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Abstract
Biomedical studies, such as clinical trials, often require the comparison of meas-
urements from two correlated tests in which each unit of observation is associated 
with a binary outcome of interest via relative risk. The associated confidence inter-
val is crucial because it provides an appreciation of the spectrum of possible values, 
allowing for a more robust interpretation of relative risk. Of the available confidence 
interval methods for relative risk, the asymptotic score interval is the most widely 
recommended for practical use. We propose a modified score interval for relative 
risk and we also extend an existing nonparametric U-statistic-based confidence 
interval to relative risk. In addition, we theoretically prove that the original asymp-
totic score interval is equivalent to the constrained maximum likelihood-based inter-
val proposed by Nam and Blackwelder. Two clinically relevant oncology trials are 
used to demonstrate the real-world performance of our methods. The finite sample 
properties of the new approaches, the current standard of practice, and other alter-
natives are studied via extensive simulation studies. We show that, as the strength 
of correlation increases, when the sample size is not too large the new score-based 
intervals outperform the existing intervals in terms of coverage probability. Moreo-
ver, our results indicate that the new nonparametric interval provides the coverage 
that most consistently meets or exceeds the nominal coverage probability.
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1 Introduction

Correlated samples occur in many situations such as pre- and post-studies, cross-
over studies, natural pairings (i.e., twin studies), and matched-pairs designs [1]. The 
degree to which the two samples are correlated must be appropriately accounted for 
in statistical inference of the interested parameter. In the case of binary data, this 
design can therefore be parametrized by the probability of observing the primary 
outcome for each test and the correlation between the two tests (test 1 and test 2). 
The research question of interest is then investigated by comparing the proportion of 
responses in the two groups by conducting a statistical hypothesis test for an appro-
priate, clinically relevant parameter [2–5].

A classic example of such experiments is a study where an outcome is meas-
ured on a single sample before and after an exposure of interest. The study by Okely 
et al. [6] investigates the changes in physical activity among older adults in the 1936 
Lothian Birth Cohort due to the public health lockdown due to COVID-19 in Scot-
land [7]. A total of 137 adults over the age of 75 were surveyed about their physical 
activity, sleep quality, social activity, and psychological state before and after the 
national lockdown. The question of whether the proportion of respondents report-
ing low physical activity after the lockdown compared to before was of interest. As 
the pre-lockdown and post-lockdown measurements are taken on the same observa-
tional units, and the outcome of interest is binary (low physical activity), this is an 
important experiment comparing correlated binary proportions [8–10].

The most notable parameters in this setting are the risk difference (RD), the rela-
tive risk/risk ratio (RR), and the odds ratio [11, 12]. In practice, often the response 
rates are small, such that a relative measure provides more information about the 
magnitude of the association. Therefore, RR is often used because it is the ratio of 
respective binomial proportions from the two tests. In this article, we focus on the 
RR in the particular situation when correlated binary outcomes are reported.

Of equal importance to the point estimate of RR is the corresponding interval 
estimate. This is most often represented by the frequentist confidence interval (CI) 
[7, 13, 14]. The prominent frequentist parametric CI methods for correlated RR 
which are studied in this paper can be broadly classified according to two factors: 
(1) Hybrid vs. Nonhybrid intervals and (2) Wald-based vs. Score-based intervals. 
Hybrid refers to obtaining an interval for each proportion separately, then combin-
ing them to obtain a single CI. Wald-based and Score-based intervals refer to the 
associated test statistic which is inverted [15] as the basis of the method. That is, 
to obtain a Wald-based confidence interval, one should invert the Wald test for the 
relative risk. Contrastingly, to obtain a Score-based confidence interval, one inverts 
the Score test. It is of note that there are likelihood-based methods which are based 
on inverting the likelihood ratio test (LRT). However, we found that Wald-based and 
Score-based intervals are more frequently used in practice. Therefore, we do not 
include likelihood-based intervals in this study but direct the interested reader to the 
literature [3, 16–18].

