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Abstract

tRNase ZL-utilizing efficacious gene silencing (TRUE gene silencing) is a newly developed technology to suppress
mammalian gene expression. TRUE gene silencing works on the basis of a unique enzymatic property of mammalian tRNase
ZL, which is that it can recognize a pre-tRNA-like or micro-pre-tRNA-like complex formed between target RNA and artificial
small guide RNA (sgRNA) and can cleave any target RNA at any desired site. There are four types of sgRNA, 59-half-tRNA,
RNA heptamer, hook RNA, and ,14-nt linear RNA. Here we show that a 14-nt linear-type sgRNA against human miR-16 can
guide tRNase ZL cleavage of miR-16 in vitro and can downregulate the miR-16 level in HEK293 cells. We also demonstrate
that the 14-nt sgRNA can be efficiently taken up without any transfection reagents by living cells and can exist stably in
there for at least 24 hours. The naked 14-nt sgRNA significantly reduced the miR-16 level in HEK293 and HL60 cells. Three
other naked 14-nt sgRNAs against miR-142-3p, miR-206, and miR-19a/b are also shown to downregulate the respective
miRNA levels in various mammalian cell lines. Our observations suggest that in general we can eliminate a specific cellular
miRNA at least by ,50% by using a naked 14-nt sgRNA on the basis of TRUE gene silencing.
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Introduction

tRNase ZL is a long form of tRNA 39 processing endor-

ibonuclease (tRNase Z, or 39 tRNase) [1,2]. In human cells,

nuclear full-length tRNase ZL works on precursor tRNAs to

process them by removing their 39 trailer, whereas cytosolic D30

tRNase ZL appears to work on mRNAs to modulate gene

expressions by cleaving them under the direction of cellular

small noncoding RNAs such as 59-half-tRNA and miRNA [3,4].

It has been shown that cytosolic tRNase ZL modulates the

PPM1F gene expression by cleaving its mRNA under the

direction of 59-half-tRNAGlu [3] and that miR-103 can

downregulate gene expression through directing mRNA cleav-

age by cytosolic tRNase ZL [4]. The cytosolic tRNase ZL

together with the small noncoding RNAs appears to form a

broad gene regulatory network.

We have developed a technology for suppressing the expression

of a target gene by modulating this gene regulatory network under

the aegis of artificial small guide RNA (sgRNA) [5–9]. This

technology works on the basis of a unique enzymatic property of

mammalian tRNase ZL, which is that it can recognize a pre-

tRNA-like or micro-pre-tRNA-like complex formed between

target RNA and artificial sgRNA and can cleave any target

RNA at any desired site [10–16]. There are four types of sgRNA,

59-half-tRNA [11], RNA heptamer [12], hook RNA [15], and

,14-nt linear RNA [16], and this technology is termed TRUE

gene silencing after tRNase ZL-utilizing efficacious gene silencing.

The efficacy of TRUE gene silencing can become comparable to

that of the RNA interference [7] and can surpass it in some cases

[8].

miRNAs play important regulatory roles in many cellular

processes, and their dysfunction appears to cause many diseases

including cancer and heart disease [17]. It has been shown in

human cells that miR-15a and miR-16 work as tumor suppres-

sors, while miR-17-92, miR-19a/b, miR-21, and miR-181a/b

are oncogenic [18–20]. miR-122, which is abundant in liver cells,

has been shown to be a regulator of fatty-acid metabolism [21],

and its expression appears to be essential for replication of

hepatitis C virus [22]. Thus we can expect that elimination of

specific miRNAs in the cells would lead to cures of some diseases.

Indeed, downregulation of the miR-19 or miR-181 level in

myeloma cells by an antisense nucleic acid has been demonstrat-

ed to suppress tumor growth in nude mice [20]. And

oligonucleotides against miR-122 can reduce a blood cholesterol

level [21] and can also suppress the replication of hepatitis C

virus [22].

