advances in high-throughput omics technologies have 

enabled cost-effective, temporal profiling of targeted systems in animal models of human diseases. 

However, computational analysis of temporal patterns from omics data remains challenging. 

In particular, bioinformatic pipelines involving unsupervised statistical approaches to support 

cardiovascular investigations are lacking, which hinders one’s ability to extract biomedical insights 

from these complex datasets.

Approach and results: We developed a non-parametric data analysis platform to resolve 

computational challenges unique to temporal omics datasets. Our platform consists of three 

modules. Module I preprocesses the temporal data using either cubic splines or principal 

component analysis (PCA), and it simultaneously accomplishes the tasks on missing data 

imputation and denoising. Module II performs an unsupervised classification by K-means or 

hierarchical clustering. Module III evaluates and identifies biological entities (e.g., molecular 

events) that exhibit strong associations to specific temporal patterns. The jackstraw method for 

cluster membership has been applied to estimate p-values and posterior inclusion probabilities 
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(PIPs), both of which guided feature selection. To demonstrate the utility of the analysis platform, 

we employed a temporal proteomics dataset that captured the proteome-wide dynamics of 

oxidative stress induced post-translational modifications (O-PTMs) in mouse hearts undergoing 

isoproterenol (ISO)-induced hypertrophy.

Conclusion: We have created a platform, CV.Signature.TCP, to identify distinct temporal 

clusters in omics datasets. We presented a cardiovascular use case to demonstrate its utility in 

unveiling biological insights underlying O-PTM regulations in cardiac remodeling.
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1. Introduction

Pathological progression of chronic diseases often involves dynamic changes of a vast 

collection of molecular events, including multi-factorial alterations across organ functions 

and biological processes (e.g., genome, proteome, and metabolome) [1,2]. Systematic 

characterization of these molecular profiles in their temporal fashion corresponding to 

disease progress is seen as essential to our understanding on mechanisms and pathogenesis 

of disease progression [3,4].

Over the past two decades, advances in omics technologies have enabled researchers to cost­

effectively obtain large scale data in time-series. One major challenge is how to decode these 

massive molecular events and their association with disease in a phenotypically meaningful 

fashion. Classical statistical methods for conventional biological studies have shown success 

in targeting static conditions in a snap-shot view; however, they are not suitable for omics 

investigations tracking disease progression. Temporal datasets are often difficult to analyze 

in an unsupervised manner, due to their inherited complexity, sparsity, and noise levels.

Biomedical innovation and discovery have been supported by two major driving forces: the 

classical investigative hypothesis-centric approach relies heavily on previously published 

results; and the recent development of data-driven methods focuses on the understanding 

of data with the aid of computational intelligence. The success of the latter requires a few 

notable technical considerations. First, longitudinal datasets (e.g., proteomics) of complex 

diseases often contain missing values and are embedded with noise. Second, molecular 

signatures indicative of pathogenesis and phenotypes are often unknown priori, thus 

requiring advanced computation and extraction. Third, validation of computational output 

(e.g., molecular signatures) will benefit from an unbiased approach. Finally, an open source 

package is necessary to enable a straightforward implementation of the protocol, providing 

a modular system for examination and improvement of each step. Accordingly, we have 

developed the Cardiovascular Signature Temporal Clustering Platform (CV.Signature.TCP), 

a data science package tailored for longitudinal proteomics studies to extract temporal 

molecular patterns indicative of disease phenotypes.
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As a use case scenario, we employed a previously published proteomics dataset in 

cardiovascular biology [5]. The temporal changes of cysteine O-PTMs across the myocardial 

proteome were captured over time using a mouse model of cardiac hypertrophy [5]. 

Biological variables included in each O-PTM are defined by its host protein, modification 

type, modification site, and occupancy. We applied CV.Signature.TCP to analyze this dataset 

in an unsupervised and non-parametric fashion; our tool identified O-PTM subgroups of 

temporal importance and enabled further functional delineation. Both the parameter settings 

and analytical routes of CV.Signature.TCP are general-izable to allow a broader adaptation 

to other temporal omics data.

2. Methods

Major technical considerations for analyzing temporal proteomics data include missing 

value imputation, denoising, clustering, and evaluation of variables. Accordingly, we 

designed and selected non-parametric methods in order to avoid strong assumptions. 

