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Abstract

Retinal prostheses aim to improve visual perception in patients blinded by photoreceptor 

degeneration. However, shape and letter perception with these devices is currently limited due 

to low spatial resolution. Previous research has shown the retinal ganglion cell (RGC) spatial 

activity and phosphene shapes can vary due to the complexity of retina structure and electrode-

retina interactions. Visual percepts elicited by single electrodes differ in size and shapes for 

different electrodes within the same subject, resulting in interference between phosphenes and an 

unclear image. Prior work has shown that better patient outcomes correlate with spatially separate 

phosphenes. In this study we use calcium imaging, in vitro retina, neural networks (NN), and 

an optimization algorithm to demonstrate a method to iteratively search for optimal stimulation 

parameters that create focal RGC activation. Our findings indicate that we can converge to 

stimulation parameters that result in focal RGC activation by sampling less than 1/3 of the 

parameter space. A similar process implemented clinically can reduce time required for optimizing 

implant operation and enable personalized fitting of retinal prostheses.
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I. INTRODUCTION

RETINAL implants help improve functional vision for patients blinded by retinal 

degenerative diseases such as age-related macular degeneration and retinitis pigmentosa 

[1]–[3]. Percepts are created by electrically stimulating the remaining cells of the retina, 

including retinal ganglion cells (RGC) and bipolar cells. Patients with implants report 

improvements in perceiving light, detecting motion, and following lines on the ground while 

walking. However, their ability to recognize shapes and letters is currently limited [4], [5]. 

The best visual acuity is reported as 20/1260 [6] for epiretinal and 20/460 [7] for subretinal 

implants, both of which are lower than the acuity level for legal blindness (20/200).

The ability to precisely stimulate target neurons and avoid off-target activation is critical to 

create focal, non-overlapping percepts. However, human subject testing has shown that a 

single electrode often elicits elongated percepts [10], and in vitro studies have demonstrated 

off-target stimulation of retinal ganglion cells, confirming the clinical results [8], [9]. 

Unintended axonal activation is an important factor that contributes to elongated responses 

and low resolution of retinal stimulation. Other factors include large electrode size, electric 

field spread [10], [11], and spatiotemporal interactions between electrodes [12]. Prior work 

has related visual acuity and other visual task performance metrics with two point resolution 

in retinal prosthesis patients [13]. Thus, creating focal percepts is important for better patient 

outcomes with artificial vision systems.

Previous studies have focused on modulation of stimulation parameters to avoid axonal 

activation. Some of these strategies include using long duration pulses [9], and low-

frequency sinusoidal stimulations [14]. While successful at avoiding axonal activation, these 

protocols have not proven to be feasible clinically due to high threshold charge densities 

associated with long pulse durations. Our previous study showed that symmetric and 

asymmetric anodic-first pulses with low duration ratios (ratio of anodic to cathodic phase 

duration) can preferentially activate RGC somas and reduce axonal activation [8]. However 

subsequent clinical experiments did not show significant improvement in phosphene 

elongation with those pulses, which may be due to the limited parameter space explored 

in these tests [15]. In addition to phosphene elongation, phosphene shapes and thresholds are 

highly inconsistent across electrodes and subjects [10]. This variability confirms that despite 

clinical use of retinal implants, the visual experience of patients is not adequately understood 

[16]. Contributing factors to these inconsistencies are variable electrode-retina separation, 

complex axonal pathways, heterogeneous degeneration, and perceptual interpretation of 

electrically elicited neural activity [17], [18]. Previous studies have shown that modifying 

stimulus parameters can transform the spatial RGC activity [8], and phosphene shapes [19]. 

Manually tuning each electrode is time consuming and tiring for patients, even when pulse 

shapes are limited to symmetric, biphasic pulses. Adding asymmetric pulses as an option 

will increase flexibility and may offer some benefits with respect to threshold and percept 

consistency, but this expands the parameter space to cover during a fitting procedure. Patient 

participation is required to confirm improvements in percept shape, but a prolonged fitting 

procedure will diminish the patient’s willingness and ability to provide useful feedback. 

