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Abstract

Integrative approaches to studying the coupled dynamics of skeletal muscles with their loads while under neural control
have focused largely on questions pertaining to the postural and dynamical stability of animals and humans. Prior studies
have focused on how the central nervous system actively modulates muscle mechanical impedance to generate and
stabilize motion and posture. However, the question of whether muscle impedance properties can be neurally modulated
to create favorable mechanical energetics, particularly in the context of periodic tasks, remains open. Through muscle
stiffness tuning, we hypothesize that a pair of antagonist muscles acting against a common load may produce significantly
more power synergistically than individually when impedance matching conditions are met between muscle and load.
Since neurally modulated muscle stiffness contributes to the coupled muscle-load stiffness, we further anticipate that
power-optimal oscillation frequencies will occur at frequencies greater than the natural frequency of the load. These
hypotheses were evaluated computationally by applying optimal control methods to a bilinear muscle model, and also
evaluated through in vitro measurements on frog Plantaris longus muscles acting individually and in pairs upon a mass-
spring-damper load. We find a 7-fold increase in mechanical power when antagonist muscles act synergistically compared
to individually at a frequency higher than the load natural frequency. These observed behaviors are interpreted in the
context of resonance tuning and the engineering notion of impedance matching. These findings suggest that the central
nervous system can adopt strategies to harness inherent muscle impedance in relation to external loads to attain favorable
mechanical energetics.
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Introduction

The capability of skeletal muscles to deliver mechanical power is

key in determining the neuromechanical performance envelope of

organisms. How fast and how far animals run, fly, swim, or jump is

clearly limited by the mechanical power delivered by the muscle-

tendon units to skeletal and environmental loads. Therefore,

estimating the mechanical energetics of muscles (henceforth simply

called energetics) has been of interest in diverse fields such as

organismal biomechanics, biomimetic robotics and prosthetics [1–3].

Many factors influence the neuromechanical performance of

organisms, including i) the dynamics and mechanical properties of

muscle actuators, ii) skeletal mechanics, iii) neural control and iv)

influence of loads external to the organism. Integrative approaches

have been proposed to capture the interaction of all, or subsets of

these factors. For example, the connection between muscle

impedance (particularly stiffness) and neural control has been

studied in depth with respect to postural and dynamic stability

[4,5], locomotory functions [6–9], manipulation [10,11], and

other biomechanical tasks [12]. In this work, we adhere to the

definition of muscle mechanical impedance as the ‘‘static and

dynamic relation between muscle force and imposed stretch’’ [4].

Muscle impedance encompasses muscle stiffness, which is the static

relation between muscle force stretch only.

In the context of muscle energetics, most investigations focused

on experimentally measuring the power output of individual

muscles at a range of frequencies, phases and electrical stimulation

parameters, and finding maximal power generating capability of

muscles under prescribed motion trajectories. However, the role of

muscle-load interaction on output energetics has not been

formalized. The central premise of this work is that the mechanical

energetics of a muscle-actuated system cannot be determined in a

meaningful manner without considering the coupling of muscle

properties, load dynamics and neural activation. By considering

this coupling explicitly, we arrive at phenomena that cannot be

captured using standard workloop testing methodologies, includ-

ing the opportunity to harness muscle-load interaction in an

energetically advantageous manner.

Muscle energetics have been characterized under dynamic

conditions, both in vitro [13] and in vivo [9,14,15]. In vitro

measurements relied almost invariably on the workloop technique

[16]. In this approach, isolated muscles are subjected to

predetermined periodic length variations in time (typically

sinusoidal, but not always [17]) by means of an external motion

source. At a given phase of the imposed oscillation, an electrical

stimulus is delivered synchronously, resulting in periodic muscle

contractions. A plot of muscle contractile force versus displace-

ment results in a cyclic workloop, with the integrated area within
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the loop being a measure of the net muscle work done. These and

similar measurements have been reproduced in the muscle

physiology literature for various muscle groups within various

organisms [18–21], and connections between the muscle function

and its mechanical energetics have been made [22–24]. While

such measurements provide useful energetic connections with

muscle function, the experimental conditions do not capture

representative in vivo conditions because motion profiles are

imposed on single isolated muscles with no muscle-load interac-

tions [25], and without incorporating the effects of antagonist

activity. In vivo measurements, on the other hand, capture all of the

above effects in principle, but lack the experimental flexibility of

varying load conditions in an unambiguous manner.

Capturing the effect of muscle-load interaction on muscle

energetics is critical. This interaction can be captured by considering

the impedance of the muscles in relation to the impedance of the load.

When a group of muscles acts on a common load, as exemplified by

an antagonist pair acting on a common load, each muscle forms part

of the load borne by the other muscles in its group. Because muscle

impedance is activation dependent, neural control can be used to

modulate the effective load observed by each muscle by modulating

the impedance of the opposing muscles, thereby offering the

opportunity to create favorable impedance conditions that maximize

power transfer to the external environmental load. This is akin to the

notion of impedance matching in engineering systems, where the

driving source and the load are ‘‘matched’’ to provide optimal power

transfer. In the context of neuromuscular control, impedance

matching can enable groups of muscles to work synergistically to

provide significantly higher energetics than the sum of individual

muscles.

