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Abstract: We synthesized a series of renewable and plant-based isoeugenol-substituted polystyrenes
(PIEU#, # = 100, 80, 60, 40, and 20, where # is the molar percent content of isoeugenol moiety), using
polymer modification reactions to study their liquid crystal (LC) alignment behavior. In general,
the LC cells fabricated using polymer film with a higher molar content of isoeugenol side groups
showed vertical LC alignment behavior. This alignment behavior was well related to the surface
energy value of the polymer layer. For example, vertical alignments were observed when the polar
surface energy value of the polymer was smaller than approximately 3.59 mJ/m2, generated by the
nonpolar isoeugenol moiety with long and bulky carbon groups. Good alignment stability at 100 ◦C
and under ultraviolet (UV) irradiation of 15 J/cm2 was observed for the LC cells fabricated using
PIEU100 as a LC alignment layer. Therefore, renewable isoeugenol-based materials can be used to
produce an eco-friendly vertical LC alignment system.

Keywords: liquid crystal; alignment; vertical; polystyrene; isoeugenol

1. Introduction

Approximately 380 million tons of plastic are produced globally each year, and up to
13 million tons are released into water streams annually [1,2]. By 2050, 330 million tons of
plastic are predicted to be released in rivers and oceans. Since only about 9 percent of plastic
is recycled, much of the remainder pollutes the environment or sits in landfills [2–4]. Plastic
can take up to 500 years to decompose while leaching toxic chemicals into the ground [5–7].
It is usually discarded after use and has a negative impact on the environment because of its
extremely low biodegradability [8]. There is increasing scientific and societal concern about
the effects of microplastics (MPs), commonly defined as plastic particles with a size below
5 mm [9–11]. The negative influence of MPs on the environment has been widely reported,
and the toxicity of MPs in water has been demonstrated [12–15]. Bioplastics, which are
bio-based, biodegradable, or both, have the same properties as conventional plastics and
offer additional advantages [16–18]. These include reduced use of fossil fuel resources
and lower carbon dioxide emissions [19,20]. Bioplastics are also less toxic and do not
contain health-damaging additives, such as phthalates or bisphenol-A [21–23]. Bioplastics
are considered a promising solution to concerns related to microplastics because they are
environmentally friendly [24–27]. In this study, polymers containing bio-resources such as
isoeugenol were prepared as a way to address pollution problems [28].

Isoeugenol belongs to the group of phenylpropenes, is found in essential oils of plants
such as ylang-ylang (Cananga odorata), and is a component of wood smoke [29,30]. As one
of the most important components of natural flavors, isoeugenol (2-methoxy-4-(prop-1-en-
1-yl)phenol) has been widely used in perfumes, soaps, detergents, air fresheners, and as a
flavoring agent in cosmetics and food additives [31–35]. Because isoeugenol-constituted
phenolic groups are known to have antioxidant and antibacterial functions, they can pro-
vide oxidation protection and bacterial fouling resistance [36–40]. For example, free radicals
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and active oxygen species have been associated with cardiovascular and inflammatory
diseases, and even play a role in cancer and aging [41–43]. The antioxidant activity of
isoeugenol can be attributed to its hydrogen atom and the electron-donating ability of ABTS
(2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) with radical-scavenging activity in
isoeugenol [44–47]. The reducing power of isoeugenol has been noted to possess antioxida-
tive potential because it breaks free radical chains and donates a hydrogen atom [48,49].
Moreover, isoeugenol can provide highly effective antimicrobial coatings that prevent
bacterial attachment and apply bactericidal surfaces [50,51]. Isoeugenol can be used to
add hydroxy groups to the surfaces of substrates, such as polymers and metals for a wide
range of surface coating applications [52]. In addition, isoeugenol can be modified into
polymers and used in the food industry and new pharmaceutical developments, and the
antifungal activity of isoeugenol-binding materials can be manifested for pharmacological
applications by docking isoeugenol to organic molecules [53–55].