The simplest form of the frequentist CI for RR is the Wald asymptotic CI, 
which is a nonhybrid interval derived on the log scale under the assumption of 
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joint asymptotic normality of the response rates for test 1 and test 2 [19]. The 
asymptotic normal approximation is not always appropriate given the discrete 
nature of binomial data and has previously been shown to yield low coverage 
probabilities compared to other methods [2, 20–22]. It is possible to apply a 
continuity correction to the upper and lower limits of the Wald interval which 
is inversely proportional to the study sample size. However, the continuity-cor-
rected Wald interval has been found to yield poor average coverage probabilities 
compared to alternatives and is consequently not recommended for use in practice 
[3].

As an improvement to the traditional Wald interval for a single proportion [23, 
24], Wilson [25] proposed a score-based CI for binomial proportions. Employing 
Wilson’s approach in a hybrid manner is the basis for most of the improved CIs for 
the ratio of two correlated proportions described below. Nam and Blackwelder pro-
posed one of the first improved CIs for RR [18], which was initially solved iteratively 
and later extended to closed-form confidence limits [26]. This interval improves the 
Wald interval by employing constrained maximum likelihood estimates of the pro-
portions of interest to develop a Fieller-type CI for RR [18]. This was closely fol-
lowed by Bonett and Price who combined two Wilson score intervals into a hybrid 
Fieller-type interval for RR [27]. A continuity-corrected version of the Bonett–Price 
interval is obtained by applying a constant penalty to the individual upper and lower 
confidence limits for each individual proportion. However, the continuity-corrected 
Bonett–Price interval has been shown to be overly conservative [2].

Tang et al. [28] recently extended the score CI to the ratio of two dependent pro-
portions by reparametrizing the multinomial probability model and deriving the cor-
responding score test statistic. Fagerland et al. [2] showed via simulation studies that 
the performance of the Nam–Blackwelder interval was nearly identical to Tang’s 
asymptotic score interval in terms of coverage probability. Finally, the MOVER 
hybrid score CI is another hybrid Fieller-type CI, which differs primarily from the 
Bonett–Price interval in that it is based on Newcombe’s “Square and Add” method 
for the difference in two proportions [3]. Donner and Zou [29] recently extended the 
original MOVER interval to the ratio of two correlated proportions with acceptable 
performance on average coverage probability [2].

Thus far, Tang’s Score interval is the most frequently used CI for the ratio of two 
correlated proportions, and is recommended along with the Bonett–Price interval in 
simulation studies for general use [2, 30]. The proposed approach of Tang et al. [28] 
relies on the asymptotic properties of the score test statistic, namely, the asymptotic 
standard normal distribution of the score test statistic conditional on a given RR. In 
general, continuity corrections serve to penalize the width of an interval for using a 
continuous function to approximate a discrete function, which may not be reason-
able in small samples [31]. Continuity corrections applied to approximate CIs seek 
to approach the coverage of exact CIs by imposing more conservative confidence 
limits [19]. In the case of the normal approximation to the binomial distribution, the 
approximation with continuity correction is typically superior to that without [15]. 
Therefore, we propose a new confidence interval which imposes a continuity correc-
tion to Tang’s existing Score interval, which is a nonhybrid score-based CI for the 
ratio of two correlated proportions.
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It can be advantageous in certain situations not to make assumptions regarding 
the asymptotic distribution of an estimator, or even to rely on asymptotic sample 
sizes in practice. In such situations, nonparametric CIs may be considered. Nonpara-
metric CIs for paired binary data do not rely on particular asymptotic distributions 
(e.g., normal distribution) in the derivation of the estimate or the variance–covari-
ance matrix. Duan et al. [32] developed a nonparametric U-statistic-based CI for the 
difference of two correlated proportions. To our knowledge, no one has developed a 
nonparametric CI specifically for the ratio of two correlated proportions. In Sect. 2, 
we further extend the work of Duan et al. to the situation where the RR is the param-
eter of interest.