Therefore, there is a crucial need to make the fitting process as efficient as possible.
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Optimization algorithms have been applied to aid clinical decision making for deep brain 

stimulation implants [20]. In this study, we demonstrate a process that optimizes RGC 

spatial activity. We developed neural network (NN) models of RGC spatial activity and a 

real-time optimization method to search for stimulation parameters that elicit focal responses 

from in vitro retina. This work is based on our previous computational study demonstrating 

optimization of stimulation parameters for focal RGC activity [21]. The work presented 

here extends our prior work in the following ways: 1. We include in vitro retina recording 

as part of the optimization (not pre-recorded data) 2. We do not have prior knowledge of 

the response characteristics 3. NNs are created real-time 4. A convolutional neural network 

(CNN) is used to classify the response shape. Using this approach, we can rapidly identify 

stimulation parameters that produce a focal response based on sampling less than 1/3 of the 

possible pulse parameter combinations. A similar process may be applicable to a clinical 

setting for efficiently tuning phosphene shape to improve the function of visual prostheses.

II. METHODS

A. Overview

Wild-type mice C57BL/6 (n = 10) aged 3–4 weeks purchased from Envigo were used for 

calcium imaging experiments. Mice were injected with an adeno-associated virus (AAV) 

vector encoding a genetically encoded calcium indicator (GECI) 3 – 4 weeks prior to 

being euthanized for experiments. All procedures were approved by the Institutional Animal 

Care and Use Committee (IACUC) and the Institutional Biosafety Committee (IBC) at the 

University of Michigan.

B. Intravitreal AAV Injection

To transduce the GECI jGCaMP7f in RGCs, pGP-AAV-CAG-Flex-jGCaMP7f-WPRE 

(Addgene #104496) was obtained from Addgene (Watertown, MA). The plasmid was then 

modified by the University of Michigan Vector Core to create the final vector pGP-AAV-

CAG-jGCaMP7f-WPRE. Mice were anesthetized with intraperitoneal injection of ketamine 

(100 mg kg−1) and xylazine (10 mg kg−1). Pupils were dilated with 1% tropicamide and 

2.5% phenylephrine hydrochloride. Topical tetracaine hydrochloride was applied for local 

anesthesia. A pilot hole was created through the sclera, choroid, and retina 1 – 2 mm 

posterior to the corneal limbus using a 30-gauge needle. A 5 μl Hamilton syringe (Hamilton 

Robotics, Reno, NV) with a 32-gauge blunt needle was used to inject 1 μl (1.83 × 1012 

vg/ml) of pGP-AAV-CAG-jGCaMP7f-WPRE in the vitreous area. Injection was done slowly 

over 30 seconds and left in place for another 30 seconds after injection and slowly retracted 

to minimize leakage. Antibiotic eye ointment was used on the injection site to prevent 

infection.

C. Calcium Imaging

Retinas were harvested 3–4 weeks [8] after injecting pGP-AAV-CAG-jGCaMP7f-WPRE. 

Animals were anesthetized with ketamine (100 mg kg−1) and xylazine (10 mg kg−1). Both 

eyes were enucleated and hemisected inside a perfusion chamber filled with bicarbonate-

buffered Ames’ Medium (Sigma-Aldrich, St. Louis, MO). After removal of both eyes 

animals were euthanized by CO2 overdose. Dissected retina was flattened by making four 
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cuts on the periphery. Vitreous was removed with fine forceps to ensure tight coupling 

between retina and the microelectrode array (MEA). The MEA formed the bottom of the 

perfusion chamber. Retina was then mounted on a porous membrane (cat. No. JVWP01300; 

Millipore) attached to a titanium ring and then placed on the transparent MEA with 

retinal ganglion cells facing the MEA. During the experiment, retina was superfused 

with bicarbonate-buffered Ames’ Medium equilibrated with 5% CO2 - 95% O2 gas, and 

adjusted to 280 mOsm. Solution was kept at 33°C and had a flow rate of 4 – 5 ml min−1. 

Fluorescence excitation was induced by a super bright white light emitting diode (LED). 