Liquid crystal (LC) molecules have been extensively studied owing to their unique
and attractive characteristics, such as solid-like ordering and liquid-like fluidity [56]. LC
molecules have been known to exhibit anisotropic physico-chemical characteristics, such as
optical and dielectric anisotropy, generated by external stimuli because of their interesting
chemical structures [57]. Therefore, LC molecules have been used in various areas, such
as information technology, energy and environmental technology, nanotechnology, and
biotechnology, using their unique physico-chemical properties [58,59]. For example, LC
molecules such as transmissive LCs, nematic LCs, reflective LCs, and cholesteric LCs have
been widely used in the display industry [60]. Technologies to align LC molecules in the
same direction on a substrate can be used in a variety of fields such as chemistry [61],
physics [62], biology [63], and nanotechnology [64], by inducing interactions between LC
molecules and surfaces on the substrate. Mechanical rubbing is a common method used
to produce uniform orientation of LC molecules [65]. Polyimide (PI) derivatives are most
commonly used as LC aligning materials using the rubbing technique because they provide
stable LC-aligning properties [66]. Polyimide derivatives having alkyl and/or alkyloxy side
groups, such as polyimide derivatives containing octadecyl and n-decyloxybiphenyloxy
side chains, exhibit vertical LC aligning behaviors [67–69]. Although polyimide derivatives
have been widely employed in the display industry, polyimide precursors are treated at
high temperatures in order to produce polyimide film, and the film itself shows a yellowish
color. Therefore, long-alkyl-chain-modified polystyrene (PS) derivatives have been synthe-
sized as alternatives to polyimide derivatives to produce vertical LC orientation layers. The
benefits of using PS instead of PI derivatives include high optical transparency, and more
convenient processing and fabrication. In addition, PS derivatives with enhanced ther-
mal properties can be obtained through copolymerization with methyl methacrylate [70],
acrylonitrile [71], divinylbenzene [72], and trivinylbenzene [73], etc., or by incorporating
specific moieties or functional groups into the side chain of polystyrene. For example, the
introduction of coumarin as a dye [74], oryzanol as a plant extraction resource [75], and the
imide moieties [76] into the side chain of polystyrene improves the Tg value. PS derivatives
have been enhanced via a simple polymer reaction to produce vertical LC orientation
layers for next-generation applications owing to their advantages, such as low-temperature
processability and good solubility in many organic solvents [77]. The molecular orientation
of polymers, such as isomeric groups on polymeric surfaces, is an important factor in in-
ducing LC aligning behavior because of the interactions and/or steric repulsions between
the polymer surface and the LC molecule [78,79]. In recent studies, much research has
been conducted on liquid crystal alignment methods in order to overcome the limitations
of mechanical rubbing using polyimide. For example, among the non-contact methods,
photoalignment and photopatterning technology, which are promising alignment methods,
have been noted as alternatives to rubbing technology. Another example is self-alignment
technology or PI layer-less orientation technology, which introduces dopants such as
nanoparticles and surfactants into the LC medium for next-generation applications.
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In this study, bio-based isoeugenol-substituted polystyrenes (PIEU#) were synthesized
to obtain vertical alignment of LCs and to study the effect of the molar content of the
isoeugenyl side groups on LC alignment behavior. We selected isoeugenol, with its phenyl-
propene structure, as a modifier into the side chain of the polystyrene in order to investigate
LC alignment behavior. Plant-based isoeugenol is not only effective and inexpensive for
fabrication, but also safe and environmentally friendly. The optical and electrical properties
of LC cells fabricated using renewable polymer films were also investigated.

2. Materials and Methods
2.1. Materials

4-Chloromethylstyrene, isoeugenol, and potassium carbonate were purchased from
Aldrich Chemical Co., and a nematic LC, MLC-6608 (ne = 1.5586, no = 1.4756, and ∆ε = −4.2,
where ne, no, and ∆ε represent the extraordinary refractive index, ordinary refractive index,
and dielectric anisotropy, respectively) was purchased from Merck Co (Pyeongtaek, Korea).
N,N′-Dimethylacetamide (DMAc) and ethanol were dried over molecular sieves (4 Å).
Tetrahydrofuran (THF) was dried by refluxing with benzophenone and sodium, followed
by distillation. 4-Chloromethylstyrene was purified by column chromatography on silica
gel using hexane as an eluent to remove any impurities and inhibitors (tert-butylcatechol
and nitroparaffin). Poly(4-chloromethylstyrene) (PCMS) was synthesized through conven-
tional free radical polymerization of 4-chloromethylstyrene using 2,2′-azoisobutyronitrile
(AIBN) under a nitrogen atmosphere. AIBN (Junsei Chemical Co., Ltd., Tokyo, Japan)
was used as the initiator. AIBN was purified by crystallization using methanol. All other
reagents and solvents were used as received.

