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Introduction
Over the past decade, the outcomes of biomarker-
selected patients with non-small cell lung cancer 
(NSCLC) have been improved by the in crescendo 
discovery of activating mutations, with the conse-
quent development of targeted therapies. The first 
notable success in this personalized medicine era 
came with the identification of activating mutations 
in the kinase domain (exons 18–21) of the epider-
mal growth factor receptor (EGFR) gene, leading to 
dramatic responses to EGFR tyrosine kinase inhibi-
tors (TKIs). EGFR mutations account for 10–17% 
of NSCLC cases in North America and Europe and 
30–50% of NSCLCs in Asian countries [Kris et al. 
2014; Barlesi et al. 2016]. The most common EGFR 
mutations are the p.Leu858Arg (L858R) point 
mutation in exon 21 and small in-frame deletions in 
the region encoded by exon 19, together accounting 
for approximately 85–90% of all EGFR mutations 

[Lynch et al. 2004; Paez et al. 2004; Pao et al. 2004]. 
The first-generation TKIs gefitinib (Iressa®, 
AstraZeneca Pharmaceuticals, London, United 
Kingdom) and erlotinib (Tarceva®, F. Hoffmann-La 
Roche, Basel, Switzerland), and the second-genera-
tion TKI afatinib (Giotrif®, Boehringer Ingelheim, 
Ingelheim, Germany) have shown overall response 
rates (ORRs) ranging from 50% to 75%, improving 
progression-free survival (PFS) and quality of life 
compared with standard platinum-based chemo-
therapy in patients with EGFR-mutant NSCLC 
[Mok et  al. 2009; Rosell et  al. 2012; Yang et  al. 
2015]. This resulted in their approval as first-line 
treatments for patients with advanced NSCLC har-
boring activating mutations in the EGFR kinase 
domain.

Despite these impressive outcomes, acquired 
resistance arises after a median period of 9–13 
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months. Multiple mechanisms have been identi-
fied, including secondary mutations in EGFR 
(notably EGFR T790M), along with mutations in 
the PIK3CA and BRAF genes and amplifications 
in ERBB2 and MET [Sequist et al. 2011; Yu et al. 
2013; Gainor and Shaw, 2013; Stewart et  al. 
2015]. The development of a secondary mutation 
in EGFR when threonine is replaced by methio-
nine at position 790 of exon 20, formally known as 
T790M (p.Thr790Met), is the most common 
mechanism, seen in around 50% of cases. While 
the EGFR-T790M mutation was initially reported 
as a secondary EGFR resistance mutation, several 
studies reported de novo EGFR-T790M muta-
tions, sometimes concomitantly with other EGFR-
activating mutations [Inukai et al. 2006; Su et al. 
2012; Li et al. 2014].

First-generation TKIs compete with adenosine 
triphosphate (ATP) to bind to the kinase domain 
of EGFR, and EGFR T790M significantly 
increases this affinity reducing TKI efficacy 
[Yun et  al. 2008]. Second-generation EGFR 
TKIs were originally developed to be irreversi-
ble EGFR inhibitors with the hope of being 
active against EGFR-T790M resistance muta-
tions, but they have failed to produce meaning-
ful disease response after resistance to gefitinib 
or erlotinib [Sequist et  al. 2010; Miller et  al. 
2012; Ellis et al. 2014].

Osimertinib (AZD9291; AstraZeneca 
Pharmaceuticals), rociletinib (CO-1686; Clovis 
Oncology, Boulder, United States), olmutinib 
(BI-1482694/HM61713, Boehringer Ingelheim/
Hanmi, Songpa-gu, Korea),  ASP8273 (Astellas, 
Tokyo, Japan), EGF816 (Novartis Pharmaceu-
ticals, Basel, Switzerland), and PF-06747775 
(Pfizer, New York, United States) are third-gener-
ation EGFR TKIs with selectivity against EGFR-
T790M resistance as well as EGFR-sensitizing 
mutations, all of which have progressed to clinical 
trials [Cross et al. 2014; Jänne et al. 2015; Sequist 
et al. 2015b; Lee et al. 2015; Goto et al 2015; Jia 
et  al. 2016]. Table 1 presents available efficacy 
data from phase I and II clinical trials.

To date, osimertinib (Tagrisso™, AstraZeneca 
Pharmaceuticals) is the only drug to be approved 
by the European Medicines Agency and the US 
Food and Drug Administration for treatment of 
EGFR-T790M mutated NSCLC patients. This 
review provides an overview of preclinical and 
clinical data.

Biochemical and preclinical background
Osimertinib is a mono-anilino-pyrimidine com-
pound that acts as a covalent EGFR TKI. In 
EGFR-recombinant enzyme assays, osimertinib 
showed potent activity against diverse EGFR 
mutations (L858R, L858R/T790M, exon 19 
deletion, and exon 19 deletion/T790M) and 
exhibited nearly 200 times greater potency against 
L858R/T790M than wild-type EGFR. 
Subsequent murine in vivo studies revealed that 
osimertinib is metabolized to produce at least two 
circulating metabolites, AZ5104 and AZ7550.