Excitation and emission light were passed through a filter set (49002 - ET - EGFP(FITC/

Cy2), Chroma Technology Corp, Bellows Falls, VT) and images are captured by an 

electron-multiplied charge-coupled device (EMCCD) camera (iXon 897, Andor Technology, 

Belfast, Northern Ireland) through an Olympus UPLFLN 0.3 numerical aperture (NA) ×10 

objective at 10 Hz.

D. Electrical Stimulation

A transparent microelectrode array (MEA) constructed from glass, indium tin oxide, silicon 

nitride, and SU-8 epoxy photoresist was used for electrical stimulation [8]. The MEA 

contained 60 disk electrodes with 200 μm diameter and 500 μm electrode pitch. Electrical 

stimulus pulses were generated by the PlexStim system (Plexon Inc., Dallas, Texas) 

controlled by a computer software. A custom circuit board was used to relay the electrical 

signal to the MEA. A platinum wire placed on top of the recording chamber was used as the 

return electrode. Stimuli consisted of charge balanced, biphasic, anodic-first current pulses 

delivered at 120 Hz for 5 seconds to evoke a calcium response. Cathodic phase duration was 

100 μs in all experiments. Five different pulse types were used in experiments: symmetric 

anodic-first, asymmetric anodic-first with duration ratio of 2, 5, 10, and 20. Duration ratio 

is defined as the ratio of the anodic phase to cathodic phase duration. Pulse amplitude range 

was 20 – 110 μA, or 40 – 130 μA for the cathodic phase, depending on the region’s response 

range. The anodic phase amplitude was calculated according to the duration ratio to keep 

the pulse charge balanced. For duration ratios 1, 2, 5, 10, pulse amplitude was incremented 

by 10 μA within the range stated above resulting in 10 pulse amplitudes for these four 

pulse types. For the duration ratio of 20, a total of 6 amplitudes were delivered, due to the 

stimulator resolution (1 μA) limiting the possible amplitude of the longer, balancing pulse. A 

total of 46 pulse parameter combinations were used at each retinal region.

E. RGC Spatial Activity Analysis

For each stimulation protocol, the fluorescence images around the active electrode were 

recorded at 10 fps. Images were captured for 5 seconds before and 5 seconds during 

electrical stimulation. The baseline image was obtained by averaging images 2 – 3 seconds 

after recording initiation, and the stimulation image was obtained by averaging images 2 – 

3 seconds after stimulation initiation. RGC spatial activity was obtained by subtracting the 

baseline image from the stimulation image. The resulting calcium transient image (ΔF) was 

further normalized with respect to baseline (F), and a threshold was selected (ΔF/F > 15%) 

to remove noise based on the typical noise in the fluorescent signal. The shape of the RGC 

spatial activity (response shape) was quantified with two descriptors: activation area and 

eccentricity. Activation area was defined as the area of the best-fit ellipse to the RGC spatial 
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activity, and eccentricity was defined as the ratio of the distance between the ellipse foci to 

its major axis length. Eccentricity values are always between 0 and 1 (0 is a circle and 1 is a 

line segment), and are a measure of response elongation.

F. Optimization Pipeline Overview

We use artificial neural networks (NN), a convolutional neural network (CNN), and an 

optimization algorithm to iteratively search the parameter space and classify activation area 

and eccentricity, to converge to the desired response shape. Two NNs, based on images 

recorded during the experiment, are used to estimate surfaces for activation area and 

eccentricity and the resulting objective function. The optimization routine uses the objective 

function surface to predict optimal stimulus parameters. We record the RGC spatial activity 

to the predicted optimal stimulus parameters and classify the resulting image using the 

CNN. The procedure ends if the required class is achieved, and continues otherwise. Fig. 1 

illustrates a flow chart of the optimization steps.

G. Neural Network Training

Based on our previous results on empirical modeling of RGC spatial activity [21], a 

single model could not be created for the relationship between stimulus parameters (pulse 

amplitude and type) and the spatial response descriptors (activation area and eccentricity) 

that was generalizable to all regions (a region is a retinal area above and nearby an 

electrode). Therefore, we chose to train feedforward artificial neural networks (NN) for each 

region separately to quantify this relationship. Data points were divided into three subsets 

for training (60–80%), validation (10–20%) and test (10–20%), where the exact percentage 

was determined by the number of data points. The network inputs are pulse amplitude and 

type, and outputs are activation area and eccentricity. The NNs include a hidden layer of 

size 10 with hyperbolic tangent transfer functions. We used MATLAB (MathWorks, Natick, 

MA) built-in functions and the Levenberg-Marquardt backpropagation method for training 

the networks.