In this paper, we investigated if TRUE gene silencing can

eliminate specific miRNAs from human cells. And we show

that human tRNase ZL can cleave miRNA under the direction

of 14-nt linear-type sgRNA in vitro and that naked 14-nt

sgRNA can significantly downregulate miRNA expression in

vivo.
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Materials and Methods

RNA/DNA Synthesis
The following eleven 59- and/or 39-phosphorylated RNAs with

full 29-O-methyl modifications, 39-Alexa-568-labeled 59-phosphor-

ylated sgR16(1–14) with full 29-O-methyl modifications, 39-FITC-

labeled 59-phosphorylated sgRNA14 with full 29-O-methyl mod-

ifications, and 59-FITC-labeled miR-16 were chemically synthe-

sized by Nippon Bioservice: sgR16(1–14), 59-pUUUACGUG-

CUGCUA(p)-39; sgR16(9–22), 59-pCGCCAAUAUUUACG-39;

sgR16(1–22), 59-pCGCCAAUAUUUACGUGCUGCUA(p)-39;

sgR16(1–12), 59-pUACGUGCUGCUA-39; sgR16(6–17), 59-

pAUAUUUACGUGC-39; sgR16(4–17), 59-pAUAUUUACGUG-

CUG-39; sgR16(4–15), 59-pAUUUACGUGCUG-39; sgR142(1–

14), 59-pUAGGAAACACUACAp-39; sgR142(1–23), 59-pUC-

CAUAAAGUAGGAAACACUACAp-39; sgR206(1–14), 59-pUU-

CCUUACAUUCCAp-39; sgR19(1–14), 59-pCAUGGAUUUG-

CACAp-39; sgRNA14, 59-pGGGGGCGGCCCCCG-39; miR-

16, 59-UAGCAGCACGUAAAUAUUGGCG-39.

The following DNA probes and primers were obtained from

Hokkaido System Science: miR-16 probe, 59-CGCCAATATT-

TACGTGCTGCTA-39; 5S rRNA probe, 59-AAGCCTACAG-

CACCCGGTATT-39; miR-16 reverse transcription primer, 59-

GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTG-

GATACGACCGCCAA -39; miR-16 forward primer, 59-CG-

CGCTAGCAGCACGTAAAT-39; miR-16 and miR-19a/b re-

verse primer, 59-GTGCAGGGTCCGAGGT-39; miR-19a/b

reverse transcription primer, 59-GTCGTATCCAGTGCAGGG-

TCCGAGGTATTCGCACTGGATACGACTCAGTT-39; miR-

19a/b forward primer, 59-CGCGCTGTGCAAATCTATGC-39;

5S rRNA forward primer, 59-GTCTACGGCCATACCACCC-

TG-39; 5S rRNA reverse primer, 59-AAGCCTACAGCACC-

CGGTATT-39; Bcl-2 mRNA forward primer, 59-GCCCTC-

ACTGGCCTCCTCCA-39; Bcl-2 mRNA reverse primer, 59-

GTGACAGGCCCAGCCACACC-39; b-actin mRNA forward

primer, 59-CTGGAACGGTGAAGGTGACA-39; b-actin mRNA

reverse primer, 59-AAGGGACTTCCTGTAACAACGCA-39.

The siRNA targeting the human tRNase ZL mRNA was obtained

from Qiagen: sense, r(GACUCCGAGUCGAAUGAAA)d(TT);

antisense, r(UUUCAUUCGACUCGGAGUC)d(TG). Silencer

Negative Control No. 1 siRNA (#4611; Ambion) was used as a

scramble siRNA.

In vitro RNA Cleavage Assay
In vitro RNA cleavage assays for the FITC-labeled miR-16

(2 pmol) were carried out at 37uC in the presence of the unlabeled

sgRNAs (20 pmol) using histidine-tagged human D30 tRNase ZL

(50 ng) in a mixture (6 ml) containing 10 mM Tris-HCl (pH 7.5),

and 3.3 mM MgCl2. After resolution of the reaction products on a

15% polyacrylamide-8 M urea gel, the gel was analyzed with a

Typhoon 9210 (GE Healthcare).

Cell Culture and Transfection
Various mammalian cells, HEK293 [23], HeLa [24], Jurkat

[25], HL60 [26], DAUDI (obtained from RIKEN BioResource

Center, Tsukuba, Japan), C2C12 [27], and RPMI-8226 [28], were

cultured in RPMI-1640 or DME media (Wako) supplemented

with 10% fetal bovine serum (FBS; MP Biomedicals) and 1%

penicillin-streptomycin (Invitrogen) at 37uC in 5% CO2 humid-

ified incubator.

HEK293 cells were transfected with sgRNA or with sgRNA and

scramble or anti-tRNase-ZL siRNA using Lipofectamine 2000

(Invitrogen) according to the manufacturer’s protocol, and

cultured for further 42 hours.