In biochemical assays, AZ7550 had a comparable 
potency and selectivity profile to osimertinib, 
although AZ5104 showed greater potency against 
exon 19 deletions, T790M mutants (both approx-
imately 8-fold) and wild-type (approximately 
15-fold) EGFR [Cross et al. 2014]. In addition, 
osimertinib and its active metabolites displayed 
minimal off-target kinase activity for various 
kinases such as ERBB2/4, ACK1, ALK, BLK, 
BRK, MLK1, and MNK2 in in vitro studies 
[Cross et  al. 2014]. The area under the plasma 
concentration–time curve (AUC), maximal 
plasma concentration (Cmax), and minimal con-
centration (Cmin) of osimertinib increased over 
the 20–240 mg dose range with linear pharma-
cokinetics and the Cmax/Cmin ratio for the 80 mg 
osimertinib (capsule formulation) was 1.6 
[Planchard et al. 2016]. The AUC of osimertinib 
metabolites AZ5104 and AZ7550 was approxi-
mately 10% of osimertinib exposure. 
Pharmacokinetic exposure was not significantly 
different between Asian versus non-Asian patients 
[Planchard et al. 2016]. The median time to Cmax 
occurred after 6 h (range 3–24). Plasma concen-
trations decreased with time and the estimated 
mean half life was 48 h, with clearance (CL/F) of 
14.2 (liter/h). Unlike erlotinib, food intake does 
not impact osimertinib kinetics.

The main metabolic pathways of osimertinib are 
oxidation (mainly by cytochrome P450, family 3, 
subfamily A, also known as CYP3A) and dealkyla-
tion and it is eliminated primarily in the feces 
(>65%) and urine (<15%). No clinically signifi-
cant differences in the pharmacokinetics of osi-
mertinib have been identified in terms of age, sex, 
ethnicity, body weight, smoking status, mild to 
moderate renal impairment, or mild hepatic dys-
function. Osimertinib is a competitive inhibitor of 
CYP3A but does not inhibit CYP2C8, 1A2, 2A6, 
2B6, 2C9, 2C19, 2D6, and 2E1. It is a substrate 
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of P glycoprotein and ATP-binding cassette sub-
family G member 2, but is not a substrate of 
organic anion-transporting polypeptide proteins. 
In a clinical pharmacokinetic study [ClinicalTrials.
gov identifier: NCT02163733], the osimertinib 
exposures were not affected by concurrent admin-
istration of omeprazole [Vishwanathan et  al. 
2015]. Gastric pH modifying agents can be con-
comitantly used with osimertinib Tagrisso™ 
without any restrictions.

Clinical efficacy of osimertinib

Phase I clinical trials
The safety and efficacy of osimertinib was assessed 
in the phase I/II AURA trial [ClinicalTrials.gov 
identifier: NCT01802632] in patients with locally 
advanced or metastatic EGFR-mutated NSCLC 
who had radiologically documented disease pro-
gression after treatment with at least one first- or 
second-generation EGFR TKI [Jänne et al. 2015]. 
The study included 253 patients who received 
osimertinib at five dose levels ranging from 20 to 
240 mg daily and distributed between two 
cohorts. Among 31 patients enrolled in the dose-
escalation cohort, no dose-limiting toxic effects 
occurred and an additional 222 patients were 
treated in five expansion cohorts. All patients had 
received at least one prior EGFR TKI, and 80% 
had received prior cytotoxic chemotherapy. The 
EGFR-T790M mutation was detected in tumors 
from 138 patients (62%) in the expansion cohort. 
Of the 253 patients treated across all dose levels, 
239 were evaluated for response. The ORR in the 
combined T790M-positive and T790M-negative 
populations was 51% [95% confidence interval 
(CI) 45–58], with 122 patients having a con-
firmed partial response (PR) and one patient a 
complete response (CR). Stable disease (SD) was 
observed in 78 patients (33%) and 34 (14%) 
experienced disease progression. The disease 
control rate (DCR; CR, PR or SD) was 84% 
(95% CI 79–88). The ORR was similar between 
the 150 Asian and 89 non-Asian patients (50% 
versus 54%). The 80 mg daily dose was adopted 
for future studies based on increasing toxicity at 
160 and 240 mg daily combined with similar 
response rates across all dose levels.

Osimertinib exhibited improved efficacy in 
patients whose tumor harbored the EGFR-
T790M mutation. Of 138 patients with a cen-
trally confirmed EGFR-T790M mutation, 127 

were evaluable for response. Outcomes were sub-
stantially better in this EGFR T790M-postive 
population compared with patients with T790M-
negative tumor, with an ORR of 61% (95% CI 
52–70%) versus 21% (95% CI 12–34%), a DCR 
of 95% (95% CI 90–98%) versus 61% (95% CI 
47–73%), and median PFS of 9.6 versus 2.8 
months, respectively [Jänne et al. 2015].