H. Closed-Loop Search for Optimal Stimulation Parameters

A closed-loop optimization algorithm was developed to find stimulation parameters that 

elicit the desired response shape by minimizing the following objective function:

f(a, t) = A(a, t) − C + E(a, t) (1)

where A and E are activation area and eccentricity respectively as functions of pulse 

amplitude (a) and type (t), as estimated by the NNs. C is a constant representing the 

electrode area. Activation area and electrode area values were normalized to the maximum 

value of the activation area for a given region. The ideal response shape has an activation 

area equal to the electrode area and eccentricity of zero (i.e. circular).

An interior point algorithm was implemented in order to find the minimum of the objective 

function in each region [22]–[24]. The algorithm combines line search and trust-region 

steps to reduce the objective function value. At each iteration the next testing point is 

selected based on the direction of change in the objective function value and searching stops 
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when the last step is smaller than the step tolerance (10−4). The FMINCON function from 

MATLAB optimization toolbox was used to implement this algorithm.

In each retinal region we started by recording the fluorescent transient images in response 

to 5 different sets of stimulation parameters. These points were chosen by randomly 

selecting one amplitude (20 – 140 μA) for each pulse type. NNs for activation area and 

eccentricity were then trained on the images of RGC spatial activity and the objective 

function was created based on Eq. (1). The interior point algorithm was used to search for 

the minimum of the objective function and the optimal stimulation parameters. The next 

step was delivering a stimulus train with the predicted optimal parameters and recording 

the spatial RGC activity. In most cases the optimal parameters were modified to settings 

possible for delivery with the electrical stimulator. Similar steps were done on 10, 15, 20, 

(by randomly selecting 2, 3, 4 amplitudes per class) and 46 sets of stimulation parameters.

I. Convolutional Neural Network Training for Calcium Image Classification

Prior work using a database of previously recorded RGC spatial activity images [8] showed 

that in most regions there were many pulse parameters combinations that resulted in a near 

optimal solution, and the solution found by the algorithm was not necessarily the global 

minimum of the objective function. Therefore, we created 5 different classes for response 

shape and used that as a measure of the desirability of the response shape elicited by the 

predicted optimal stimulus parameters. Initially, we categorized our images into 5 classes 

based on activation area and eccentricity values extracted from a fitted ellipse. We classified 

our images as class 0–4 with the following definitions: Class 0 – zero active pixels; Class 

1 – eccentricity < 0.5, area < 2X electrode area; Class 2 – eccentricity > 0.5, area < 

then 2X electrode area, Class 3 – eccentricity < 0.5, area > 2X electrode area, Class 4 – 

eccentricity > 0.5, area > 2X electrode area. One metric that distinguishes different classes 

from each other is having an area larger or smaller than twice the electrode area. This 

metric was chosen because it determines whether the RGC activity overlaps with adjacent 

electrodes according to the electrode pitch in the MEA, which is similar to the pitch in 

Argus II implants. Another classification metric is having an eccentricity larger or smaller 

than 0.5. This number was chosen as the mid-point in the eccentricity range. However, 

classifying images by ellipse fitting resulted in images with sparse activity (1– 2 cells) 

being classified as equivalent to images with more robust activity, since ellipse fitting only 

required a few points. Plus, this method would classify visually similar images in different 

classes based on subtle differences in area and eccentricity values. Therefore, we relabeled 

images manually to classify them into visually distinguishable categories, and trained a 

convolutional neural network (CNN) for image classification. An initial total of 5466 images 

were labeled to distribute images into 5 classes, using our revised definition for classes 0–4: 

class 0 = no meaningful activity, class 1: round and small response, class 2: elongated and 

small response, class 3: round and large response, class 4: elongated and large response. 