In Sect. 2.1, we explicitly define the statistical notations and the model for cor-
related two-test experimental designs with binary outcomes. In Sect. 2.2, we present 
the existing CI methods discussed above. In Sect. 2.3, we introduce two new meth-
ods to calculate CIs for the correlated RR. Specifically, in Sect. 2.3.1, we propose 
a new test based on Tang’s score method in conjunction with continuity correction 
and provide a closed-form solution for ease of implementation. In Sect. 2.3.2, we 
extend Duan’s nonparametric U-Statistic-based CI for correlated RD to correlated 
RR. In Sect. 3, the results of using the CIs in Sects. 2.2 and 2.3 are presented. We 
apply the CIs to real data from two case studies: one oncology trial used by exist-
ing methodological reviews [2] to validate our methods and another recent oncol-
ogy trial. We additionally compare the proposed CI methods with the existing CIs 
through extensive simulation studies with regard to coverage probability, interval 
length, mean squared error, and the proportion of configurations above the nominal 
coverage level. Finally, we summarize our findings and discuss conclusions in the 
last Section.

2  Methodology

2.1  Model and Notation

The general setup for the ratio of correlated proportions is introduced below. A 
standard two-by-two contingency table layout [19], often arising from a matched-
pairs study design, is given in Table 1. Let X1 and X2 be the binary outcome from 
test 1 and test 2 with marginal probabilities of success p1 and p2 , respectively. 
We denote Xt = 1 for event and Xt = 2 for nonevent, t = 1, 2. Table 1 presents the 
observed frequency and the corresponding probability xij and pij for participants 

Table 1  Observed counts of the 
paired study are shown with the 
corresponding probabilities in 
parentheses

Test 1 Test 2

Event Nonevent Total

Event x
11
(p

11
) x

12
(p

12
) x

11
+ x

12
(p

1
)

Nonevent x
21
(p

21
) x

22
(p

22
) x

21
+ x

22
(1 − p

1
)

Total x
11
+ x

21
(p

2
) x

12
+ x

22
(1 − p

2
) n
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having the outcome X1 = i and X2 = j , where i,  j = 1, 2. The total sample size is 
n =

∑2

i=1

∑2

j=1
xij . The parameter of interest is the relative risk between test 1 and 

test 2:

We focus on the confidence intervals for �RR in this article.
The data vector � = {xij ∶ i, j = 1, 2} follows a multinomial distribution with the 

probability density function:

where p = {pij ∈ [0, 1] ∶ i, j = 1, 2} such that 
∑2

i=1

∑2

j=1
pij = 1 . For a pair of Ber-

noulli random variables (X1,X2) , the Pearson correlation coefficient � is given by

where p1, p2 ≠ 0, 1 . We can re-parameterize p into the equivalent parameter set 
{p1, p2, �} , but there are restrictions for the values of {p1, p2, �} , not every arbitrary 
combination is feasible because the natural range of the probability is between 0 and 
1 ( pij ∈ [0, 1] ). Using the necessary conditions of pairwise probabilities for p11 [33], 
we have the inequality,

Given the values of {p1, p2} , the upper and lower bounds of � are obtained by solv-
ing the above inequality, see Appendix 1 for the detailed formulas for the upper and 
lower bounds of � ( L� and U�).

Conditional on n, a multinomial distribution is defined by the parameter set 
{p1, p2, �} , which satisfies p1, p2 ≠ 0, 1 and � is in [L�, U�] . Given the relative risk 
�RR = p1∕p2 and a fixed n, the parameter set {p2, �RR, �} can also specify a mul-
tinomial distribution because p1 = p2�RR . The maximum likelihood method 
is used to estimate probabilities: p̂ij = xij∕n for i, j = 1, 2 , p̂1 = (x11 + x12)∕n , 
p̂2 = (x11 + x21)∕n , and �̂RR = p̂1∕p̂2.

In the next Sect.  2.2, we present four existing methods to calculate the 
100(1 − �)% CI for �RR (e.g., a 95% CI when � = 0.05 ). In Sect. 2.3, we consider 
three strengths of continuity correction score intervals and one nonparametric 
interval.