Updated results from this trial were recently pre-
sented. The efficacy and safety data from the 80 
mg expansion cohort in patients with centrally 
confirmed T790M-positive NSCLC with disease 
progressing following either one prior therapy 
with an EGFR-TKI or both an EGFR-TKI and 
another anticancer therapy, as well as from two 
expansion cohorts who received osimertinib 80 
mg or 160 mg once daily as first-line treatment in 
patients with EGFR-mutated advanced NSCLC. 
The former population included 63 patients, 61 of 
whom were evaluable for response with an ORR 
of 71% (95% CI 57–82%), a DCR of 93% (95% 
CI 84–98%), and median PFS of 9.7 (95% CI 
8.3-13.6) months [Yang et al. 2016b]. The latter 
population included 60 patients treated with osi-
mertinib 80 mg (n = 30) or 160 mg (n = 30) daily 
and all were evaluable. The confirmed ORR was 
77% (95% CI 64–87%) with a DCR of 98% (95% 
CI 89–100%). Median PFS was 19.3 (95% CI 
13.7-not calculated), supporting osimertinib use 
in both first-line and later settings [Ramalingam 
et al. 2016].

Phase II clinical trials
The 80 mg daily dose was evaluated in the phase 
II T790M-positive extension cohort of the 
AURA trial (described above) and in an addi-
tional phase II AURA2 study [ClinicalTrials.gov 
identifier: NCT02094261] designed for patients 
with confirmed EGFR-mutant T790M-positive 
locally advanced or metastatic NSCLC who 
have progressed following prior therapy with an 
approved EGFR TKI. A preplanned pooled 
analysis of both studies was recently presented, 
including a total of 411 patients: 201 patients 
from the extension cohort of the AURA trial and 
210 patients from the AURA2 trial, 397 of whom 
were included in the response rate evaluation. 
The ORR was 66% (95% CI 61–71%) and the 
DCR was 91% (95% CI 88–94%). Median PFS 
was 11.0 (95% CI 9.6–12.4) months, with a 
median response duration of 12.5 months (95% 
CI 11.1–not reached) [Yang et al. 2016b].
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Phase III clinical trials
Additional phase III trials involving osimertinib in 
different settings are ongoing. The phase III First-
Line-AURA (FLAURA) trial [ClinicalTrials.gov 
identifier: NCT02296125] in EGFR-mutated 
treatment-naïve patients with NSCLC was 
designed to compare osimertinib 80 mg daily ver-
sus current standard of care EGFR TKIs (gefi-
tinib/erlotinib). The AURA3 trial [ClinicalTrials.
gov identifier: NCT02151981] was an open-label, 
randomized study in the second-line setting of osi-
mertinib versus a platinum-based doublet chemo-
therapy for locally advanced or metastatic NSCLC 
with the EGFR-T790M mutation. In a very recent 
press release (dated 18 July 2016) published on 
the AstraZeneca website, it was announced that 
the AURA3 phase III trial had met its primary 
endpoint, demonstrating superior PFS compared 
with standard platinum-based doublet chemo-
therapy. In this study that included over 400 
patients, osimertinib demonstrated a similar safety 
profile as in previous trials and results for ORR, 
DCR, and duration of response were also clini-
cally meaningful compared with chemotherapy. 
Figure 1 summarizes the development of osimerti-
nib monotherapy from phase I through III trials in 
patients with advanced EGFR-mutant NSCLC.

In the adjuvant setting, the ongoing ADjuvant-
AURA (ADAURA) trial [ClinicalTrials.gov  

identifier: NCT02511106] is a double-blind, ran-
domized, placebo-controlled trial assessing the 
efficacy and safety of osimertinib versus placebo in 
patients with EGFR-mutated stage IB–IIIA 
NSCLC following complete tumor resection. 
The results are not yet available.

Osimertinib in brain and leptomeningeal 
metastasis
The cumulative incidence of brain metastasis 
(BM) and leptomeningeal metastasis (LM) in 
patients with NSCLC is 16–35% and 3–5%, 
respectively, and is associated with poor progno-
sis [Schouten et  al. 2002; Chamberlain and 
Kormanik, 1998; Liao et al. 2015]. The real inci-
dence in the EGFR-mutated NSCLC population 
is unknown, although some data are available 
from retrospective cohorts reporting an incidence 
of 24% for BM and 9% for LM [Rangachari et al. 
2015; Kuiper et al. 2015]. First- and second-gen-
eration EGFR TKIs have limited blood brain bar-
rier penetration [Omuro et  al. 2005; Lee et  al. 
2010; Jamal-Hanjani and Spicer, 2012], with 
afatinib having the highest efficacy despite its 
incomplete penetration [Hoffknecht et al. 2015]. 
Osimertinib induced sustained tumor regression 
in an EGFR-mutated PC9 mouse BM model and 
human pharmacokinetics and mouse pharma-
cokinetics/pharmacodynamics models suggest 

Figure 1. Osimertinib development from phase I–III trials in advanced EGFR-mutant NSCLC.
*No limit on prior EGFR-TKI or systemic regimens. $Cisplatin or carboplatin. aNSCLC, advanced non-small cell lung cancer; 
EGFRm, epidermal growth factor receptor mutant; NCT number, ClinicalTrials.gov identifier; PD, progressive disease; qd, 
once daily; TKI, tyrosine kinase inhibitor.
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that doses of 80 mg and 160 mg could be active in 
human central nervous system (CNS) disease 
[Kim et al. 2014]. Clinical activity of osimertinib 
in CNS disease was observed in the phase I 
AURA trial and an analysis from AURA phase II 
trials [Ahn et al. 2015] demonstrated the consist-
ent activity of osimertinib in patients with EGFR-
mutant T790M NSCLC with and without brain 
metastases, suggesting its activity in the brain. 
The analysis of osimertinib pharmacokinetics in 
cerebrospinal fluid was an exploratory objective 
in the AURA extension phase II trial.