Consequently, in this investigation we studied the influence of

muscle-load interaction on muscle workloop energetics both

computationally and experimentally. We set up a model problem

consisting of a mass-spring-damper system actuated by either a single

muscle (Figure 1B), or a pair of symmetric, antagonist muscles

(Figure 1D). The input to the system (either neural control or

electrical stimulation) can modulate the net force exerted by the two

muscles as well as the net impedance. In the context of this problem,

Author Summary

Movement in organisms is a result of the interplay between
biomechanics, neural control, and the influence of external
environmental loads. Understanding the interaction between
these factors is important not only for scientific reasons but
also for engineering robotic systems and prostheses that
strive to match biological performance. Muscle mechanical
impedance is key in defining the mechanical interaction
between muscles and their loads. It is well known that neural
activation modulates muscle impedance, particularly stiff-
ness, and that such modulation can be used advantageously
to stabilize the posture and motion in organisms. Here, we
show computationally and experimentally that stiffness
modulation can also be used to enhance the capability of
muscle to generate mechanical power, which is key in
determining how fast animals can run, fly, swim, or jump.
When muscles are activated optimally in relation to their
external loads, they can create resonance conditions at
optimal frequencies that significantly enhance their mechan-
ical energetics by up to 7-fold. These findings can be
interpreted in the context of the engineering notions of
impedance matching and resonance tuning, which are
commonly used as guiding principles in the design of
diverse power optimal systems, such as communication
circuits and robotic systems.

Figure 1. Problem cases illustrating the role of muscle-load interaction. (A) Standard setting of a workloop experiment where a muscle acts
against a non-admitting motion source (sinusoidal in this case). (B) A single muscle acting against an admitting load (a mass-spring-damper system in
this example, with mass m, stiffness k and damping constant b). (C) An idealized, impedance-free force source acting on the same load. The force
source is limited in absolute magnitude by Fmax. (D) Antagonist muscles acting against a common admitting load. In this setup, muscles
communicate with each other mechanically through the common load. The impedance of one muscle forms part of the load of the other. Note that
in (A) the motion is imposed on the muscle irrespective of its contractile force, while in (B), (C) and (D) cyclic motions result from applied muscle or
actuator forces. The coordinates and definitions of the variables used for system modeling are shown in panel (D). The contractile forces are F1 and
F2 for the agonist and antagonist muscles respectively, whereas the net force is Fnet. The lengths of the muscles is x1 and x2 , and the variables x and
_xx are in the load reference frame. The electrical stimulus delivered to the muscles comprises the system input, and is indicated by u1 and u2 .
doi:10.1371/journal.pcbi.1000795.g001
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we investigated two hypothesis. Hypothesis 1 states that the power

optimal oscillation frequency of a muscle actuated system is greater

than the resonance frequency of the load. This is in direct contrast to

an impedance-free actuator (such as an ideal electric motor) where

the optimal oscillation frequency occurs exactly at the resonance of

the load. Hypothesis 2 states that a pair of antagonist muscles can

work together to produce more power synergistically than individ-

ually by margins that cannot be predicted without explicit

incorporation of muscle impedance. We tested these hypotheses

both computationally and experimentally. Our computational

approach relied on optimal control solutions to the workloop

maximization problem, which was based on a mathematical model

of the problem. The experimental approach relied on in vitro

measurements of workloop energetics of electrically-stimulated, frog

muscle acting against emulated mass-spring-damper loads.

Materials and Methods

System Model
To investigate the role of muscle-load interaction and muscle

impedance on output energetics, a mathematical model of the

problem was developed. This model formed the basis for the ensuing

optimization of workloop energetics. We modeled the case of

Figure 1D. Note that the case of Figure 1B is a special case of the

problem considered with the coefficients of the antagonist muscle set

to zero. The key ingredient is a muscle model that captures activation

and impedance characteristics of the muscle.

Excitation-contraction dynamics. We assumed the

excitation-contraction dynamics had temporal responses that were

of the same time scale as that of the oscillatory periods, and

consequently cannot be neglected. These dynamics capture the rise

and fall of muscle force in time as inputs are applied. They were

captured by second order processes with real poles that model

calcium diffusion dynamics. We assumed the following model:

_aai(t)~pai
ai(t)zbi ð1Þ

_bbi(t)~pbi
bi(t)zpui

ui(t) ð2Þ

where ai is the activation state of muscle i, bi is an intermediate state

of Ca2z diffusion and re-uptake dynamics and ui is the electrical

stimulus input to muscle i. The parameters pai
, pbi

and pui
were

estimated based on temporal twitch profiles (as detailed in the

supporting material Text S1). The parameters used resulted in

simulated twitch rise and fall time of 125 msec, and a gain of unity.