2.2  Existing Interval Estimation Methods

2.2.1  Wald CI

The asymptotic Wald CI is constructed assuming that the joint sampling distribution of 
the two sample proportions p̂1 and p̂2 is reasonably approximated by a bivariate normal 

�RR =
p1

p2
.

(1)Pr(�|p, n) = n!

x11!x12!x21!x22!
p
x11
11
p
x12
12
p
x21
21
p
x22
22
,

� =
p11 − p1p2√

p1(1 − p1)p2(1 − p2)
,

max (0, p1 + p2 − 1) ≤ �
√
p1(1 − p1)p2(1 − p2) + p1p2 ≤ min (p1, p2).
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distribution when n is sufficiently large. Under this assumption, using the Delta method 
[19] to obtain the asymptotic variance of log(�̂RR) gives us the following 100(1 − �)% 
Wald CI for �RR:

where z1− �

2

 is the upper �
2
 quantile of the standard normal distribution. This interval 

is strictly positive and asymmetric. 

2.2.2  Bonett–Price CI

The Bonett–Price CI is a hybrid-type CI [27]. Two individual one-sample Wilson 
score intervals (L1, U1) and (L2, U2) are calculated for p1 and p2 . Bonett and Price [27] 
showed that for the ratio of two proportions with 100(1 − �)% Wilson CIs (L1, U1) and 
(L2, U2) , the 100(1 − �)% CI for �RR is given by

where

n� = x11 + x12 + x21 , and � is a function of z1−�∕2 and � [27].

2.2.3  MOVER Wilson score CI

The lower and upper limits for the CI of the ratio may be solved for in terms of the lower 
and upper limits of the individual CIs for p1 and p2 by noting that p1 − p2�RR = 0 . 
Based on this relationship, Donner and Zou [29] applied the original square and add 
method to show that the closed form 100(1 − �)% MOVER confidence limits for �RR 
are given by (L,U):

(2)exp

{
log(�̂RR) ± z1− �

2

√
x12 + x21

(x11 + x21)(x11 + x12)

}
,

(3)
(
L1

U2

,
U1

L2

)
,

(4)
(L1, U1) =

2(x11 + x12) + �2 ± �

√
�2 + 4(x11 + x12)

(
1 −

x11+x12

n�

)

2(n� + �)
,

(5)
(L2, U2) =

2(x11 + x21) + �2 ± �

√
�2 + 4(x11 + x21)

(
1 −

x11+x21

n�

)

2(n� + �2)
,
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where CL = r(p̂1 − L1)(U2 − p̂2), CU = r(U1 − p̂1)(p̂2 − L2), (L1, U1) and (L2, U2) 
are individual 100(1 − �)% CIs of choice for p1 and p2 in Eqs.  (4) and   (5), and 
r = ĉorr(p̂1, p̂2) is an appropriate estimate of the correlation between the two sample 
proportions (e.g., the Pearson correlation coefficient).

2.2.4  Score Asymptotic CI

Under the null hypothesis H0 ∶ �RR = �0 , the score test statistic by Tang et  al. 
[30] is given as

where
p̃21 = (−b +

√
b2 − 4ac)∕2a,

a = n(1 + 𝜃0),
b = (x21 + x11)𝜃

2

0
− (x11 + x12 + 2x21),

c = x21(1 − 𝜃0)(x11 + x21 + x12)∕n.
The score test statistic is asymptotically normal under the null hypothesis. In 

the previous publications [30], due to symmetry, the lower and upper 100(1 − �)% 
confidence limits are found iteratively as the roots of

CI by Nam and Blackwelder
Nam and Blackwelder [18] derived the constrained maximum likelihood esti-

mates of p12 and p21 as

and

Based on the Fieller-type statistic,

(6)
L =

p̂1p̂2 − CL −

√(
p̂1p̂2 − CL

)2
− L1U2(2p̂1 − L1)(2p̂2 − U2)