2.2. Preparation of Isoeugenol-Modified Polystyrene

The following procedure was used to synthesize all of the isoeugenol-substituted
polystyrenes, PIEU#, where # represents the molar content (in %) of isoeugenol moiety in
the side group. The synthesis of isoeugenol-substituted polystyrene (PIEU100) is provided
as an example. A mixture of isoeugenol (0.49 g, 2.95 mmol, 150 mol% compared with PCMS)
and potassium carbonate (0.50 g, 3.54 mmol) in N,N′-dimethylacetamide (DMAc, 30 mL)
was heated to 75 ◦C. A PCMS solution (0.3 g, 1.97 mmol) in DMAc (20 mL) was added to the
mixture, which was then magnetically stirred at 70 ◦C for 24 h under a nitrogen atmosphere.
The mixture was cooled to room temperature and poured into methanol to obtain a white
precipitate. The precipitate was further purified by several reprecipitations from the DMAc
solution into methanol and then washed with hot methanol to remove potassium carbonate
and any remaining salts. PIEU100 was obtained in yields above 80% after drying overnight
in a vacuum. The degree of substitution of the chloromethyl group with the isoeugenyl
methyl ether group was found to be almost 100% within experimental error.

PIEU100 1H NMR (CDCl3): δ = 0.91–1.42 (m, 3H, –CH2–CH–Ph–), 1.61–1.83 (d, 3H,
–CH=CH–CH3), 3.51–3.92 (s, 3H, –CH2–O–Ph(OCH3)–CH=), 4.61–5.11 (s, 2H, –Ph–CH2–
O–), 5.94–6.13 (m, 1H, –CH=CH–CH3), 6.12–6.31 (d, 1H, –Ph–CH=CH–), 6.31–7.23 (m, 7H,
–CH2–CH–PhH–CH2–O–PhH(OCH3)–CH2=).

Other polystyrene derivatives containing isoeugenol side groups were synthesized
using the same procedure used for the preparation of PIEU100, except for differing amounts
of isoeugenol in the reaction. For example, PIEU80, PIEU60, PIEU40, and PIEU20 were
prepared with 0.27 g (1.92 mmol), 0.19 g (1.15 mmol), 0.14 g (0.77 mmol), and 0.06 g
(0.39 mmol) of isoeugenol, respectively, using slight excess amounts of potassium carbonate
(0.50 g, 3.54 mmol, 180 mol% compared with PCMS).

PIEU 80 1H NMR (CDCl3): δ = 0.93–1.44 (m, 3H, –CH2–CH–Ph–), 1.62–1.82 (d, 3H,
–CH=CH–CH3), 3.41–3.82 (s, 3H, –CH2–O–Ph(OCH3)–CH=), 4.38–4.61 (s, 2H, –Ph–CH2–Cl),
4.61–5.13 (s, 2H, –Ph–CH2–O–), 5.91–6.12 (m, 1H, –CH=CH–CH3), 6.09–6.31 (d, 1H, –Ph–
CH=CH–), 6.32–7.24 (m, 4H, –CH2–CH–PhH–CH2–Cl), 6.32–7.24 (m, 7H, –CH2–CH–PhH–
CH2–O–PhH(OCH3)–CH2=).
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PIEU 60 1H NMR (CDCl3): δ = 0.93–1.43 (m, 3H, –CH2–CH–Ph–), 1.61–1.83 (d, 3H,
–CH=CH–CH3), 3.41–3.83 (s, 3H, –CH2–O–Ph(OCH3)–CH=), 4.38–4.61 (s, 2H, –Ph–CH2–
Cl), 4.61–5.14 (s, 2H, –Ph–CH2–O–), 5.92–6.13 (m, 1H, –CH=CH–CH3), 6.08–6.32 (m, 1H,
–Ph–CH=CH–), 6.31–7.25 (m, 4H, –CH2–CH–PhH–CH2–Cl), 6.31–7.25 (m, 7H, CH2–CH–
PhH–CH2–O–PhH(OCH3)–CH2=).