CV.Signature.TCP has three functional modules, I) Preprocessing, II) Clustering, and 

III) Evaluation (Fig. 1). This platform is implemented in an open source R package, 

CV.Signature.TCP (https://github.com/UCLA-BD2K/CV.Signature.TCP).

Considering temporal proteomics datasets with m variables (rows) and n samples (columns), 

which correspond to n time points. It may be necessary to remove some variables that 

exhibit minimal or noisy temporal dynamics, utilizing fold changes or dispersion statistics. 

In the Preprocessing module which conducts missing data imputation and denoising, 

we provide two independent non-parametric methods, cubic splines [6,7] and principal 

component analysis (PCA) [8]. Cubic splines, which require a minimum of 4 available data 

points per variable, use inherent temporal structure to impute missing values and reduce 

the temporal noise simultaneously. Smoothing parameters can be automatically chosen by 

the platform via cross validation which minimizes the test error of predictive models. 

Alternatively, the reduced rank model uses the overall systematic variation captured by PCA 

to denoise the data. After applying PCA, the r < min(m, n) PCs and their loadings are used 

to reconstruct the data. If values are missing, SVDImpute [9] or nonlinear Iterative Partial 

Least Squares (NIPALS) [10] are employed. The results of preprocessing are compared with 

the original data by Pearson correlation statistics and mean squared differences (see details 

in Supplemental Information).

With the preprocessed data, the platform groups biological variables that covary over time 

in an unsupervised manner. In the Clustering module, two independent clustering models, 

K-means or hierarchical clustering, are available. Note that temporal clustering is still 

an actively evolving field. We compared popular software packages that facilitate omics 

data analyses; details are included in Supplemental Information. When sampling rates or 

dynamics differ among measurements (e.g., longitudinal clinical data), it might be necessary 

to apply dynamic time warping (DTW). In the Evaluation module, examination of molecular 

variables in their association with respective clusters is conducted. The jackstraw method 

is performed to overcome the inherent circular dependency of conducting association 

tests when the clusters are extracted from omics data. Further, jackstraw test for cluster 

membership provides p-values and posterior inclusion probabilities (PIPs) for individual 
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variables [11,12]. PIPs, which are directly related to local FDRs, are then applied in feature 

selection and downstream analyses [12,13].

To demonstrate utilities of the CV.Signature.TCP application, we show a sample analysis 

on a temporal dataset of protein cysteine O-PTMs amid cardiac remodeling [5]. Briefly, the 

temporal changes in 3 types of cysteine O-PTMs (reversible cysteine O-PTMs; irreversible 

CysSO2H and CysSO3H) at the proteome level were obtained using a mouse model of 

cardiac hypertrophy [5]. These proteomic datasets consist of 6 time points (1, 3, 5, 7, 10, 

14 days with ISO treatment) and multiple variables, including modification site/occurrence, 

modification type, and modification occupancy of cysteine O-PTM on cardiac proteins. 

The ratio of occupancy (ISO over Control) was calculated for individual protein O-PTMs 

and averaged among 4 replicates, then followed by a log transformation. Protein O-PTMs 

alterations are filtered based on criteria established in proteomic studies [13,14]. All 

O-PTMs exhibiting significant temporal responses during ISO treatment were examined 

using CV.Signature.TCP. Their associated biological functions (BFs) were annotated using 

information retrieved from Reactome (release V71, 2019_Dec; https://reactome.org/) [15] 

and UniProt knowledgebases [16].

3. Results and discussion

3.1. Assembly a complete data matrix for temporal analysis via CV.Signature.TCP

Our CV.Signature.TCP employs two non-parametric methods, tackling the missing data 

imputation and denoising simultaneously via the Preprocessing module (Fig. 1). We chose 

to apply the method of cubic splines, in which a degree of freedom (DoF) is automatically 

selected by global cross validation (dof = “cv.global” option in the preprocessing_spline 

function). Note that for 165 O-PTMs with only 3 observations (e.g., data points), a missing 

value imputation based on PCA/SVD is applied. After cubic splines are calculated, the 

predicted values are obtained for all time points. We validated the Preprocessing module 

to ensure accuracy and reliability. In particular, we have observed high Pearson correlation 

(a median coefficient of 0.97) between the input data and preprocessed data (Supplemental 

Fig. S1A). Furthermore, mean squared differences (MSDs) are low with a median of 0.28 

(Supplemental Fig. S1B).