U2(2p̂2 − U2)

U =
p̂1p̂2 − CU +

√(
p̂1p̂2 − CU

)2
− U1L2(2p̂1 − U1)(2p̂2 − L2)

L2(2p̂2 − L2)

,

(7)S(𝜃0) =
(x11 + x12) − (x11 + x21)𝜃0√

n(1 + 𝜃0)p̃21 + (x11 + x12 + x21)(𝜃0 − 1)
,

S(�) = ±z1− �

2

.

p̂12 =
−(x11 + x12) + �2

0
(x11 + x21 + 2x12) +

√
[(x11 + x12) − �2

0
(x11 + x21)]

2 + 4�2
0
x12x21

2n�0(�0 + 1)
,

p̂21 = �0p̂12 − (�0 − 1)
(
1 −

x22

n

)
.
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Nam and Blackwelder construct a 100(1 − �)% CI for �RR by solving T(�) = ±z�∕2 to 
obtain the confidence interval.

Theorem 1 The Nam–Blackwelder CI based on the test statistic T(�) in Eq. (8) is 
equivalent to the score interval by Tang et al. [30] based on the test statistic S(�) in 
Eq. (7).

Proof We show that T(�) = S(�) for any observed data in Appendix 2.   ◻

Later, Nam [26] derived the closed-form estimation of the Nam–Blackwelder 
interval using Ferrari’s formulation. Following his approach, we directly derive 
the closed-form solutions for the score interval in Appendix 3. The closed-form 
solutions are computationally less intensive and hence faster than iterative meth-
ods. Additionally, the availability of a closed-form solution avoids the common 
issues that befall root-finding algorithms. This prevents the need to choose an 
optimization method (or to rely on the default implementation which may not be 
optimal), specify convergence criteria, diagnose possible failure to converge in 
extreme contingency tables, etc. The closed form, noniterative solution is also 
more accessible for clinical researchers who may not have experience with itera-
tive computational algorithms.

2.3  Proposed Interval Estimation Methods

2.3.1  Continuity‑corrected Score Asymptotic CI

Adding continuity correction to the asymptotic score test statistic in Eq. (7), we have 
the asymptotic score continuity-corrected (ASCC) test statistic as

where p̃21 is obtained as in Sect. 2.2.4, and � is a continuity correction value. For the 
upper confidence limit �U , we transform

into a quartic equation. Then, using the same process in the uncorrected case 
to calculate �U , the lower confidence limit �L is calculated in the same way by 
transforming

(8)T(�0) =

√
n
�
(x11 + x12) − �0(x11 + x21)

�

n
√
�0(p̂12 + p̂21)

,

(9)S𝛿(𝜃0) =
�(x11 + x12) − (x11 + x21)𝜃0� − (

1

𝛿
)(

1

n
)(x11 + x21)√

n(1 + 𝜃0)p̃21 + (x11 + x12 + x21)(𝜃0 − 1)
,

(x11 + x21)𝜃 −
�
(x11 + x12) +

1

𝛿n
(x11 + x21)

�
√
n(1 + 𝜃)p̃21 + (x11 + x12 + x21)(𝜃 − 1)

= z1− 𝛼

2
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into a quartic equation. So, the 100(1 − �)% CI of �RR based on the continuity cor-
rection is then obtained as (�L, �U).

In the traditional continuity correction interval calculation, the value of � is cho-
sen as 2. In this article, we consider continuity corrections of varying strength. 
We take � = 2, 4, 8 for continuity corrections of high, medium, and low strength, 
respectively. A smaller value of � corresponds to a stronger continuity correction. 
Therefore, this is denoted as “ASCC-H” when � = 2 , “ASCC-M” when � = 4 , and 
“ASCC-L” when � = 8 in the presentation of results.