PIEU 40 1H NMR (CDCl3): δ = 0.93–1.43 (m, 3H, –CH2–CH–Ph–), 1.62–1.82 (d, 3H,
–CH=CH–CH3), 3.41–3.83 (s, 3H, –CH2–O–Ph(OCH3)–CH=), 4.38–4.62 (s, 2H, –Ph–CH2–
Cl), 4.62–5.11 (s, 2H, –Ph–CH2–O–), 5.93–6.14 (m, 1H, –CH=CH–CH3), 6.09–6.33 (m, 1H,
–Ph–CH=CH–), 6.34–7.25 (m, 4H, –CH2–CH–PhH–CH2–Cl), 6.34–7.25 (m, 7H, –CH2–CH–
PhH–CH2–O–PhH(OCH3)–CH2=).

PIEU 20 1H NMR (CDCl3): δ = 0.95–1.45 (m, 3H, –CH2–CH–Ph–), 1.63–1.82 (d, 3H,
–CH=CH–CH3), 3.42–3.83 (s, 3H, –CH2–O–Ph(OCH3)–CH=), 4.38–4.62 (s, 2H, –Ph–CH2–
Cl), 4.62–5.14 (s, 2H, –Ph–CH2–O–), 5.93–6.11 (m, 1H, –CH=CH–CH3), 6.07–6.36 (m, 1H,
–Ph–CH=CH–), 6.34–7.24 (m, 4H, –CH2–CH–PhH–CH2–Cl), 6.34–7.24 (m, 7H, –CH2–CH–
PhH–CH2–O–PhH(OCH3)–CH2=).

2.3. Film Preparation and LC Cell Assembly

Solutions of PIEU# in THF (1 wt.%) were prepared. These solutions were filtered using
a poly(tetrafluoroethylene) (PTFE) membrane with a pore size of 0.45 µm. Thin films of the
polymers were prepared by spin-coating (2000 rpm, 90 s) onto glass substrates. The LC
cells were fabricated using a polymer film on glass slides. The LC cells were constructed by
assembling films together using spacers with a thickness of 4.25 µm. The cells were filled
with a nematic LC, MLC-6608. The manufactured LC cells were sealed using epoxy glue.

2.4. Instrumentation

Proton nuclear magnetic resonance (1H NMR) measurements were carried out on
a Bruker AVANCE spectrometer at 300 MHz. Differential scanning calorimetry (DSC)
measurements were carried out on a TA Instruments Q-10 at heating and cooling rates of
10 ◦C·min−1 under a nitrogen atmosphere. The contact angles of distilled water, methylene
iodide, formamide, and ethylene glycol on the polymer films were determined with a
Kruss DSA10 contact angle analyzer equipped with drop shape analysis software. Surface
energy values were calculated using the Owens–Wendt equation:

γsl = γs + γl − 2(γs
dγl

d)
1/2 − 2(γs

pγl
p)1/2 (1)

where γl is the surface energy of the liquid, γsl is the interfacial energy of the solid/liquid
interface, and γs is the surface energy of the solid. γs

d and γs
p are the dispersive and polar

components of the surface energy of the solid, respectively. γl
d and γl

p are the dispersive
and polar components of the surface tension of the liquid, respectively. γl

d and γl
p are

known for the test liquids, and γs
d and γs

p can be calculated from the measured static
contact angles [80]. Polarized optical microscopy (POM) images of the LC cell were taken
using an optical microscope (Nikon, ECLIPSE E600 POL, Tokyo, Japan) equipped with a
polarizer and digital camera (Nikon, COOLPIX995, Tokyo, Japan).