Bilinear muscle force model. We assumed that the

contractile force exerted by muscle i, Fi, can be approximated

by the function

Fi(t)~AizBixi(t)zCiai(t)zDixi(t)ai(t) i [ 1,2f g ð3Þ

In this model, muscle force Fi is bilinear in length xi and activation

ai. Consequently, the muscle stiffness K~LFi=Lxi~BizDiai is

linear in activation. The parameters Ai, Bi, Ci and Di were identified

based on experimental characterizations that are described in the

supporting material Text S1 and illustrated in Figure S1. Similar

bilinear models have been used to describe muscle force production

in relation to EMG signals in the upper arm [4,26], and also with

respect to steady-state force production in electrically stimulated cat

soleus muscles [27]. In other work [28], we found that for cyclic,

bursting contractions, the bilinear model captures 74% of the

variance in muscle force production over independent validation sets.

Net muscle force exerted on load. Since the contractile

force of each muscle was described with respect to its local

coordinates, we used the following transformation:

x1~xo
1zx; _xx1~ _xx

x2~xo
2{x; _xx2~{ _xx

where xo
1 and xo

2 are the nominal lengths of the muscles.

Therefore, the net muscle force is:

Fnet~F2{F1

~ A2{B2(x{xo
2)zC2a2{D2(x{xo

2)a2

� �
{

A1zB1(xo
1zx)zC1a1zD1(xo

1zx)a1

� � ð4Þ

Load dynamics. The net muscle force excites the mass-spring-

damper system and the resulting response is characterized by:

Fnet~m€xxzb _xxzkx ð5Þ

Interconnected system state equations. From Equations

(1), (2), (3), (4), and (5) the dynamics of the interconnected system

are written as:

_xx~

pa1
1

pb1

pa2
1

pb2

0 1

{k=m {b=m

2
666666666664

3
777777777775

a1

b1

a2

b2

x

_xx

2
666666666664

3
777777777775
z

0

pu1
u1

0

pu2
u2

0

Fnet(x,u)=m

2
666666666664

3
777777777775

_xx~f(x,u)

ð6Þ

where the state vector is x~½a1,b1,a2,b2,x, _xx�T and the control

input vector is u~½u1,u2�T . The nonlinearity of the system is

captured by the bilinear nature of Fnet(x,u).

Optimization of Muscle Workloop Energetics
The model of Equation (6) was treated as the basis for our analysis.

Since our objective is to analyze optimal muscle workloop energetics,

we maximize the average power transfer from the muscles to the load

integrated over one periodic cycle. The instantaneous power

delivered to the load is given by Power(t)~ _xxFnet. The cyclic work

done by the muscles on the load is the integral of the power over one

complete cycle. Therefore the control inputs, u(t), that characterize

power-optimal oscillations are given by the solution of the following

optimization problem:

max
u(t)

Cycle Work~

ðT

0

Power(t)dt~

ðT

0

_xxFnetdt

� �

subject to _xx~f(x,u)

uminƒu(t)ƒumax

x(0)~x(T)

ð7Þ

ð6Þ

Workloop Energetics of Muscle-Actuated Systems
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where f(x,u) is defined in Equation (6) and u(t)~½u1,u2�T is the

control input vector. In this formulation, we assumed that the

terminal time T was given and defined by the objective task.

Therefore, to optimize power at oscillations of frequency k [Hz], we

set the solution time horizon T~1=k [sec].

To derive necessary conditions for the optimal solution of

Problem (7), we applied the Pontryagin Minimum Principle [29].

We followed the following procedure:

1. Augment the cost function with multipliers for each of the

constraints.

2. Define the Lagrangian and Hamiltonian scalar functions.

3. Write the equations governing the dynamics of the optimal

multipliers.

4. Define the necessary conditions for optimal control.

5. Solve the resulting 2-point boundary value problem for the

optimal state trajectory and the associated multipliers.

Details of this derivation, and the numerical methods employed

therein are described as follows. The integrand of the Lagrangian

cost function L(x,u) is given by

L(x,u)~{ _xxFnet

~{ _xx

(A2{A1){B2(x{xo
2){B1(xo

1zx)z

(C2a2{C1a1){D2(x{xo
2)a2

{D1(xo
1zx)a1

8>><
>>:

9>>=
>>;

We augment the dynamical constraints to the cost function, and

define the Hamiltonian scalar function

H(x,u)~L(x,u)zlT f(x,u)

From the Pontryagin principle [29], the evolution of the optimal

co-state variables at the optimal solutions are governed by:

_ll~{+xL(x,u){+xf(x,u)l

The optimal control u� is given by

u�~arg min
u

H(x,u)

~arg min
u

L(x,u)zlT f(x,u)