We subsequently applied the CV.Signature.TCP to the cardiac O-PTM datasets. In this 

dataset, a total of 3446 oxidized cysteine protein O-PTMs were identified, including 

reversible cysteine O-PTMs, cysteine sulfinylation (CysSO2H), and cysteine sulfonylation 

(CysSO3H). Among them, 1735 exhibited temporal alterations; when we applied a threshold 

of 1.2 Fold-change to filter O-PTMs with limited dynamic changes, we obtained a total 

number of 1605 O-PTMs underwent temporal alterations (see Supplemental Table S1).

3.2. Extraction of temporal patterns using CV.Signature.TCP

The Clustering module of CV.Signature.TCP subsequently employed K-means clustering to 

extract unique O-PTM temporal patterns during cardiac remodeling (Fig. 1). The scree plot 

of total within-cluster sum of squares (WCSS) was used to determine a range of possible 

number of clusters (K = 4–6, Fig. 2A). After comparing the clustering results with these 
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K values, we determined the optimal K value as 5 which resulted in the most distinct 

temporal patterns. Accordingly, these 1605 O-PTMs were classified into 5 clusters based 

on the temporal changes in their cysteine O-PTM occupancy (Fig. 2B). Cluster I (C-I) is 

characterized by a continual descend; cluster II (C-II) by a continual ascend; cluster III 

(C-III) by an initial descend in the first 7 days followed by remaining at the lowest level; 

cluster IV (C-IV) by a slight descend in the first 7 days followed by an accelerated increase; 

and cluster V (C-V) by an initial ascend in first 5–7 days followed by a relapse to the 

original level (Fig. 2C, top row).

For the Evaluation module, we performed a jackstraw test to examine the cluster 

membership (Fig. 1), computing the individual p-values for these 1605 O-PTMs. These 

p-values were further used to estimate the posterior inclusion probabilities (PIPs) [11,12]. 

Essentially, by estimating the null distribution of F-statistics under independence, we 

evaluate whether the variables in a given cluster are correctly assigned. The jackstraw 

procedure learns the over-fitting characteristics of unsupervised clustering and identifies 

variables that are included in a cluster by a randomized fashion. This step naturally provides 

potential molecular signature validation based on PIPs. Here we applied a PIP threshold > 
0.8 to retain 1426 O-PTMs that are strongly related to individual clusters. The Evaluation 
module filtered out biological variables with limited or noisy contribution to the major trend, 

identifying O-PTMs with significant dynamics during disease progression (Fig. 2C, bottom 

row).

3.3. Exploring biological insights subsequent to analyses by CV.Signature.TCP

Post completion of the cluster analyses, we conducted functional annotation on all five 

clusters containing the 1426 O-PTMs, retrieving 10 essential biological functions (BFs) 

using both Reactome [15] and Uniprot knowledgebases [16], The relevant BFs are 

“inflammation response” (BF1), “calcium signaling” (BF2), “extracellular matrix (ECM) 

remodeling” (BF3), “protein translation and post-translational regulation” (BFs 4&5), and 

“energy production and metabolism” (BF6-BF10).The O-PTMs associated with each BF 

were further classified with their temporal patterns under oxidative stress (Fig. 2D). 

Accordingly, the occurrences of O-PTMs (radius of circles), false discovery rate (* denotes 

FDR < 0.05), and the number of proteins (n) are presented for each group, enabling further 

investigation on dynamic oxidative stress regulations among function-related proteins (Fig. 

2D and Supplemental Table S2).

These analyses correlate biological functional significance of molecular variables, in our 

user case, the O-PTMs, to their displayed temporal pattern. For example, cluster I (C-I) 

is affiliated with all 10 distinct biological function (BF) groups. The type and frequency 

of Cysteine O-PTMs are highly dynamic across these BF groups, with “ECM remodeling 

(BF3)” displaying the highest O-PTM events (43 O-PTMs, shown as the radius of the 

circle) and functional representation (i.e., FDR < 0.05) hosted by 26 proteins. The other 

4 clusters (C-II to C-V) also display a varied degree of associations with these 10 BFs. 