Subsequent data augmentation to balance the number of images per class increased the total 

number to 8622. Data augmentation was implemented through orthogonal rotations, image 

flipping, and addition of gaussian and salt and pepper noise to classes 1, 2, and 3.
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CNN architecture consisted of three convolutional layers each containing 128, 3 × 3 kernels 

and a subsequent rectified linear unit (ReLU) activation function followed by a max pooling 

layer (pool size = 2 × 2). The output of the convolutional layers is then flattened and fed into 

the dense block composed of four fully connected layers. All layers have 128 nodes, except 

the output layer that has 5 nodes corresponding to the five classes. The training protocol 

involved the use of ‘Adam’ [25] optimizer with categorical cross-entropy loss and learning 

rate of 0.001. A 20% dropout, L2-norm regularization (λ = 0.0007), and a batch size of 32 

were used. Training-test data split was 90–10%, and a further 90–10% training-validation 

split was done on the training data. Training was done over 25 epochs while monitoring 

accuracy and loss performance metrics.

III. RESULTS

A. In Silico Prediction of Optimal Stimulus Parameters With NNs Based on RGC Spatial 
Activity Data

RGC spatial activity was obtained from 24 retinal regions during the experiments. Fig. 

3A – C shows three examples of objective function maps based on pulse amplitude and 

type. These examples demonstrate the variability of RGC spatial activity to the same 

range of stimulation parameters. Stimuli that did not result in a calcium response were 

not included in the data points used for modeling. NNs were created for activation area 

(A) and eccentricity (E), and the objective function was constructed based on Eq. (1). The 

performance of NNs was quantified as the mean squared error (MSE) between the learned 

objective function maps and the experimental objective function values. The performances 

on the test data sets for all 24 retinal regions are shown in Table I. High standard deviation 

of MSE values indicates that the performance can be different for each retinal region. That 

is expected as it is challenging to capture the full response dynamics in some regions. 

The performance of NNs on training and test data indicated low overfitting. Adding more 

layers, nodes, or training epochs to the network can improve performance on training data 

but will likely cause overfitting and poor performance on test data. The stimulation and 

recording time for each trial took 10 seconds. Training time for NN and execution time for 

the interior point algorithm varied based on the amount of data and the number of iterations, 

respectively. But in general, these took less than 1 minute running on a standard desktop 

computer, without any attempt to optimize code. The operating system on the computer was 

Microsoft Windows 10 Pro, 64 bit, RAM = 32.0 GB, with AMD FirePro W5100 GPU. The 

approximate time for each number of trials in the process is below 2 minutes, 3 minutes, 3.5 

minutes, 4.5 minutes, and 9 minutes, for 5, 10, 15, 20, and 46 points respectively.

Examples of interior point optimization are shown in Fig. 3. The initial condition was 

chosen as the point with minimum value of pulse amplitude and type. The interior point 

algorithm explores the continuous space fitted to the experimental data in each region, 

therefore the optimal point found by the algorithm was not amongst the experimental data 

points in most cases. Due to limitations in the resolution of the electrical stimulator, the 

optimal amplitudes and types were rounded to parameters within the stimulator capability. 

Example RGC spatial activity resulting from the closest stimulation parameters to the 

optimal point are shown in Fig. 3 for each corresponding objective function map. These 
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images show relatively focal RGC activities with only sparse axonal stimulation. This 

confirms that the NNs and interior point algorithm are effective at finding the optimal 

stimulus parameters for different regions with various response characteristics.

B. Real-Time Search for Optimal Stimulation Parameters in Vitro

Closed-loop optimization was performed in each region on objective function maps fitted to 

RGC spatial activity evoked by 5, 10, 15, 20 and 46 stimulus parameter combinations. As 

described in Fig. 1 and the previous section, the interior point algorithm predicted optimal 

stimulus parameters. Pulse parameters near the optimal settings were delivered to the retina 

and the RGC spatial activity was recorded. The CNN was used to classify the response 

shape evoked by both the randomly chosen stimulus parameters (used for NN training) and 

the predicted optimal stimulus parameters. The CNN performance was measured based on 

accuracy of predictions. Fig. 4 is a confusion matrix for true labels vs. prediction labels, 

showing the prediction accuracies ranging from 93 – 100%.