~arg min
u

lT f(x,u)

where the last equality follows since L(x,u) is not a function of u in

this particular context. Substituting in Equation (6), we get

u�~arg min
u

l1(pa1
a1zb1)zl2(pb1

b1zpu1
u1)z

l3(pa2
a2zb2)zl4(pb2

b2zpu2
u2)z

l5 _xxzl6
1
m

{Fnet{b _xx{kxð Þ

2
664

3
775

~arg min
u

l2pu1
u1zl4pu2

u2

h i
which implies

[u�1~
umin if l2pu1

w0

umax if l2pu1
v0

(

u�2~
umin if l4pu2

w0

umax if l4pu2
v0

(

where umax and umin are upper and lower bounds, respectively, on

the control inputs. Depending on the signs of the switching

functions l2pu1
and l4pu2

, the control u�i assumes either the values

umin or umax. This is a bang-bang control solution, and is an expected

outcome in such power-optimal (or maximum acceleration)

problems [30]. Mathematically, such solutions appear when the

Hamiltonian H is a linear function in the control u, as is the case

in this problem. In the absence of limits on the control, the

optimization problem would be unbounded, implying that the

muscles that can generate unbounded forces will add infinite

power to the load. Therefore, for the optimization problem to be

mathematically well-posed, upper and lower bounds on the

control inputs u1 and u2 are necessary.

In summary, the first order necessary conditions for power-

optimal solutions are given by:

_xx~f(x,u) ð8Þ

_ll~{+xL(x,u){+xf(x,u)l ð9Þ

u�1~
umin if l2pu1

w0

umax if l2pu1
v0

(

u�2~
umin if l4pu2

w0

umax if l4pu2
v0

( ð10Þ

with cyclic boundary conditions:

x(t~0)~x(t~Tf ) ð11Þ

l(t~0)~l(t~Tf ): ð12Þ

Equations (8) and (9) define a two-point boundary value

problem (2-point BVP) that is subject to the cyclic boundary

conditions (11) and (12) and control constraints (10). This 2-point

BVP was solved to give the optimal state trajectory ( _xx�), the

optimal control inputs u�(t)~(u�1,u�2), and the multipliers (l)

associated with the power optimal solution. Methods for solving

this problem numerically are detailed in the supporting material

Text S1.

Experimental Methods
Ethics statement. All animals were handled in strict

accordance with good animal practice as defined by the relevant

national and/or local animal welfare bodies, and all animal work

was approved by the MIT Committee on Animal Care (protocol

number 0705-051-08).

Experimental framework. Experimental investigations

played a key verification role in this work in measuring muscle

Workloop Energetics of Muscle-Actuated Systems
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workloop energetics under the conditions illustrated in Figure 1B

and 1D, as well as in generating data sets to identify mathematical

muscle models (Equations (1), (2) and (3)) necessary for ensuing

optimizations [28]. A full description of the experimental platform

and techniques can be found in [25]. For the benefit of the reader,

we provide a brief description here.

Explanted muscle experiments were conducted on Plantaris

longus muscles harvested from adult male Rana pipiens (leopard

frogs). These muscles were chosen primarily for ease of dissection

of two contralateral muscles from the same frog, and because their

extremal points provide natural mechanical interfaces to the

experimental apparatus (specifically the Achilles tendon and the

knee joint). Experiments were performed on single muscle

configurations as well as configurations of muscle pairs acting

antagonistically as shown in Figures 1B and 1D. These

arrangements were achieved by connecting the muscles to load-

emulating servo-systems. The servo systems measured the muscle

contractile force, and imposed a position trajectory in accordance

with the dynamics of the modeled load in real-time, thereby

effectively connecting the muscle to mechanical boundary

conditions mimicked. In the case of Figure 1D, the interaction

of two antagonist muscles acting on a common load was achieved

by linking two separate servo-systems in software, i.e. the net

measured force (agonist muscle contractile force minus antagonist

muscle contractile force) drove the virtual load. Thus, when one

muscle extended, the other contracted simultaneously and

commensurately in accordance with the equations of motion for

the load (mass-spring-damper in this case). This setup allowed for

direct interaction between the muscle under evaluation, the load,

and the opposing muscle. It also enabled clear experimental

separation of load and muscle dynamics where different load

parameters could be easily programmed in software. Additionally,

this platform enabled direct electrical stimulation of the muscle

through the sciatic nerve which remained unsevered during

dissection. The muscles were placed in oxygenated, circulating

amphibians Ringer’s solution to maintain viability during the

course of experiments. All experiments were conducted at room

temperature (approximately 250C), though the temperature was

not explicitly controlled. In the cases of antagonist muscles

(Figure 1D), experiments were performed on contralateral muscle

pairs harvested from the same frog, thereby maximizing similarity

between the two muscles.

Bipolar electrical stimulation was delivered to the muscles via

hook electrodes that were in contact with the sciatic nerve. Since

the efficacy of electrical stimulation depends on the contact

resistance of the nerve and the electrode (which varies for each

experimental session), the voltage of the simulation trains was

gradually increased at the beginning of each muscle until full

recruitment was observed (as determined by saturation in the

amplitudes of isometric twitch force profiles). Stimulation was

provided in waveforms repeating at the desired oscillation

frequency of the mechanical system. During the active segments

of the waveform, the muscles were stimulated with a pulse train at

200 Hz to ensure full recruitment, and a pulsewidth of 100 ms. The

duration of the active segments of the pulse train and the

oscillation frequency (waveform frequency) were determined based

on the solutions of the optimal control problem.