Northern Analysis
Total RNA was extracted with ISOGEN. The RNA samples

(10 mg) were separated by 15% polyacrylamide/8 M urea gel

electrophoresis, and electrically transferred to a Hybond N+

membrane (GE Healthcare). The membrane was ultraviolet-

crosslinked, probed with a 59-32P-labeled deoxyoligonucleotide in

a QuickHyb buffer (Stratagene) at 45uC, and analyzed with the

Typhoon 9210.

Real-Time PCR
Total RNA was extracted from cells using ISOGEN. The

cellular amounts of miR-16, miR-142-3p, and miR-206 were

quantitated by a StepOne Real Time PCR System using TaqMan

MicroRNA Assays and TaqMan MicroRNA Reverse Transcrip-

tion Kit (Applied Biosystems). The miR-16, miR-19a/b, Bcl-2

mRNA and b-actin mRNA levels were quantitated by real-time

PCR using a LightCycler 480 SYBR Green I Kit (Roche).

Western Analysis
Whole cell extracts dissolved in a buffer (50 mM Tris-HCl

pH 6.8, 2% SDS, 10% glycerol, 100 mM dithiothreitol) were

separated by SDS/7.5% polyacrylamide gel electrophoresis, and

transferred to a nitrocellulose membrane. The membrane was

probed with polyclonal antibodies raised to a human tRNase ZL

peptide (amino acid 812–826) or a monoclonal antibody against

human b-actin (Sigma) using the ECL Western Blotting Detection

System (GE Healthcare).

Fluorescent Microscopic Analysis
HL60 and RPMI-8226 cells (56104 cells/well) were cultured in

24-well plates in the absence and presence of 1 mM Alexa-568-

labeled sgR16(1–14), and HEK293 cells (56104 cells) were

likewise in a fibronectin-coated chamber slide. After 24 hours,

the cells were rinsed twice with 16phosphate-buffered saline (PBS)

and fixed with 4% paraformaldehyde in 16PBS for 3 min.

Hoechst 33342 (DOJINDO) was used to stain DNA, and the cells

were analyzed with the fluorescent microscope system Axio

Imager.M2 (Zeiss).

sgRNA Survivability Test
Human cells (0.8–16105 cells/well) were cultured in a 24-well

plate, and 24 hours after the addition of 1 mM of the 39-Alexa-568-

labeled sgR16(1–14) or the 39-FITC-labeled sgRNA14 to the

medium, the cells were harvested and washed four times with 1 ml

of 16PBS. Total RNA was extracted from the cells with ISOGEN,

and separated on a 20% polyacrylamide-8 M urea gel. The gel

was analyzed with the Typhoon 9210.

Statistical Analysis
Differences between control and experimental groups were

evaluated by the Student’s t-test.

Results and Discussion

tRNase ZL can Cleave miR-16 under the Direction of a 14-
nt sgRNA

To examine if tRNase ZL can cleave miRNA under the

direction of sgRNA, we performed an in vitro tRNase ZL cleavage

assay for human miR-16. A 14-nt linear-type sgRNA, sgR16(1–

14), which is complementary to the 1st–14th nucleotides of miR-

16, and a control 14-nt RNA, sgR16(9–22), which is complemen-

tary to 9th–22nd nucleotides of miR-16, were chemically

synthesized as 29-O-methyl RNA (Figure 1A). As expected, miR-

Elimination of Specific miRNAs by Naked sgRNAs

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e38496



Elimination of Specific miRNAs by Naked sgRNAs

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e38496



16 was cleaved after the 16th A by tRNase ZL under the direction

of sgR16(1–14), but not sgR16(9–22) (Figure 1B).

We also tested 4 more linear-type sgRNAs against miR-16 for

their guiding ability. These sgRNAs, sgR16(1–12), sgR16(6–17),

sgR16(4–17), and sgR16(4–15), are designed to be complementary

to 12 or 14 nucleotides of miR-16 (Figure 1E,F). All these sgRNAs

guided tRNase ZL cleavage of miR-16, albeit inefficiently

compared with sgR16(1–14). The cleavages directed by

sgR16(6–17), sgR16(4–17), and sgR16(4–15) occurred primarily

after a nucleotide corresponding to the discriminator nucleotide,

whereas those by sgR16(1–14) and sgR16(1–12) occurred primar-

ily 1-nt downstream and 1-nt upstream, respectively. These

cleavage site fluctuations have been previously described as a

property of tRNase ZL [16,29].

These results suggest that both the length and the binding site of

sgRNA are important for its efficient guiding ability. We focused

on 14-nt sgRNAs that are complementary to the 1st–14th

nucleotides of miRNAs for the following in vivo analyses.