The CNN classification step determined if the search was completed or if the process should 

continue. Since our overall goal was to create a focal response area, class 1 is the most 

desirable class due to focal activation area and round shape. If the CNN classified the 

response shape as class 1, then the process was completed. Otherwise, a new set of data was 

collected with more data points. Class 2, 3, and 4 follow class 1 in terms of desirability. 

Class 0 means no meaningful activity in response to retinal stimulation. The best class in 

each retinal region was defined as the most desirable class achievable considering response 

areas across all stimuli. Class 1 was not always achievable, but all regions yielded either a 

class 1 or 2 response area using this range of parameters. Class 1 was reached in 7 out of 

24 regions and Class 2 was reached in 17 out of 24 regions. Fig. 5 includes examples of the 

optimization process in two different retinal regions. The best possible class in these regions 

is 1 and 2 shown in fig. 5A and fig. 5B respectively. Best class was achieved after 10 and 

15 trials in these examples. Fig 6. Shows the possibility of getting best class vs. the number 

of trials. In all retinal regions, we achieved response shape with the best class after 20 trials. 

The average and median number of trials for achieving best class was 10. As a control, we 

randomly selected 5, 10, 15, and 20 stimulation parameter combinations, classified resulting 

images, and identified which groups of results had the best class image, and calculated the 

probability of finding the best class across 24 retinal regions. The result is shown as a black 

trace in Fig 6. For every number of trials, the optimization method using NNs and interior 

point algorithm search is providing a higher probability of finding the best class.

Figure 5 shows how the objective functions become more complex when more data is used 

to train the NN. Objective functions based on five points are simple, with gradients in one 

direction. As more data points are used to train the NN, the objective function surface 

becomes more complex. NNs are created based on 5, 10, 15, 20, and 46 experimental points, 

depending on the iteration. However, objective function maps shown in Fig. 5 have a higher 

resolution, obtained by calculating NN outputs with inputs of pulse amplitude (resolution of 

2 μA) and pulse type (resolution of 1).
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IV. DISCUSSION

We have presented a process for guided modification of epiretinal stimulation parameters to 

produce a focal RGC response area. Prior work in patients with Argus II retinal implants 

has shown the importance of increasing the focality of percepts. There has been a strong 

correlation between two point resolution and the grating visual acuity task; the higher 

the two point resolution, the better the visual acuity [13]. Further work established a link 

between visual acuity and performance on visually guided tasks, including line following, 

door finding, and letter recognition. Therefore, artificial vision can be improved by creating 

focal, non-overlapping percepts from individual electrodes.

We have shown that we can iteratively search and classify response areas using two NNs, 

a CNN, and an optimization algorithm. With this approach we were able to converge to 

the best possible response shape in all 24 retinal regions within 20 trials. The average 

number of trials needed to converge to a class 1 or 2 response shape was 10. To validate 

our approach, we performed a full parameter space search to identify the most desirable 

class possible when considering the entire parameter space. This process can reduce the 

exploration time significantly compared to a manual search, especially when the parameter 

space is large. For our experiments, we limited the free parameters to only two: pulse 

amplitude and pulse type. We used anodic-first pulses in this study based on our results from 

a previous study demonstrating anodic-first pulses elicit more focal activity and avoid axonal 

stimulation compared to cathodic-first stimuli [8]. Other fixed parameters included cathodic 

pulse width (100 μs) and interphase gap (5μs). Increasing the number of free parameters 

makes a manual process less likely to succeed. However, a large parameter space will also 

increase the time for a semi-automated optimization process like we demonstrate. In our 

process, we randomly selected pulse amplitudes for each of the five pulse types tested. If 

the desired class was not achieved, we randomly selected a new set of pulse parameters and 

increased the number of settings by five, but we did not utilize the information obtained 

from the prior group of settings. Adding additional samples to prior data may yield a more 

efficient process, since the prior data can guide the selection of the next set of parameters. 

We observed qualitatively that class 1 and 2 responses are above class 0, but below class 

3 and 4 responses, which suggests that the optimal response is slightly above threshold. 