Experimental conditions. To evaluate the hypotheses, we

measured workloop energetics of single muscles and muscle pairs

acting against emulated mass-spring-damper system. To evaluate

Hypothesis 1, we compared the power output of a single muscle

acting on the mass-spring-damper system at three frequencies: i)

vn~
ffiffiffiffiffiffiffiffiffi
k=m

p
, the natural frequency of the load, ii) ~vvmax, an

estimate of vmax, the frequency that attains maximal power as

predicted by the model, where vmaxwvn, and iii) v2w~vvmax, a

third frequency that is distinctly higher. We conducted

measurements using the parameters {vn = 2 Hz, ~vvmax = 2.5 Hz,

v2 = 3 Hz} for 3 test muscles and the using the parameters

{vn = 4 Hz, ~vvmax = 5 Hz, v2 = 6 Hz} for 4 test muscles.

Workloop measurements were conducted in sets measuring the

power output at the three different frequencies, i.e. P(vn),
P(~vvmax), and P(v2). To factor out any potential confounding

effects due to muscle fatigue, the order of the measurements in

each set was randomized, and each measurement was normalized

by P(~vvmax) of each corresponding set. The normalized power

values are denoted by P(vn), P(~vvmax) and P(v2). For each

muscle, measurements were repeated 5–7 times, with each

measurement consisting of the average of 7 oscillatory cycles.

The power estimate from the first cycle discarded because it is an

atypical oscillation that does not follow the steady-state trajectory

since the system starts from rest.

To evaluate Hypothesis 2, we compared the sum of the powers

generated by each muscle individually to the power generated by

two muscles working together on the same load. Here,

measurement sets consisted of fPa,Pn,Pang, where Pa is the

power generated by the agonist muscle only, Pn is the power

generated by the antagonist muscle only, and Pan is the power

generated by both muscles working in concert. Similar to the

treatment of the data pertaining to Hypothesis 1, measurements

were also randomized in their order to factor out the effects of

fatigue. The synergistic comparison is captured by the ratio

r~
Pan

PazPn

which is computed for each data set. For each muscle pair,

measurements were repeated 6 times, with each measurement

consisting of the average of 7 oscillatory cycles (with the the the

first cycle discarded as well). We conducted measurements on a

load having vn = 2 Hz, with oscillation frequencies set to 3 Hz (3

muscle pairs) and 4 Hz (4 muscle pairs).

In both sets of experiments, the setting of the natural frequency

of the load (2–4 Hz) was comparable to frog jumping frequencies

(observed at 2 Hz [31]) and frequencies of high muscle power

output using the standard workloop technique (observed at 4 Hz

[18]). Load stiffness was chosen to be comparable with muscle

stiffness (750 N/m to 1500 N/m), and mass and damping ratios (f)

were chosen to limit the amplitude of muscle strain to within

experimentally viable ranges.

Results

Optimization Results
The optimal control problem (Problem (7)) was solved for

various values of the time horizon T that characterized the

oscillation frequencies of interest. An example solution is shown in

Figure 2 for an oscillation frequency (5 Hz) that is greater than the

load resonance frequency (vn~2 Hz).

To investigate Hypothesis 1 computationally, successive opti-

mizations similar to those of Figure 2 were conducted as the

oscillation frequency was swept across the range of interest, and

comparisons between optimal power generated by the bilinear

muscle model and the optimal power generated by an impedance

free actuator were drawn. As shown in Figure 3A, in the case of

the system with vn = 2 Hz, the peak power was generated at

vmax = 2.4 Hz. In Figure 3B, in the case with vn = 4 Hz, the peak

power was at vmax = 4.8 Hz. This result is in direct contrast to the

case when the load is driven by impedance-free actuators, where

Workloop Energetics of Muscle-Actuated Systems
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the optimal driving frequency is exactly equal to the resonance

frequency of the load. The increase in optimal stimulation

frequency is attributed to the contribution of active muscle

stiffness to the net stiffness of the system (shown in the stiffness sub-

plots of Figure 2), and thereby tuning the resonance of the

combined muscle-load system.

To investigate Hypothesis 2 computationally, we compared the

power output of the optimal solutions of the single-muscle case

against the optimal solutions of the case of a muscle pair in Figure 4

across the frequency range of interest. The computed power-optimal

responses show that synergistic activation of antagonist muscles may

produce more cyclic work than individual muscle activation by a

factor of more than two (Figure 4B). This is captured by the

synergistic ratio r, and is in direct contrast to constant impedance

actuators where the ratio is exactly two. This model prediction

implies that the energetics of individual muscles (obtained by zero-

admittance workloop tests) cannot simply be summed to draw

conclusions regarding the workloop energetics of the entire system.