The phase I BLOOM study [ClinicalTrials.gov 
identifier: NCT02228369] was designed to assess 
for the first time the safety, tolerability, pharma-
cokinetics, and preliminary antitumor activity of 
AZD3759, an oral EGFR TKI which has excel-
lent CNS penetration and which induces strong 
regression of BM in a mouse model [Zeng et al. 
2015]. In this study, patients with BM and LM 
may also be enrolled to assess the antitumor effi-
cacy, safety, pharmacokinetics, and potential bio-
logical activity of osimertinib 160 mg daily in 
patients with EGFR-mutated NSCLC whose dis-
ease failed to respond to standard treatment and 
who developed CNS disease (Figure 2). The 
AZD3759 cohort is ongoing while an update 
from the EGFR-mutant NSCLC cohort with LM 
from the osimertinib arm was recently presented; 
21 Asian patients with EGFR-mutated NSCLC 
and LM disease were treated with osimertinib 
160 mg daily. All were evaluable for efficacy; 
seven (33%) had a confirmed radiological 
response, nine (43%) had stable disease, and neu-
rological function improvement was seen in five 
(24%) patients [Yang et al. 2016a].

Osimertinib in the first-line setting
Considering the activity of osimertinib against 
EGFR-sensitizing as well as EGFR-T790M resist-
ance mutations, added to a favorable toxicity pro-
file, in the near future osimertinib may well be 
considered the option of choice to treat patients 
with EGFR-mutant NSCLC in the first-line set-
ting. Indeed, preliminary efficacy results are 
encouraging in patients with EGFR-mutant 
NSCLC who are treatment naïve as reported from 
the two expansion cohorts from the phase I AURA 
trial [Ramalingam et al. 2016]. Results from the 
phase III FLAURA trial [ClinicalTrials.gov iden-
tifier: NCT02296125] are eagerly awaited; if they 
confirm preliminary results, changes in the cur-
rent sequence strategy should be discussed.

The safety profile of osimertinib
The dose-limiting toxicity (DLT) of the currently 
available first- and second-generation TKIs gefi-
tinib, erlotinib, and afatinib is dominated by inhi-
bition of wild-type EGFR in the skin and 
gastrointestinal tract. Osimertinib exhibited 
around 200 times greater potency against L858R/
T790M than wild-type EGFR, resulting in an 
attractive EGFR-selective agent in comparison 
with early-generation TKIs [Cross et al. 2014].

Osimertinib was relatively well tolerated in the 
phase I AURA trial [Jänne et al. 2015]. No DLT 
was observed at any dose level up to 240 mg daily. 
In the combined cohort of 253 patients, the most 
common adverse events (usually grade 1–2) were 
diarrhea (47%), skin toxicity (rash/acne, 40%), 
nausea (22%), and anorexia (21%). Diarrhea and 
skin toxicity increased with escalating doses of 

Figure 2. Phase I BLOOM trial to assess the safety, tolerability, pharmacokinetics, and antitumor activity of 
AZD3759 in EGFR-mutant NSCLC and osimertinib 160 mg daily in EGFR-mutant NSCLC with central nervous 
system disease. bid, twice daily; BM, brain metastasis; EGFR, epidermal growth factor receptor; NSCLC, non-
small cell lung cancer; qd, once daily; TKI, tyrosine kinase inhibitor.
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osimertinib. Overall, however, osimertinib was 
associated with less dermatologic and gastrointes-
tinal toxicity compared with historic data and 
clinical experience with other approved EGFR 
TKIs. Only 13% of patients experienced a grade 
3 or higher drug-related adverse event. Serious 
adverse events were observed in 22% of patients 
(pneumonitis-like events, pulmonary embolism, 
and pleural effusion), with 6% of patients experi-
encing a serious drug-related adverse event. 
Adverse events prompted drug reductions in 7% 
of patients and drug discontinuation in 6% of 
patients. The frequency and severity of adverse 
events were similar between Asian and non-Asian 
patients. The six cases of potential pneumonitis-
like events resolved after treatment discontinua-
tion. Hyperglycemia and QT prolongation were 
reported in 6 (2%) and 11 (4%) patients, respec-
tively. Among the seven fatal adverse events 
reported, only one (pneumonia) was considered 
as possibly drug related.