Downregulation of the miR-16 level by TRUE Gene
Silencing

Next, we examined if sgR16(1–14) works as sgRNA against

miR-16 in human cells. sgR16(1–14), sgR16(9–22), or the 22-nt

antisense RNA sgR16(1–22) was transfected into HEK293 cells,

and the cellular miR-16 level was analyzed by northern blotting

and real-time PCR. sgR16(1–14) and sgR16(1–22) significantly

downregulated the miR-16 level, whereas sgR16(9–22) did not at

all (Figure 1C,D). We also carried out co-transfection experiments

with siRNA against human tRNase ZL mRNA. The reduction in

the miR-16 level by sgR16(1–14) was restored by downregulating

the tRNase ZL expression, while the reduction by sgR16(1–22) was

not affected (Figure 1C,D).

Figure 1. Downregulation of the miR-16 expression by TRUE gene silencing. (A and E) Structures of the complexes of sgRNAs with human
miR-16. An arrow indicates the tRNase ZL cleavage site. (B and F) In vitro tRNase ZL cleavage assays. 59-fluorescein-labeled miR-16 was incubated with
recombinant human D30 tRNase ZL in the absence or presence of sgRNA, which was phosphorylated at the 59 end but not at the 39 end. The
cleavage products were analyzed on a denaturing 15% polyacrylamide gel. L, alkaline ladder of miR-16; I, input RNA. (C) Northern analysis for human
miR-16. Total RNA was extracted from the HEK293 cells that were transfected with mock, 100 nM of sgR16(1–14), sgR16(9–23) or sgR16(1–23) without
(left) or together with 100 nM of the anti-tRNase-ZL siRNA (right). sgR16(1–14), sgR16(9–23), and sgR16(1–23) were phosphorylated at the 59 end but
not at the 39 end. The total RNA (10 mg) was separated on a denaturing 15% polyacrylamide gel. Bromophenol blue (,10 nt) and xylene cyanol
(,35 nt) were used as size markers. (D) The same RNA samples as in C were analyzed by a StepOne Real Time PCR System. The miRNA levels are
normalized against the RNU48 levels. Error bars indicate s.d. (n = 3). *, P,0.005.
doi:10.1371/journal.pone.0038496.g001

Figure 2. tRNase ZL is responsible at least partly for the reduction in the miR-16 level by sgR16(1–14). (A) Quantitation of the miR-16
level in HEK293 cells with a LightCycler 480 SYBR Green I Kit. The HEK293 cells were transfected with mock, 35 nM of sgR16(1–14) or sgR16(1–22)
together with 50 nM of the scramble siRNA or the anti-tRNase-ZL siRNA. sgR16(1–14) and sgR16(1–22) were phosphorylated at both 59 and 39 ends.
The miR-16 levels are normalized against the 5S rRNA levels. Error bars indicate s.d. (n = 3). *, P,0.001. (B) Western blot analysis. The tRNase ZL level
under the above transfection conditions was analyzed. b-actin was used as a loading control.
doi:10.1371/journal.pone.0038496.g002
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We performed similar experiments under slightly different

conditions, in which 59- and 39-phosphorylated sgR16(1–14) and

sgR16(1–22) were used, and also analyzed tRNase ZL levels by

western blotting. In one set of the experiments, we obtained results

similar to the above ones, but restoration of the miR-16 level

reduction by downregulating the tRNase ZL expression was

incomplete (Figure S1A). This may be due to incomplete

elimination of tRNase ZL (Figure S1B) and/or due to a possible

weak binding and sequestering effect of sgR16(1–14).

In another set of the experiments, in which a scramble siRNA

was used as a control, we also obtained similar results (Figure 2).

Together, these results suggest that tRNase ZL is responsible at

least partly for the reduction by sgR16(1–14) but not by sgR16(1–

22) and that TRUE gene silencing can downregulate the miRNA

expression. The mechanism by which sgR16(1–22) acts on the

miR-16 level would be through binding and sequestering [20–22].

Naked Linear-type sgRNA can be Taken up by Living Cells
We investigated how efficiently linear-type sgRNA can be taken

up by living cells without any transfection reagents and can

downregulate the miRNA expression. HL60 cells were cultured in

the presence of 1 mM of the naked 14-nt 39-Alexa-568-labeled

sgR16(1–14) and analyzed with a fluorescent microscope. This

sgRNA was indeed efficiently taken up without any transfection

reagents by HL60 cells (Figure 3A). RPMI-8226 and HEK293

cells also took up the naked sgRNA efficiently (Figure 3A). We also

showed that another 14-nt RNA, sgRNA14, can be taken up

nakedly by HeLa, HEK293, and Jurkat cells (Figure S2A,B and

Text S1).