In C-II, BF3 has the highest O-PTM frequency, whereas both “pyruvate metabolism and 

TCA cycle (BF7)” and “branched chain amino acid catabolism (BF9)” exhibit highest 

functional representation. Cluster III (C-III) showed the least protein O-PTM events in all 
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10 BFs combined, with only one notable functional representation in BF7. In cluster IV 

(C-IV), the BFs related to “energy production and metabolism (BFs 6–10)” are all highly 

represented. Finally for cluster V (C-V), “post-translational protein phosphorylation” stands 

out among others with the highest frequency and functional presentation. Taken together, 

these temporal changes defined individual protein O-PTM events under pathological 

stimuli, unveiling novel regulatory targets for intervention and/or potential candidates for 

biomarkers.

4. Conclusion

Our data science platform is developed to enable unsupervised characterization of temporal 

patterns underlying any disease progression. Implemented in an open source R package 

‘CV.Signature.TCP’, it is applicable to a wide range of temporal molecular datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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DoF degree of freedom

DTW dynamic time warping

ED Euclidean distance

FDR false discovery rate
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O-PTMs oxidative stress induced post-translational modifications

PCA principal component analysis

PIPs posterior inclusion probabilities

SVD singular value decomposition

CV.Signature.TCP cardiovascular signature temporal clustering platform
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Fig. 1. 
Schematic Overview of CV.Signature.TCP. A computational platform CV.Signature.TCP 

has been developed to discover temporal patterns of biological molecules related to the 

progression of diseases (e.g., cardiac hypertrophy). The temporal omics dataset is processed 

by 3 modules: (I) Preprocessing, (II) Clustering, and (III) Evaluation. Module I conducts 

missing data imputation and denoising simultaneously via cubic spline. Alternatively, 

principal component analysis (PCA) and singular value decomposition (SVD) are used. 

Module II identifies major temporal patterns using K-means with Euclidean distance (ED) 

and hierarchical clustering with dynamic time warping (DTW). Module III evaluates the 

significance of molecular variables (e.g., protein O-PTMs) in their clusters using the 

jackstraw test to obtain p-values and posterior inclusion probabilities (PIPs).
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Fig. 2. 
Analysis of Cysteine O-PTMs using CV.Signature.TCP. (A) The scree plot was used to 

determine a range for the possible number of clusters (K = 4–6). By comparing the 

clustering results using these K-values, the optimal number of clusters were determined 

(K = 5) to sufficiently capture the dynamics of cysteine O-PTMs during cardiac remodeling. 

(B) CV.Signature.TCP platform was employed to extract 5 unique temporal patterns across 

1605 Cysteine O-PTMs. A heatmap was used to visualize the temporal changes of O-PTM 

occupancy for individual O-PTMs. (C) Cysteine O-PTMs in mice vary over time in response 

to cardiac remodeling. We applied cubic splines with cross-validation to impute and denoise 

1605 cysteine O-PTMs. K-means clustering identified 5 clusters (top row). Then, the 

jackstraw test for cluster memberships was applied and 1426 O-PTMs with PIP > 80% 
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were selected (bottom row). (D) Protein O-PTMs of temporal significance were further 

annotated by their temporal patterns (as shown in five clusters) and their biological functions 

(BFs as shown in 10 essential pathways). Each circle represents a cluster of O-PTMs sharing 

both the temporal pattern and BF attribute. The occurrences of O-PTMs (a radius of a 

circle), the false discovery rate (*, FDR < 0.05), and the number of proteins (n) are labelled 

for each O-PTM cluster. BF1, neutrophil degranulation; BF2, response to elevated platelet 

cytosolic Ca2+; BF3, extracellular matrix organization; BF4, protein translation; BF5, post­

translational protein phosphorylation; BF6, glucose metabolism; BF7, pyruvate metabolism 

and citric acid (TCA) cycle; BF 8, respiratory electron transport; BF9, branched-chain amino 

acid (BCAA) catabolism; BF10, fatty acid metabolism.
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