The phase II AURA extension and the AURA2 
trials showed similar results regarding adverse 

events. The most frequent adverse events (usu-
ally grade 1–2) reported from the pooled analysis 
were rash (41%), diarrhea (38%), dry skin 
(30%), and paronychia (29%). Grade 3 or higher 
adverse events were seen in 36% of patients. Any 
grade interstitial lung disease and QT prolonga-
tion were reported in 3% of patients each and 
only one case of grade 2 hyperglycemia was 
reported [Yang et al. 2016b]. Unlike osimertinib, 
hyperglycemia was reported in 36% of patients 
treated with rociletinib [Sequist et  al. 2015b]. 
Table 2 summarizes drug-related adverse events 
occurring at the approved dose of 80 mg/day 
from the phase I AURA trial and the pooled anal-
ysis from the AURA extension and AURA2 stud-
ies, respectively.

Osimertinib-resistant mutations
Preclinical studies and patient post-progression 
biopsies allowed identification of multiple resist-
ance mechanisms to first- to third-generation 
EGFR TKIs. Following the discovery that T790M 
is the most common acquired resistance mutation 

Table 2. Summary of drug-related adverse events of osimertinib occurring in at least 15% of patients at 
the approved dose of 80 mg/day from the phase I AURA trial and the pooled analysis of phase II trials (AURA 
extension and AURA2) in patients with EGFR-T790M-mutant advanced NSCLC.

Adverse event, n (%) Grade 1 Grade 2 Grade ⩾3 Any grade

AURA phase I N = 63*
 Rash 21 (33) 2 (3) 0 23 (36)
 Diarrhea 16 (25) 3 (5) 1 (2) 22 (35)
 Paronychia 11 (18) 6 (10) 1 (2) 18 (29)
 Dry skin 11 (18) 3 (5) 0 14 (22)
 Fatigue 9 (14) 0 0 10 (16)
Select AEs
 ILD 0 0 1 (2) 1 (2)
 QT prolongation 0 0 1 (2) 1 (2)
 Hyperglycemia 0 0 0 0
AURA pooled phase II analysis N = 411
 Rash 146 (36) 18 (4) 3 (<1) 167 (41)
 Diarrhea 138 (34) 17 (4) 2 (<1) 157 (38)
 Dry skin 116 (28) 9 (2) 0 125 (30)
 Paronychia 88 (21) 30 (7) 0 118 (29)
Select AEs
 ILD 4 (1) 0 8 (2) 12 (3)
 QT prolongation 7 (2) 3 (<1) 4 (1) 14 (3)
 Hyperglycemia 0 1 (<1) 0 1 (<1)

*63 patients with ‘centrally confirmed’ T790M-positive NSCLC who have received osimertinib 80 mg/day.
AE, adverse event; EGFR, epidermal growth factor receptor; ILD, interstitial lung disease; NSCLC, non-small cell lung 
cancer.
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to gefitinib and erlotinib, several drugs were devel-
oped targeting both EGFR-sensitizing and 
T790M-resistant mutations. Although various 
second-generation EGFR TKIs such as afatinib, 
neratinib, and dacomitinib showed promising 
activity against T790M-positive cells in preclinical 
studies, this did not translate into the clinic, with 
none of them showing efficacy in patients whose 
disease progressed on the first-generation agents 
gefitinib and erlotinib [Miller et al. 2012; Reckamp 
et al. 2014; Sequist et al. 2010]. As a consequence, 
third-generation EGFR TKIs were developed to 
target the T790M mutation.

Despite impressive initial outcomes with these 
new molecules, new mutations and other mecha-
nisms of resistance are emerging. Among these, 
the C797S mutation in exon 20 of EGFR was 
found to be the most common mechanism 
responsible for resistance to osimertinib. This 
point mutation was identified from circulating 
tumor DNA (ctDNA) of patients included in the 
phase I AURA trial whose disease progressed on 
osimertinib (6 out of 15 patients, 40%) [Thress 
et al. 2015]. The same mutation was also reported 
in one case that led to resistance to olmutinib, 
another oral, third-generation EGFR TKI active 
against mutant EGFR isoforms, including T790M 
[Song et  al. 2016]. Preclinical EGFR L858R/
T790M/C797S mutation cell models exhibited in 
vitro sensitivity to cetuximab, an antibody that 
blocks EGFR dimerization [Li et al. 2005; Ercan 
et al. 2015], but this was not confirmed in in vivo 
analyses. However, the allosteric inhibitor EAI045 
in combination with cetuximab exhibited mecha-
nistic synergy and was effective in mouse models 
of lung cancer driven by EGFR L858R/T790M 
and by EGFR L858R/T790M/C797S [Jia et  al. 
2016]. Interestingly, the allelic context in which 
C797S was acquired may predict responsiveness 
to subsequent TKI treatments. For example, if 
the C797S and T790M mutations are in trans, 
cells will be resistant to third-generation EGFR 
TKIs, but sensitive to a combination of first- and 
third-generation TKIs; and if C797S develops in 
T790 wild-type cells, this results in resistance to 
third-generation TKIs, while sensitivity to first-
generation TKIs is retained [Niederst et al. 2015]. 
These data are of great clinical value in sequenc-
ing for this mutation in patients with acquired 
resistance to osimertinib.