Experimental Workloop Energetics
Figures 3C and 3D show the results of experimental workloops

with single muscles acting on mass-spring-damper loads. To test

Hypothesis 1 experimentally, that the peak normalized power

output was indeed at ~vvmaxwvn, measurements were conducted

on two load cases with different natural frequencies (vn~2Hz and

vn~4Hz). For both loads, we found that the normalized power

measures P(~vvmax)wP(vn) and P(~vvmax)wP(v2), with (pv0:01
for all measurements). We attribute this increase in the optimal

oscillation frequency over vn to the stiffness contribution of the

muscles. This increase in optimal frequency over vn cannot be

achieved via an impedance free force source, and can therefore be

directly attributed to the increase in muscle stiffness due to the

activation profile over the course of a full cycle.

Figure 5 shows the power output measurements of a pair of

antagonist muscles acting synergistically compared to their power

output acting individually. When the oscillation frequency was set

to 3 Hz, the value of the energetic ratio r was not statistically

different from 2. However, when the oscillation frequency was set

to 4 Hz, we found r to be 6:96+1:42. The ratio r was significantly

greater than 2 (pv0:01), showing that the energetics of the muscle

pairs are greater than the sum of the energetics attained by

individual activation. This is qualitatively compatible with the

model predictions plotted in Figure 4 and is in support of

Hypothesis 2. This implies the possibility that energetic synergies

may be achieved by a muscle-actuated system to enhance their

energetic performance at particular frequency ranges.

Figure 2. Solution of the optimal control problem. This is an example solution for a time horizon of T~0:2 seconds, corresponding to an
oscillation frequency of 5 Hz. Plots show the bang-bang control inputs [dimensionless] and corresponding activation [dimensionless], muscle forces
[N], time-varying stiffnesses [N/m], the motion of the mass-spring-damper system (displacement, velocity, and the net power imparted per kg of
muscle), and the resulting workloop. In the plots, blue traces pertain to the agonist muscle, the red traces to the antagonist muscle, and black traces
refer to the net effects of both muscles and the load. Note that this particular solution exhibits co-activation as evidenced by the degree of overlap in
the activation signals, and also in the control signals. This co-activation was required to stiffen the overall system to accommodate the relatively high-
frequency of excitation required.
doi:10.1371/journal.pcbi.1000795.g002
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In the experimental measurements above, the absolute power

value of the muscles, normalized by muscle mass, ranged between

17 [W/kg] and 81 [W/kg] at the optimal conditions.

Discussion

The role of active and passive muscle impedance, particularly

stiffness properties, has been studied intensively in the neuromecha-

nics and motor control literature from the perspective of stability of

posture and movement. The main focus of this work is to extend this

literature to include the study of muscle mechanical energetics,

particularly in the context of periodic motions. We focused on the

representative problem of driving a mass-spring-damper by either a

single muscle or a pair of antagonist muscles. This setup can be

considered as an idealization of a single degree-of-freedom joint.

Resonance Tuning
One consequence of explicitly accounting for muscle-load

interaction is the increase in the optimal stimulation frequency of

the coupled system relative to the natural frequency of the uncoupled

Figure 3. The optimal stimulation frequency (vmaxmaxmax) for a mass-spring-damper system actuated by a muscle is greater than the
natural frequency of the load (vnnn). (A & B) Results of dynamic optimizations. Each point in the plots represents a solution similar to that of
Figure 2. For an impedance-free actuator (gray), the optimal frequency coincides with the load natural frequency, whereas for the bilinear muscle
model incorporating activation dependent stiffness (black) the optimal frequency is greater. Results are shown for simulations with vn~2 Hz, f~0:15
and k~750 N/m (A), and vn~4 Hz, f~0:15 and k~750 N/m (B). (C & D) Experimental measurements of power ratios shown for each measurement
set. Workloop power measurements in each set are normalized by P(~vvmax). The error bars at ~vvmax are therefore equal to zero by definition. Both
figures show that P(vn)vP(~vvmax) and P(v2)vP(~vvmax). The asterisks indicated the p value, with (**) for pv0:01 and (*) for pv0:05. (C)
Measurements taken across 3 muscle for load natural frequency vn~2 Hz, f~0:15 and k~750 N/m. (D) Measurements taken across 2 muscles for
load natural frequency vn~4 Hz, f~0:15 and k~750 N/m.
doi:10.1371/journal.pcbi.1000795.g003
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load. This is captured by Figure 3 where the maximal power was

generated at a frequency higher than the uncoupled natural

frequency of the load, which directly supports Hypothesis 1. This is

shown computationally (Figure 3A & 3B) where it is possible to scan

the range of oscillation frequencies systematically to search for the

frequency of peak power generations, and also experimentally

(Figures 3C & 3D) where it is possible to do so only at select

frequencies chosen to show the location of peak power. The increase

in optimal power generation frequency is not an unexpected result

since the stiffness contributions of the muscles should couple in with

the overall frequency of the load. What this enables, however, is that

resonance conditions can be tuned relative to the desired frequency of

oscillation via an appropriate muscle activation pattern.