3. Results
3.1. Synthesis and Characterization of Isoeugenol-Modified Polystyrene

Figure 1 shows the synthetic routes to the isoeugenol-substituted polystyrenes (PIEU100)
and copolymers (PIEU80, PIEU60, PIEU40, and PIEU20, where # is the molar content (%) of
isoeugenol side groups). Copolymers with different degrees of substitution were obtained
by varying the amount of isoeugenol in the reaction as shown in Table 1. Almost 100%
conversion of chloromethyl to isoeugenyl methyl ether was obtained when 150 mol% of
isoeugenol was used at 70 ◦C for 24 h, as shown by assignment of the respective proton
peaks of the isoeugenol-containing homopolymer (PIEU100) (Figure 2). Figure 2 shows the
proton nuclear magnetic resonance (1H NMR) spectrum and assignment of the respective
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peaks of PIEU100, confirming the chemical composition of the monomeric units in the
obtained polymers. The spectrum indicates the presence of protons from the phenyl ring
of the styrene backbone (δ = 6.3–7.2 ppm (peak a)). The proton peaks from the isoeugenol
side chains (δ = 6.1–6.3 (peak b), 5.9–6.1 (peak c), 3.5–3.9 (peak e), and 1.6–1.8 (peak f)
indicate the inclusion of isoeugenol moieties in the polymer. The content of isoeugenol can
be calculated by comparing the integrated area of the proton peaks of the isoeugenol side
chain (δ = 3.5–3.9 ppm, peak e) and chloromethyl side chains (δ = 4.6–5.1 ppm, peak d).
Similar integrations and calculations for PIEU80, PIEU60, PIEU40, and PIEU20 were per-
formed and were typically within ±10% of the expected values from the synthesis. These
polymers have good solubility in medium-polarity solvents with low boiling tempera-
tures, such as chloroform and tetrahydrofuran, as well as in aprotic polar solvents, such
as N,N′-dimethylacetamide (DMAc), N,N′-dimethylformamide (DMF), and N-methyl-2-
pyrrolidone (NMP). The good solubility of all polymers in common solvents is of use in
fabrication for film applications.
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Figure 1. Synthetic route to isoeugenol modified polystyrene (PIEU#), where # indicates the mole
percent of isoeugenol containing monomeric units in the polymer.

Table 1. Reaction conditions and results for the synthesis of isoeugenol modified polystyrene (PIEU#).

Polymer
Designation

Feed Ratio of
Isoeugenol [mol%]

Degree of
Substitution [%] Tg [◦C]

PIEU20 20 20 96
PIEU40 40 40 76
PIEU60 60 60 77
PIEU80 80 80 77

PIEU100 150 100 74

The thermal characteristics of the synthesized polymers were investigated using
differential scanning calorimetry. All the samples were amorphous materials, as only one
glassy-to-rubbery transition behavior was observed in the differential scanning calorimetry
thermogram (Figure 3). As the molar content of the isoeugenol side group increased from
20% to 100%, the Tg value decreased from 96 ◦C for PIEU20 to 74 ◦C for PIEU100. The
decrease in the Tg value of the polystyrene derivatives with increasing molar content of the
bulky side group has been previously reported and was ascribed to an increase in the free
volume that is the space present inside the polymer, as polymers with larger free volumes
have lower Tg values [81,82]. Additionally, the Tg value of the PS derivatives depends
on the interplay of the free volume inside the polymer and physico-chemical interactions
among the polymer chains [83]. Therefore, the trend of the Tg value is interpreted with the
other two analysis points: free volume effect and interaction effect. For example, in this
study, from PIEU20 to PIEU40, the Tg value decreased dramatically because the free volume
effect was dominant. When the molar content of the isoeugenol containing monomer units
in PIEU# was greater than about 40 mol% (PIEU40, PIEU60, PIEU80, and PIEU100), the
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difference in Tg values was subtle because the interaction among the isoeugenol side chains
was also expressed.
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3.2. LC Orientation Behavior of the LC Cell Fabricated with Isoeugenol-Modified Polystyrene Film