The acquired resistance associated with the 
EGFR T790M mutation can occur either by 

selection of preexisting EGFR T790M-positive 
clones or via genetic evolution of initially EGFR 
T790M-negative drug-tolerant cells, suggesting 
that cancer cells that survive third-generation 
TKIs may serve as a key reservoir from which 
acquired resistance can emerge during treatment 
[Hata et al. 2016]. Navitoclax (ABT-263, [Ackler 
et al. (2012)], Abbott Laboratories, Illinois, USA) 
a BCL-2 family inhibitor, enhances the apoptotic 
response of late-resistant EGFR T790M cells 
with decreased sensitivity to EGFR inhibition. 
The combination of navitoclax with the third-
generation EGFR TKI WZ4002 (preclinical 
compound) induced more apoptosis compared 
with WZ4002 alone in both in vivo and in vitro 
analyses. This approach could be an effective 
strategy for treating EGFR T790M-positive can-
cers that have a decreased apoptotic response to 
EGFR inhibition [Hata et al. 2016]. An ongoing 
phase Ib trial is evaluating the safety and tolera-
bility of the osimertinib/navitoclax combination 
in patients with EGFR-mutant NSCLC following 
resistance to prior EGFR TKIs [ClinicalTrials.
gov identifier: NCT02520778].

Additional EGFR-independent mechanisms of 
resistance to osimertinib have been reported. 
NRAS mutations, including a novel E63K muta-
tion, and amplifications of wild-type NRAS or 
KRAS have been described as mechanisms of 
acquired resistance to osimertinib but also to gefi-
tinib and afatinib [Eberlein et al. 2015]. In vitro, a 
combination of osimertinib with the MEK inhibi-
tor selumetinib prevented emergence of resistance 
in PC9 (Ex19del) cells and delayed resistance in 
NCI-H1975 (L858R/T790M) cells. In vivo, con-
comitant osimertinib with selumetinib caused 
regression of osimertinib-resistant tumors in an 
EGFR-mutant/T790M transgenic model [Eberlein 
et al. 2015]. This association is been evaluated in 
the phase Ib TATTON trial [ClinicalTrials.gov 
identifier: NCT02143466]. In addition, the com-
bination of trametinib, another MEK inhibitor, 
with WZ4002 prevents the development of 
acquired resistance in EGFR-mutant lung cancer 
models [Tricker et al. 2015].

Amplifications in HER2 and MET genes were also 
described as potential mechanisms of acquired 
resistance to osimertinib in patients with EGFR-
T790M-mutant NSCLC [Planchard et al. 2015]. 
Additionally, loss of T790M at the time of pro-
gression may be mediated by overgrowth of cells 
harboring HER2 amplification, BRAF V600E or 
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PIK3CA mutations, as was recently reported fol-
lowing examination of plasma specimens from 
patients included in the phase I AURA trial 
[Oxnard et al. 2015].

In addition, resistant tumors have been reported 
to show phenotypic changes, such as small-cell 
lung cancer transformation or epithelial to mes-
enchymal transition [Sequist et al. 2011; Yu et al. 
2013; Kim et al. 2015]. Figure 3 summarizes the 
known mechanisms of resistance to third-genera-
tion EGFR TKIs.

Overcoming osimertinib-resistant disease
The heterogeneity in the acquired resistance mech-
anisms to osimertinib provides the basis for investi-
gating different inhibitory combination strategies. 
Therefore, osimertinib-based combinations are 
currently being investigated in several studies. The 
multiarm phase Ib TATTON trial [ClinicalTrials.
gov identifier: NCT02143466] was designed to 
evaluate the safety, tolerability, and preliminary 
antitumor activity of osimertinib in combination 
with durvalumab (anti-PD-L1 monoclonal anti-
body), savolitinib (MET inhibitor) or selumetinib 
(MEK 1/2 inhibitor) in patients with advanced 
EGFR-mutant NSCLC whose disease has pro-
gressed on an EGFR TKI. Preliminary results from 
the osimertinib/durvalumab arm were recently pre-
sented [Ahn et  al. 2016]. In patients with prior 
EGFR TKI therapy, investigator-assessed ORR 
was 67% (6/9) in those with T790M-mutant 

tumors compared with 21% (3/14) in T790M-
negative NSCLC. Regarding safety data, intersti-
tial lung disease was reported in 38% (13/34) of 
patients, higher than would be expected with either 
drug alone. Five events were grade 3–4 and there 
were no fatalities; most cases were managed using 
steroids [Ahn et al. 2016]. Based on these data, the 
recruitment into the osimertinib plus durvalumab 
arm of TATTON is currently on hold, but expan-
sion cohorts of the MET and MEK inhibitor com-
binations are ongoing. In addition, the phase III 
Combination-AURA in Lung (CAURAL) trial 
[ClinicalTrials.gov identifier: NCT02454933] is 
being conducted in second-line metastatic EGFR-
mutant/T790M-positive NSCLC patients testing 
osimertinib plus durvalumab versus osimertinib 
monotherapy for their impact on PFS. This study 
was also stopped prematurely due to the pulmo-
nary toxicity observed in the TATTON trial.