Taken to the limit of zero load stiffness, we conjecture that this

feature potentially enables creating resonance conditions out of

non-resonant loads. The biomechanics of natural loads in many

biological systems are non-resonating. Consider, as an example,

the motion of a swimming fish. The external restoring force on a

fish’s body is negligible, therefore the sideways bending dynamics

can be considered non-resonant. In the presence of muscle

activation, however, significant activation modulate stiffness is

added to the system, which can be tuned to the desired oscillatory

frequency of the undulating motion. The importance of body

bending stiffness in relation to the undulating frequency and speed

of swimming fish has been reported in [32,33].

Antagonist Collaboration
Another consequence of the coupling between muscle imped-

ance and load dynamics pertains to energetic synergies that are

observed in systems driven by multiple muscle systems. When

multiple muscles act jointly on a common load, each muscle

contributes to the effective load observed by the other muscles

acting on that load. This contribution can be strongly modulated

by the neural input to the muscles.

Taking the simplest case of two antagonist muscles acting in

parallel on a common load, Figure 5 shows that a pair of muscles

can generate more power on a common load than the sum of them

acting individually. The margins of collaboration were much

higher than those theoretically predicted with impedance-free

actuators. For a pair of identical impedance-free actuators, the

ratio r is exactly 2 at all frequencies of oscillation. When one

impedance-free actuator is capable of producing more force than

the other, the ratio r ranges between 1 and 2, but never exceeds 2.

The maximal value of 2 is achieved if the two muscles provide

equal forces, and the minimal value of 1 is approached as the

relative contributions of the two muscles vary widely. Ratios

greater than 2, as demonstrated in the 4 Hz oscillation case (shown

in Figure 5C), and as demonstrated in the maximal values of

Figure 4B, are in direct support of Hypothesis 2, and can only be

achieved if additional muscle properties are introduced, such as

activation dependent impedance.

An Impedance Matching Interpretation
Our findings may be interpreted in the context of the

engineering notion of impedance matching. In engineering

systems, impedance matching plays an essential role when it is

desired to maximize power transfer between two dynamical

systems. When a power source is connected in series with a load (in

Figure 4. Summary of optimal solutions as a function of oscillation frequency. Each point the plots represents a solution similar to that of
Figure 2. (A) Maximal power output produced by antagonist muscles (red) and by an individual muscle (black). (B) Energetic synergies in workloop

measurements can be explored by comparing the ratios r~
Pan

PazPn

, which at certain frequencies is substantially higher than 2. vn is the resonance

frequency of the mass-spring-damper unloaded by the muscles. Results shown for vn~2 Hz, f~0:3 and k~1500 N/m.
doi:10.1371/journal.pcbi.1000795.g004
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Figure 5. Experimental arrangements and workloops of agonist and antagonist muscles acting on second-order loads. At certain
frequency ranges, the optimal workloop energetics of a pair of antagonist muscles acting in concert is more than the optimal workloop energetics of
the muscles acting individually by a factor of 6:96+1:42 (representing mean and standard deviation of the averages of 4 muscle pairs). (A) Workloops
of agonist muscle acting individually. (B) Workloops of antagonist muscle acting individually. (C) Workloops of muscle pair stimulated out of phase,
producing more work on the same load. Asterisks indicate stimulation points (red is for agonist, blue is for antagonist). The first workloop is atypical
as the system converges to a steady-state response and is discarded from energetic computations. All workloops have a counter clock-wise direction,
indicating positive muscle work, which equals the energy dissipated in the damper. For all cases the natural frequency of the load was vn~2 Hz,
f~0:3 and k~1500 N/m. (D) Compiled results for data points similar to A, B and C, with operating frequency = 3 Hz. Data shown across 3 muscle
pairs. The workloop energetics of the two muscles working together is not statistically significant from a value of 2 predicted in the theoretical case of
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a Thevenin equivalent connection), maximal power transfer

occurs when the internal impedance of the source is equal to the

complex conjugate of the load impedance [34]. In a similar

manner, neural activation of muscle modulates its stiffness to allow

matching of muscle mechanical impedance to that of the load.

When such a condition occurs, the power transfer is maximized.

This implies that the mechanical work achieved by a single muscle

is highly affected by the activation pattern of antagonist muscles,

because such antagonist muscles form part of the load on the

agonist muscle, and therefore the energetics of muscle-actuated

systems must be considered holistically.