Further efficiency may be achieved by identifying key parameter settings that may have 

high predictive power or by focusing the search around perceptual threshold. In many cases 

image classes do not follow a clear trend from a class 0 to 4 by increasing pulse amplitude 

or type. Some regions do not show a class 1 or 3 response due to axonal activation. Plus, we 

tested with discrete and limited number of settings, which makes the output (response class) 

less continuous.

In most cases there were multiple parameter combinations that resulted in a near optimal 

solution. Therefore, we defined five distinct response shape classes to discretize the 

desirability of the solution. This approach provides the flexibility to choose any of the 5 

classes as the desired outcome by modifying multiplying factors for area and eccentricity, 

and the C constant in the objective function. We did not optimize for pulse efficiency, 

only for shape. Other studies have focused on optimizing pulse parameters for stimulation 

efficacy and lower thresholds by modifying pulse duration and polarities, however these 
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studies haven’t optimized for spatial RGC activity [8], [26], [27]. Optimizing for efficiency 

can be added to our framework simply by selecting the most efficient of the several pulse 

types that create the most focal percept class. The optimal stimulation parameters predicted 

by the interior point algorithm were rounded to the nearest available parameter settings. The 

rounded settings sometimes were less optimal (as measured by the objective function value) 

than the original solution.

The choice of training a CNN was based on the need for a rapid execution time and to 

eliminate any error in the ellipse fitting process. CNNs have recently received significant 

attention due to their superior performance in computer vision tasks such as image 

segmentation and classification [28], [29]. These deep learning models are comprised 

of learnable convolution filters that significantly reduce input image dimensions while 

preserving characteristic features necessary for good decision making by the subsequently 

cascaded multi-layer neural network. Our results show prediction accuracies of 93–100% 

and a low misclassification rate. Training curves were monitored throughout training over 

25 epochs, a reasonable choice that offers a balance between extreme fitting conditions. 

Hyperparameters such as the learning rate, drop-out, convolution kernel sizes, depth and 

width of the fully connected layers were iteratively adjusted to achieve an appropriately 

fitted curve. However, it is important to note that an irreducible error (Bayes error rate) 

persists even with a sufficiently trained model. Errors of 2 classes were noted (e.g. CNN 

classification of 2, true label 4), but this does not indicate poor CNN performance. Instead, 

this reflects our definition of classes. Class 1 and 3 are round but differ in area. Classes 2 

and 4 are oblong and differ in area. Therefore, a misclassification of two classes is due to an 

image that is in-between classes in terms of area.

The interior-point algorithm needs prior knowledge of the retinal response and local 

derivative information in order to select the next iterations effectively. Therefore, fitting 

NNs to a set of images at each iteration was necessary. Initially, we tried to use polynomial 

fitting of the data, since this would allow the use of calculus to obtain an optimal value. 

However, the NN approach provides more flexibility. Each region’s response characteristics 

can vary and may not follow a polynomial with a fixed order. In addition, the order of 

polynomial is dependent on the number of samples in each iteration. When dealing with a 

small sample number, the order of polynomial is limited and some non-linear responses may 

require a higher order polynomial to capture the response dynamics. We used a hyperbolic 

tangent transfer function in our NNs since it is smooth, differentiable, and works well with 

backpropagation approaches. Algorithms that do not require prior knowledge of the system 

such as evolutionary algorithms and stochastic searching can also be considered for finding 

the optimal solution. However, these methods require evaluating the objective function at 

every point in the parameter space at each iteration and generally require many iterations 

before converging to the optimal point [30], [31]. An alternative approach to using an 

optimization algorithm is performing an exhaustive grid search to find the optimal inputs; 

however, this approach becomes less efficient as the search space scales in both parameter 

range and dimension.

We demonstrated that RGC spatial activity can vary for different retinal regions in response 

to the same stimulation parameters. This finding in in vitro mouse retina confirms the 
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previous clinical findings on the inconsistency of phosphene shapes across electrodes 

and subjects [16]. Future work includes performing human subject testing to verify this 

method. If this approach is applied in clinic, it can shorten the repetitive process of drawing 

phosphenes for retinal implant users compared to a manual searching approach. In place of 

calcium images, patient drawings [16] would be used to determine the focality of percepts. 