On the basis of preclinical observations that afatinib 
(an irreversible ErbB family blocker) plus cetuxi-
mab (an anti-EGFR monoclonal antibody) over-
came T790M-mediated resistance [Regales et  al. 
2009], the combination was evaluated in a phase Ib 
trial enrolling 126 heavily pretreated patients with 
advanced EGFR-mutant NSCLC who developed 
resistance to first-generation erlotinib/gefitinib. 
The ORR was 29%, comparable in both T790M-
positive and T790M-negative tumors (32% versus 
25%) and the median PFS was 4.7 (95% CI 4.3–
6.4) months [Janjigian et al. 2014]. However, dual 
EGFR inhibition significantly improves toxicity, 

Figure 3. Mechanisms of resistance to third-generation EGFR TKIs osimertinib and rociletinib. Data from 
Piotrowska et al. [2015], Thress et al. [2015], Yu et al. [2015], Planchard et al. [2015], and Kim et al. [2015]. amp, 
amplification; EGFR, epidermal growth factor receptor; SCLC, small cell lung cancer; TKI, tyrosine kinase 
inhibitor. 
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including (all grade) rash (seen in 90% of patients), 
diarrhea (71%), and stomatitis (56%). Grade 3–4 
adverse events were observed in 46% of patients 
[Janjigian et al. 2014]. A randomized phase II/III 
trial [ClinicalTrials.gov identifier: NCT02438722] 
of afatinib plus cetuximab versus afatinib alone is 
currently open in treatment-naïve patients with 
advanced EGFR-mutant NSCLC. The dual EGFR 
blockage is being evaluated in a phase I trial 
[ClinicalTrials.gov identifier: NCT02496663] 
combining osimertinib with the anti-EGFR mono-
clonal antibody necitumumab to assess safety and 
determine the optimal dose in patients with EGFR-
mutant advanced NSCLC whose disease has pro-
gressed on a previous EGFR TKI.

The dual vascular endothelial growth factor 
receptor (VEGFR) and EGFR blockade inhibits 
tumor growth in EGFR TKI resistance xenograft 
models [Naumov et  al. 2009]. Indeed, this 
hypothesis was confirmed in two phase II clinical 
trials in patients with EGFR-mutant NSCLC 
who are treatment naïve: the randomized Japanese 
(JO25567) trial comparing erlotinib plus bevaci-
zumab versus erlotinib alone, and the single-arm 
(Bevacizumab and ErLotinib In EGFR Mut+ 
NSCLC [BELIEF]) trial in white patients. 
Median PFS was encouraging and similar in both 
studies, supporting the combination in the first-
line setting [Seto et al. 2014; Stahel et al. 2015]. A 
phase I trial was thus designed to evaluate the 
safety of two osimertinib-based combination 
strategies, with necitumumab or ramucirumab 
(an anti-VEGFR2 monoclonal antibody) in 
patients with advanced EGFR-T790M-mutant 
NSCLC after progression on first-line EGFR 
TKI therapy [ClinicalTrials.gov identifier: 
NCT02789345]. Finally, the combination of osi-
mertinib and bevacizumab will be evaluated in 
another phase I/II 3+3 dose-escalation design 
[ClinicalTrials.gov identifier: NCT02803203] to 
test the safety of combining these drugs.

For patients whose tumors undergo small-cell 
lung cancer transformation, platinum-based plus 
etoposide chemotherapy is recommended. Table 
3 provides information about ongoing and forth-
coming osimertinib-based combination trials to 
treat or prevent osimertinib-acquired resistance.

Osimertinib in the era of liquid biopsies
To date, there is increasing evidence that a single 
tissue biopsy may not adequately represent 

intrinsic tumor heterogeneity, particularly in cases 
of disease progression. Moreover, tumor location 
and the risk of complications are limitations for 
new tissue biopsies. Emerging evidence suggests 
that analysis of ctDNA could more broadly cap-
ture the spectrum of resistant clones that may 
appear throughout the course of the disease. 
Performing serial ctDNA analyses could also eval-
uate the longitudinal response, and potentially 
detect resistance mutations before documented 
radiographic progression [Thress et  al. 2015; 
Piotrowska et al. 2015]. For example, ctDNA was 
used to detect T790M in plasma in 70% (23 of 35) 
of patients treated with rociletinib who had a T790 
wild-type tissue biopsy [Sequist et  al. 2015a]. 
Notably, the efficacy of rociletinib was equivalent 
whether T790M was detected in tissue or in 
plasma, suggesting that noninvasive testing may be 
adequate for predicting response and could pro-
vide additional information in patients with tissue 
biopsies which are negative for T790M [Thress 
et  al. 2015; Piotrowska et  al. 2015]. In addition, 
early acquisition of EGFR-resistance mutations 
could be found by measuring ctDNA in the urine 
[Husain et al. 2015]. Recently, genotype-matched 
results from plasma, tissue, and urine samples 
from patients included in the phase I/II TIGER-X 
trial were reported. Considering the tissue sample 
as the reference, sensitivity for detecting T790M 
mutation in plasma and urine was 80.9% and 
81.1%, respectively. Response rates were similar in 
the T790M-mutant population irrespective of 
whether the status was identified in plasma, tissue, 
or urine [Wakelee et al. 2016].