Furthermore, we demonstrated by polyacrylamide gel analysis

of total RNA from HL60, RPMI-8226, and HEK293 cells that at

least a part of the taken-up sgR16(1–14) molecules exist stably for

at least 24 hours in the cells (Figure 3B,C). And at least a part of

sgRNA14 molecules were also stable for at least 24 hours in HeLa,

HEK293, and Jurkat cells (Figure S2C). However, the amount of

sgR16(1–14) recovered from HEK293 cells that took it up with the

aid of a transfection reagent was much higher than that recovered

from the cells that took it up nakedly (Figure 3C), suggesting that

sgR16(1–14) can be taken up more easily and/or can exist more

stably in the presence of the transfection reagent.

Reduction in the miR-16 Level by a Naked 14-nt sgRNA
We cultured HEK293 cells in the presence of 1 mM of naked

sgR16(1–14), sgR16(9–22), or sgR16(1–22), and analyzed the

cellular miR-16 level by real-time PCR. These RNAs were

phosphorylated at the 59 end but not at the 39 end. While

sgR16(9–22) and sgR16(1–22) did not reduce the miR-16 level at

all, sgR16(1–14) significantly reduced the level to 58% (Figure 4A).

Figure 3. Naked linear-type sgRNA can be taken up by living cells. (A) Microscopic images of HL60, RPMI-8226 and HEK293 cells. The cells
were fixed and stained with Hoechst 3342, 24 hours after the cells were cultured in the absence or presence of 1 mM of the naked 39-Alexa-568-
labeled sgR16(1–14). (B and C) sgRNA survivability tests. The 39-Alexa-568-labeled sgR16(1–14) was analyzed on a denaturing 20% polyacrylamide gel.
The sgRNA recovered from inside the cells are shown, which took it up nakedly or with the aid of Lipofectamine 2000 (LF). The band denoted by an
asterisk would correspond to a degradation product of sgR16(1–14). Standard, 39-Alexa-568-labeled sgR16(1–14).
doi:10.1371/journal.pone.0038496.g003
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These results contrast with those obtained with a transfection

reagent, in which sgR16(1–22) almost completely eliminated

cellular miR-16 (Figure 1D).

We also carried out a similar experiment with HL60 cells using 59-

and 39-phosphorylated sgR16(1–14) and sgR16(1–22). Likewise

sgR16(1–14) significantly reduced the miR-16 level to 53%, but in

contrast sgR16(1–22) also did work almost perfectly (Figure 4B). This

was also the case in HEK293 cells (data not shown). This

discrepancy would be attributed to the phosphorylation at the 39

end, which appears to make RNA more efficient in being taken up

by human cells and/or more stable in the cells than RNA with no 39-

phosphate judging from a result of the RNA survivability test (data

not shown).

Furthermore, to show that the knockdown of miR-16 is

functional, we examined its endogenous target, the Bcl-2 mRNA,

for the stability [30]. The Bcl-2 mRNA levels in HL60 cells were

upregulated to 122% and 137% by downregulating the miR-16

levels by sgR16(1–14) and sgR16(1–22), respectively (Figure 4B,C).

This result implies that sgR16(1–14) can stabilize the Bcl-2 mRNA

by reducing the miR-16 level and subsequently inhibiting the

mRNA transport to P-bodies.

Downregulation of miRNA Expression Levels by Naked
14-nt sgRNAs

We also examined three naked 14-nt sgRNAs against miR-142-

3p, miR-206, and miR-19a/b for their guiding ability. sgR142(1–

14) significantly reduced the miR-142-3p level to 48% and 47% in

HL60 and DAUDI cells, respectively, without any transfection

reagents, whereas sgR142(1–23) decreased the level slightly in both

cell lines (Figure 5A). The 22-nt 59- and 39-phosphorylated

sgR16(1–22) worked very efficiently even in a naked form

(Figure 4B), whereas the 23-nt sgR142(1–23), which was also 59-

and 39-phosphorylated, barely worked, suggesting that, unlike 14-nt

sgRNAs, the efficiency of naked 22–23-nt RNAs in being taken up

by living cells and/or their stability in the cells may change

depending on their sequence itself as well as 39-phosphorylation

status.