Figure 4 shows conoscopic polarized optical microscopy (POM) images of the LC cells
fabricated with PIEU100 films on glass substrates at the following weight concentrations of
PIEU100: 0.001, 0.01, 0.05, 0.1, and 1.0 wt.%. At first, as shown in Figure 4a, random planar
alignment was observed at a PIEU100 weight ratio of 0.001 wt.%. When PIEU100 weight
ratios in solution were more than 0.01 wt.%, vertical LC aligning behavior was observed,
as shown in the Maltese cross-pattern in conoscopic POM images (Figure 4b–e). Therefore,
a 1 wt.% solution was selected as a coating solution to fabricate LC cells made from PIEU#
films, as previously reported by other researchers [84].
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under the following weight ratios of PIEU100: (a) 0.001, (b) 0.01, (c) 0.05, (d) 0.1, and (e) 1.0 wt.%.

Figure 5 shows photographic images of LC cells made from the PIEU# copolymers.
The LC cells fabricated with PIEU# films with an isoeugenol side group content of less than
40 mol% (PIEU40) partially showed LC texture with birefringence, while good uniformity
of vertical LC alignment behavior was observed for LC cells fabricated with the polymer
films with an isoeugenol side group content of at least 60 mol% (PIEU60, PIEU80, and
PIEU100) in the entire area image area. All of the PIEU100 films could induce stable vertical
LC aligning behaviors, and the vertical LC alignment was sustained for at least several
months. Therefore, as the content of the isoeugenol side groups increased, the vertical
aligning capability of the LC cells made from polymers increased.
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Figure 5. Photograph images of the LC cells made from PIEU# films according to the molar content of isoeugenol moiety.

The LC aligning behaviors of the LC cells made from PIEU# films were also examined
by observing orthoscopic and conoscopic POM images, as shown in Figure 6. Random planar
LC aligning behavior was observed for LC cells made with the poly(4-chloroemthylstyrene)
film (figure not shown). When the content of the isoeugenol-containing monomeric part
in PIEU# was 20 and 40%, the LC cells fabricated using the PIEU# film exhibited random
planar LC alignment behavior in the orthoscopic and conoscopic POM images. On the
other hand, vertical LC aligning behavior was observed for the LC cells made with the
polymeric films PIEU60, PIEU80, and PIEU100, as can be seen in the Maltese cross-pattern
of the orthoscopic and conoscopic POM images.
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3.3. Surface Properties of Isoeugenol-Modified Polystyrene Films

Based on the results of inducing LC alignment properties, we observed a general
trend that polymers containing higher contents of the isoeugenol side group possessed
a preference for vertical alignment of LC molecules. It has been known that the high tilt
angles of LCs that produce vertical aligning properties are well correlated with low surface
energy values on the alignment film and/or steric repulsion between LCs and the alignment
surfaces [85,86]. For instance, polyimide derivatives having bulky and nonpolar groups
such as 4-n-octyloxyphenyloxy and pentylcyclohexylbenzene exhibited vertical aligning
behavior [53]. Thus, we tried to explain the aligning behavior of the LC molecules on the
PIEU# films using several surface characterization techniques, viz. surface energy value
measurements. Figure 7 and Table 2 show the surface energy values of the polymer films
obtained on the basis of static contact angles of water, methylene iodide, formamide, and
ethylene glycol. The total surface energy was calculated using the Owens–Wendt equation,
which is a summation of the polar and dispersion contributions. We also found that there is
a critical surface energy value of the polymers that provides vertical LC alignment behavior.
Vertical LC alignment was observed in the PIEU60, PIEU80, and PIEU100 films. The
polar surface energy values of these polymers were ≤3.59 mJ/m2: (PIEU60—3.59 mJ/m2,
PIEU80—2.62 mJ/m2, and PIEU100—2.18 mJ/m2), whereas the PIEU20 and PIEU40, which
have polar surface energy values ≥4.81 mJ/m2, did not show vertical alignment behavior.
Therefore, it is appropriate to conclude that the vertical aligning capability of PIEU60,
PIEU80, and PIEU100 was due to enhanced steric repulsion between LCs and polymeric
surfaces caused by introducing bulky and nonpolar isoeugenol moieties into the side chain
of polystyrene, and due to the low polar surface energy (≤3.59 mJ/m2) originating from
the peculiar molecular structure of the nonpolar carbon containing groups.
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Table 2. Surface energy values and liquid crystal (LC) alignment properties.