The impedance of a linear mass-spring-damper load (ZL) is the

transfer function relating the velocity (V ) and force (F ) applied on

the load, and can be expressed as

ZL~
V

F
~

mL(jv)2zbLjvzkL

jv
~bLzj mLv{

kL

v

� �

where mL, bL, and kL are the mass, damper and spring coefficients

of the load. Assuming that the source is primarily dominated by

stiffness terms, as is the case of a bilinear muscle model, the

impedance of the source (ZS ) is:

ZS~
ks

jv

Therefore, for this source impedance, which is purely reactive, we

do not have the ability to arbitrarily change the phase. To

maximize the power transfer from the source to the load,

impedance matching conditions require that the reactive part of

the source impedance is negative the reactive part of the load

impedance [34]. Therefore

Im(ZS)~{Im(ZL)

ks

jv
~{j mLv{

kL

v

� �

or ks~mLv2{kL

Under such conditions, the total system natural frequency

becomes

vn~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kLzks)=mL

p
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kLzmLv2{kL)=mL

q
~v

which implies that the source stiffness is chosen so that the natural

frequency vn of the system matches the desired oscillation

frequency v.

Therefore, as the muscle pair modulates net stiffness ks, to a

value that matches the desired load impedance, energetic

advantages can be attained. Clearly there are limitations to the

efficacy of impedance matching in helping maximize workloop

energetics. For a pair of antagonist muscles to tune their stiffness to

match the reactive impedance component of the load, certain

amounts of co-contraction may be required. This was observed

computationally with the time overlap of the control signals (u1

and u2). While co-contraction may attain the desired frequency

tuning, it will decrease the peak-to-peak net forces produced by the

muscle pair. Beyond a certain break-even point, the peak-to-peak

forces will be greatly diminished to the point that impedance

matching becomes non-optimal.

Implications on Organismal Motor Control
Research in organismal motor control and biomechanics has

reported extensively on the modulation of stiffness in limbs to

enhance postural and dynamic stability. Our findings here provide

further motivation to hypothesize that the central nervous system

may utilize impedance matching as a means to enhance energetics

against external loads. Prior studies support the notion that muscle

stiffness is modulated to attain resonance tuning, though none

have made an explicit energetic connection. Most of these

investigations have focused on arm movements. In the context

of rhythmic movements, perhaps the clearest evidence was

provided in [35], where forearm stiffness was found to increase

quadratically with oscillation frequency, and that the stiffness was

minimal at the resonance of the load. It was shown that by

increasing the oscillation frequency above the load resonance, the

arm stiffness increased in a manner that created resonance of the

arm-load system. In other studies [36–38], surface EMG

measurements in horizontal arm reaching movements have shown

that the overall co-contraction levels increase with increasing

frequency of oscillation, and that co-activation increases with the

square of frequency. Furthermore, in [39], neuromuscular models

of the forearm that predict qualitative resonance tuning behavior

in rhythmic oscillations were proposed. These arguments have also

been extended to the context of of non-rhythmic movements by

comparing the average forearm stiffness during reaching tasks with

the fundamental frequency content of these movements [40].

The degree to which impedance matching is utilized by

organisms specifically for energetic purposes remains to be

addressed in future studies. Using antagonist activation of variable

impedance actuators can enable the central nervous systems to

learn optimal impedances that, when coupled with external loads,

can provide higher energetics. Viewed from this perspective,

activation dependent muscle impedance may be regarded as a

favorable biomechanical property. Furthermore, this postulates

that the mechanical energetics of individual muscles cannot be

directly summed to estimate the total energetics of a multiple-

muscle system.

Supporting Information

Figure S1 Identification of the bilinear model for muscle

contractile force. (A) To explore contractile response over a wide

range of muscle velocities and positions, oscillatory motions were

imposed on the muscles (shown as circles in the position-velocity

space). Each circle represents a particular oscillation, with larger

circles representing larger amplitudes. Electrical stimulation is

triggered at the points indicated by the red asterisks. These were

repeated for oscillations at various frequencies, ranging from 1–

6 Hz. (B) Typical force trajectories showing modulation of

contractile force (as the muscle undergoes oscillations). Experi-

mental measurements shown in black on left, bilinear model

estimates shown in blue on right. Red astersisks indicated electrical

stimulation trigger points. (C) Contribution of individual model

terms to the overall model fit. The bar labeled ‘‘All’’ shows model

prediction when all terms from the generalized impedance model

linear, impedance-free actuators. (E) Compiled results for data points similar to A, B and C, with operating frequency = 4 Hz. Data shown across 4
muscle pairs. The workloop energetics of the two muscles working together significantly greater than 2. The asterisks indicated the p value, with (**)
for pv0:01 and (*) for pv0:05.
doi:10.1371/journal.pcbi.1000795.g005
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(Equation 13) are included. The bar labeled ‘‘Bilinear’’ includes

only the bilinear terms (Equation 3). All terms except for the Bx, C

and Dx can be neglected with minimal e ffects on model accuracy.

Data shown are means and standard deviations from 7 muscles.

(D) Left: an isometric twitch used to estimate activation states.

Right: estimated activation states based on the normalized twitch

profile.

Found at: doi:10.1371/journal.pcbi.1000795.s001 (2.38 MB TIF)

Text S1 Supporting material text.

Found at: doi:10.1371/journal.pcbi.1000795.s002 (0.19 MB PDF)
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