NNs can be trained on a few drawings and dynamically updated as more drawings are 

added. The previously trained NNs on in vitro data could also be used as the basis in human 

subject experiments. Prior studies have shown that electrical stimulation responses during 

in vitro and human subject experiments are influenced in a similar way when adjusting 

pulse parameters. Pulse durations longer than 20 ms induced focal RGC activity in vitro 
and round, small percepts in retinal implant users [9]. In most cases the dynamic range 

was narrow, as evident from Fig. 5, meaning that increasing the pulse amplitude resulted 

in a less desirable response shape. However, adding frequency as a variable could possibly 

provide a dynamic range for phosphene brightness while maintaining phosphene size [19]. 

An alternative method for obtaining patient feedback on optimal stimulus settings could be 

measuring grating acuity or coupling data driven algorithms with biophysical modeling to 

further refine the initial parameter settings [32]. The location of electrodes on the retina 

may provide some prior information that allows us to modify the optimization process. 

Studies have shown less elongated percept shapes happen near the fovea [16], [19]. Thus, 

areas near the fovea may be expected to produce class 1 responses, while areas away 

from fovea may produce class 2 responses at best. Building up a database of expected 

results based on retinal location will allow the process to run more efficiently. Given that 

retinal degeneration often results in rewiring of the neural retina, optimization routines will 

be important, since electrode location alone may not predict phosphene shape if retinal 

degeneration is significant, heterogeneous, and patient specific. The overall outcome of 

retinal prostheses can be improved by developing a clinically applicable system using the 

presented approach for electrode-specific optimization of stimulation parameters.
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Fig. 1. 
Flow chart of the optimization process. A group of 5 different stimulus trains are delivered 

at the beginning. Calcium images of spatial RGC activity are recorded and analyzed for area 

and eccentricity values. Neural networks are trained for area and eccentricity as functions 

of pulse amplitude and type. Interior point algorithm is run to find optimal stimulation 

parameters for a focal response, which is then delivered to the retina and the resulting 

RGC spatial activity is recorded and classified by the CNN. If the image is classified as 

the required class, optimal amplitude and type are reported as outputs. Otherwise, the loop 

continues with 10, 15, 20, and 46 different stimulus trains. Blue circles show the electrode 

position on calcium images, and the best fit ellipse is outlined in red.
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Fig. 2. 
Example images for each class. Class 0: no meaningful activity, class 1: round and small 

response, class 2: long and small response, class 3: round and large response, class 4: long 

and large response.
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Fig. 3. 
A–C) Three examples of closed-loop search for optimal stimulation parameters. Objective 

function maps are plotted against pulse amplitude and type. The interior point algorithm 

is used to search for the optimal stimulus. Red dots represent the initial condition (lowest 

amplitude and class), yellow dots are the intermediary points, and green dots are the optimal 

points. Calcium images resulting from the optimal stimulation parameters are below each 

objective function map. All 46 calcium images were used to create these objective functions. 

Normalized activation area (A) and eccentricity (E) values are displayed on each calcium 

image.
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Fig. 4. 
Normalized confusion matrix for CNN accuracy. Individual class recognition rates are 

shown for test data. Accuracy values for correctly predicting each class are shown on the 

diagonal.
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Fig. 5. 
Examples for objective function maps at different iterations and the resulting optimal 

solution and calcium image. Colored dots are the classified calcium images for every 

stimulus train delivered at each iteration. Red boxes designate the optimal solution found by 

the algorithm. Calcium image corresponding to the optimal solution is shown below each 

objective function map. A) At the first iteration (5 points), the algorithm is converging to 

a solution with class 0 spatial activity. At iterations 2–5 the algorithm is converging to a 

solution with class 1 spatial activity. B) At the first and second iterations, the algorithm 

is converging to solutions with class 4 spatial activity. At iterations 3–5 the algorithm is 

converging to a class 2 spatial activity, which is the best class possible based on all trials. 

Normalized activation area (A) and eccentricity (E) values are displayed on each calcium 

image.
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Fig. 6. 
Probability of converging to the best possible class. Maximum number of trials to get the 

best class is 20 across all retinal regions.
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