Polymer
Designation

Contact Angle (◦) a Surface Energy (mJ/m2) b

LC Aligning
Ability c

Water Diiodo
Methane Formamide Ethylene

Glycol Polar Dispersion Total

PIEU20 82.2 33.2 87.2 51.4 4.8 27.1 31.9 X
PIEU40 81.3 30.9 83.9 55.6 4.9 27.5 32.4 X
PIEU60 83.7 29.3 77.6 55.3 3.6 31.0 34.6 O
PIEU80 86.1 29.6 75.1 50.9 2.6 34.0 36.6 O
PIEU100 87.1 28.9 73.0 47.0 2.2 36.2 38.4 O

a Measured from static contact angles. b Calculated from Owens–Wendt’s equation. c Circle (O) and cross (X) indicate polymer films have
vertical and random planar, tilted LC aligning ability, respectively.

3.4. Reliability and Electro-Optical Performance of the LC Cells Fabricated with
Isoeugenol-Modified Polystyrene Films

The reliability of the LC cells made from the polymer films was investigated through
a stability test of the LC alignment under harsh conditions such as high temperatures
and ultraviolet (UV) energy. The thermal and UV stabilities of the LC cell made from the
PIEU100 film were estimated from the POM image after heating for 1, 5, and 10 min at
100, 150, and 200 ◦C, and UV irradiation at 5, 10, and 15 J/cm2, respectively. As shown
in Figure 8, no significant difference in the pretilt angle on the PIEU100 film with vertical
LC alignment ability was observed through the Maltese cross-pattern in the conoscopic
POM images, indicating that the vertical LC alignment ability of the PIEU100 LC cell was
maintained even at a high temperature of 100 ◦C and an UV energy of 15 J/cm2. The
total surface energy values of the PIEU100 films obtained on the basis of the static contact
angles of water, methylene iodide, formamide, and ethylene glycol were also measured
after heating and UV irradiation. When the temperature was increased to 100 ◦C and the
UV energy was increased to 15 J/cm2, the polar surface energy value of the PIEU100 film
was maintained in the range 2.0–2.4 mJ/m2. Therefore, PIEU# with renewable resources
can be considered as a candidate LC alignment layer for eco-friendly applications.
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Figure 8. Concoscopic polarized optical microscopy images of the LC cells made using PIEU100
films, after thermal treatment at 100, 150, and 200 ◦C for 1, 5, and 10 min, and UV treatment at 5, 10,
and 15 J/cm2, respectively.

4. Conclusions

A series of polystyrene derivatives containing plant-based isoeugenol (PIEU#) was
synthesized to investigate the liquid crystal (LC) alignment properties of these polymer
films. LC cells made from films of the polymers with≥60 mol% of isoeugenol units (PIEU60,
PIEU80, and PIEU100) showed vertical LC alignment. However, LC cells made from PIEU#
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films with 40 mol% or less of isoeugenol exhibited random planar LC alignment behavior.
The vertical LC alignment was ascribed to steric repulsion between the LC molecules and
the polymer surface owing to the incorporation of a nonpolar and bulky isoeugenol moiety
into the side chain, and it was well correlated with polar surface energy values of the
polymer ≤3.59 mJ/m2, generated by the long alkyl groups. This provides a concept for
the design of eco-friendly LC alignment layers based on renewable bioresource-containing
polymer films.

Author Contributions: H.K. conceived the project. D.Y. and K.S. contributed equally that they de-
signed and accomplished all experiments. D.Y. and K.S. synthesized and characterized the polymers.
D.Y. and K.S. performed the analysis of liquid crystal orientation. D.Y. and K.S. and H.K. wrote the
paper. All authors participated in discussions of the research and provided feedback for the paper.
All authors have read and agreed to the published version of the manuscript.
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