The miR-206 expression in C2C12 cells was efficiently down-

regulated to 22% by sgR206(1–14), and the miR-19a/b level in

RPMI-8226 cells was reduced to 28% by sgR19(1–14) (Figure 5B,C).

These observations imply that in general we can eliminate a specific

cellular miRNA at least by ,50% by using 1 mM of a naked 14-nt

sgRNA on the basis of TRUE gene silencing.

Figure 4. Reduction in the miR-16 level by a naked 14-nt sgRNA. (A) Quantitation of the miR-16 level in HEK293 cells with a StepOne Real
Time PCR System. Total RNA was extracted from the HEK293 cells that were cultured for 24 hours in the absence or presence of sgR16(1–14),
sgR16(9–22), or sgR16(1–22), which was phosphorylated at the 59 end but not at the 39 end. The miR-16 levels are normalized against the RNU48
levels. Error bars indicate s.d. (n = 3). *, P,0.05. (B) Quantitation of the miR-16 level in HL60 cells with a LightCycler 480 SYBR Green I Kit. Total RNA
was extracted from the HL60 cells that were cultured for 24 hours in the absence or presence of sgR16(1–14) or sgR16(1–22). sgR16(1–14) and
sgR16(1–22) were phosphorylated at both 59 and 39 ends. The miR-16 levels are normalized against the 5S rRNA levels. Error bars indicate s.d. (n = 3).
*, P,0.001. (C) Real-time PCR analysis for the Bcl-2 mRNA level in HL60 cells. Total RNA was extracted from the HL60 cells that were cultured for 24
hours in the absence or presence of sgR16(1–14) or sgR16(1–22). sgR16(1–14) and sgR16(1–22) were phosphorylated at both 59 and 39 ends. The Bcl-2
mRNA levels are normalized against the b-actin mRNA levels. Error bars indicate s.d. (n = 3). *, P,0.001.
doi:10.1371/journal.pone.0038496.g004
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miRNA-targeting RNA Therapy
Our results suggest that TRUE gene silencing can be used for

RNA therapy targeting disease-causing miRNA. miRNAs to be

targeted would include miR-19a/b and miR-21 for cancer therapy

and miR-122 for hypercholesterolemia and hepatitis C treatments.

As 14-nt sgRNA can be taken up easily by the cells without any

carrier reagents such as cholesterol and cationic liposome, and can

guide tRNase ZL to cleave miRNA, TRUE gene silencing may be

advantageous over a technology based on the inhibitory mecha-

nism through binding and sequestering [20–22].

Supporting Information

Figure S1 The reduction in the miR-16 level by sgR16(1–
14) is attributable at least partly to tRNase ZL. (A)

Quantitation of the miR-16 level in HEK293 cells with a

LightCycler 480 SYBR Green I Kit. The HEK293 cells were

transfected with mock, 35 nM of sgR16(1–14) or sgR16(1–22)

together with mock or the anti-tRNase-ZL siRNA. sgR16(1–14)

and sgR16(1–22) were phosphorylated at both 59 and 39 ends. The

miR-16 levels are normalized against the 5S rRNA levels. Error

bars indicate s.d. (n = 3). *, P,0.001. (B) Western blot analysis.

The tRNase ZL level under the above transfection conditions was

analyzed. b-actin was used as a loading control.

(PDF)

Figure S2 Naked 14-nt sgRNA can be taken up by living
cells. (A) Confocal laser microscopic images of HeLa cells. HeLa

cells were fixed and stained with ethidium bromide 24 hours after

the cells were cultured in the absence or presence of 1 mM of the

naked 14-nt 39-FITC-labeled sgRNA14. (B) Fluorescence ratio-

metric analysis. Fluorescence ratiometric images of HeLa,

HEK293, and Jurkat cells were taken 24 hours after the cells

were cultured in media containing 1 mM of the 39-FITC-labeled

sgRNA14. (C) sgRNA survivability tests. The 39-FITC-labeled

sgRNA14 was analyzed on a denaturing 20% polyacrylamide gel.

The standard 39-FITC-labeled sgRNA14 (S) and the sgRNA14

retrieved from inside the cells (R) are shown. Asterisks denote the

recovered sgRNA. The bands shifted upward would correspond to

complexes between the sgRNA and small cellular RNAs.

(PDF)

Text S1 Supplementary Materials and Methods.

(PDF)
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