Plasma samples from 192 patients enrolled in the 
phase I AURA trial were collected and genotyped. 
Sensitivity for detecting EGFR-sensitive and 
T790M-resistant mutations was 87% and 78%, 
respectively. Clinical response rates were greater 
in T790M-positive patients, as assessed by either 
tissue or plasma genotyping [Thress et al. 2014]. 
Eligibility for treatment with osimertinib will be 
dependent on mutational status, which will be 
determined via a validated diagnostic test based 
on a tumor tissue sample or plasma. Availability 
of a blood-based test for ctDNA means that phy-
sicians and patients have multiple options to test 
for a T790M-resistant mutation.

Discussion
The EGFR-T790M mutation is the main mecha-
nism of acquired resistance to first- and 
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second-generation EGFR TKIs and represents a 
barrier in the treatment of patients with EGFR-
mutant advanced NSCLC. Osimertinib has dem-
onstrated strong efficacy and safety data in phase I 
and II trials, and has become the first EGFR 
inhibitor approved for the treatment of NSCLC 
with the EGFR-T790M mutation. Patients with 
advanced NSCLC with EGFR-activating muta-
tions whose disease progresses on a first-line 
EGFR TKI have traditionally been offered plati-
num-doublet chemotherapy as second-line treat-
ment. Platinum-doublet chemotherapy shows 
ORRs of approximately 30%, slightly higher than 
the rate observed in the T790M-negative popula-
tion, but significantly lower than the 61–71% 
ORR reported in T790M-positive cohorts in 
phase I and II trials with osimertinib. The phase 
III AURA3 trial [ClinicalTrials.gov identifier: 
NCT02151981] confirms the superiority of osi-
mertinib for treating patients with EGFR-T790M-
mutant NSCLC in the second-line setting 
compared with standard pemetrexed-containing/
platinum-based chemotherapy. In addition, con-
sidering the favorable safety profile of osimertinib 

added to its systemic and CNS efficacy, osimerti-
nib is currently the most attractive option in the 
second-line setting for patients with T790M-
mutant NSCLC, delaying chemotherapy to the 
third-line setting, as well as for patients with 
T790M-postive NSCLC with brain or leptome-
ningeal metastases. Figure 4 illustrates a potential 
treatment algorithm for patients with EGFR-
mutated advanced NSCLC. If we take into con-
sideration the encouraging response outcomes 
(ORR 77%, DCR 98%) and PFS (approximately 
19 months in the first-line setting), osimertinib is 
likely to be the best option for treating patients 
with advanced EGFR-mutant NSCLC as first-
line therapy. The phase III FLAURA trial 
[ClinicalTrials.gov identifier: NCT02296125] 
probably gives us the approach for better position-
ing osimertinib regarding current EGFR TKIs in 
order to improve sequences with the final objec-
tive of improving patient outcomes.

The role of EGFR TKIs in the adjuvant setting 
for nonmetastatic EGFR-mutated lung cancer is 
in a very early development stage and remains 

Figure 4. Potential treatment algorithm for patients with EGFR-mutated advanced NSCLC. CT, chemotherapy; 
EGFR, epidermal growth factor receptor; MoR, mechanism of resistance; mPFS, median progression-free 
survival; ORR, overall response rate; qd, once daily; SCLC, small cell lung cancer; TKI, tyrosine kinase 
inhibitor.
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controversial. Erlotinib and gefitinib were evalu-
ated in prospective trials suggesting an improve-
ment in disease-free survival, but none of these 
trials demonstrate a benefit in overall survival 
[Goss et  al. 2013; Janjigian et  al. 2011; Pennell 
et  al. 2014; Kelly et  al. 2015]. The phase III 
ADAURA trial [ClinicalTrials.gov identifier: 
NCT02511106] comparing osimertinib with pla-
cebo as adjuvant therapy in stage IB-IIIA EGFR-
mutated NSCLC following complete tumor 
resection is currently recruiting patients, and the 
jury remains out until at least preliminary results 
become available. These studies have the poten-
tial to significantly expand the role of osimertinib 
in the treatment algorithm for EGFR-mutated 
NSCLC.

The heterogeneity of resistant cancers plays an 
important role, not only in terms of response 
and resistance to the new EGFR TKIs, but in 
allowing different combination strategies to be 
more effective in preventing and delaying resist-
ance mechanisms. Due to its safety profile, osi-
mertinib is now considered an attractive drug to 
combine with other targeted therapies. While 
combinations with MEK and MET inhibitors as 
well as antiangiogenic agents are promising, we 
must exercise precaution with respect to their 
toxicity profiles. Table 3 summarizes ongoing 
and forthcoming osimertinib-based combination 
trials.

Conclusion
Osimertinib, developed in less than 3 years, rep-
resents one of the fastest cancer drug develop-
ment programs with respect to obtaining approval 
for the treatment of patients with EGFR-T790M 
NSCLC whose disease has progressed on EGFR 
TKIs. The encouraging results obtained in 
patients with EGFR-mutant NSCLC in the first-
line setting place it as an established critical drug 
in this scenario.
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