In addition to being computationally fast and intuitive for a clinical audience due 
to the explicit representation of the CI rather than a set of iterative equations (see 
Appendix 3 for closed-form solutions), the incorporation of a continuity correc-
tion in the score interval allows the flexibility to be more conservative when neces-
sary. That is, our proposed modification to the asymptotic score interval allows the 
researcher to easily choose the strength of penalty to the confidence limits guided 
by the estimates of the effect sizes, correlation between measurements from the two 
tests, and study sample size. General recommendations are provided in the Sect. 4. 
Because the score interval is recommended for practical use due to stability and 
desirable properties in recent simulation studies [2, 30], providing a flexible modi-
fication to the score interval which may be easily employed under the conditions 
discussed below can help researchers maintain nominal coverage.

2.3.2  Nonparametric CI

Duan et  al. [32] proposed a nonparametric CI for the difference in two correlated 
proportions derived from the rank-based estimation procedures for correlated area 
under the curve (AUC) data outlined by Lang [17]. Duan et al. relied on the well-
known representation of AUC as a U-Statistic [34] in the context of ROC curve 
analysis. They derived a general covariance matrix for a study with multiple groups. 
Following DeLong et al. [35], Duan et al. derive the variance–covariance matrix for 
(p̂1 p̂2)

T when the components of interest are (p1 p2)T . The full expression is given in 
Appendix 4. An estimate of the asymptotic variance of a parameter of choice is then 
easily obtained via the Delta method [19]. We refer the interested reader to Duan 
et al. [32] for further details when the parameter of interest is the correlated RD.

We extend this line of work by deriving the asymptotic variance for the U-sta-
tistic-based estimate of the ratio of two correlated proportions. The derivation of 
the estimates of the individual proportions follows the same reasoning as outlined 
above. Since the parameter of interest is now �RR = p1∕p2 , then in the case of two 
groups the estimate of interest is calculated as the ratio of respective sample propor-
tions, �̂RR = p̂1∕p̂2 . We then apply the Delta method to obtain the asymptotic vari-
ance estimate of �̂RR . Full derivation details can be found in Appendix 4. The cor-
responding asymptotic 100(1 − �)% CI using a conservative t approximation for the 
degrees of freedom is then given by

(x11 + x12) −
�
(x11 + x21)𝜃 +

1

𝛿n
(x11 + x21)

�
√
n(1 + 𝜃)p̃21 + (x11 + x12 + x21)(𝜃 − 1)

= z1− 𝛼

2
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where V̂LRR = V̂ar[log(�̂RR)] as derived by the Delta method. We refer this nonpara-
metric interval as the NonP interval.

The U-statistic-based approach to CI construction for correlated RD proposed by 
Duan et al. is computationally fast with a simple closed-form expression. Addition-
ally, nonparametric CIs are beneficial in studies under which the asymptotic approx-
imations of the previously presented methods do not hold or if the underlying data 
do not follow a binomial distribution. Our extension of this method by derivation of 
the CI for the correlated RR makes these desirable properties accessible for studies 
where the RR is the primary measure of interest.

3  Results

We first conduct extensive simulation studies comparing the finite sample proper-
ties of the four proposed intervals and another four existing intervals, followed by 
application of the intervals to two real cancer trials. These 8 intervals are computed 
from the six methods: (1) the asymptotic Wald CI, (2) the Bonett–Price CI, (3) the 
CI based on the MOVER hybrid score, (4) Tang’s asymptotic score CI, (5) the pro-
posed asymptotic continuity-corrected score CI, and (6) the extended Duan’s non-
parametric CI.

3.1  Simulation Results

All simulations were conducted using R Statistical Software Version 4.0 [36]. Func-
tions from the ratesci package in R [37] and a R function from Duan et al. [32] were 
adapted to obtain existing and proposed confidence intervals. Data were simulated 
according to the probability model described in Eq.  (1). Individual contingency 
tables for each of B = 20, 000 Monte Carlo simulations were randomly generated 
using the simstudy package by R [38]. The simulation was parametrized in terms of 
sample size n, correlation � between two tests, relative risk �RR , and p2 . As opposed 
to specifying p1 and p2 , this allows us to directly display the strength of association, 
making the results more intuitive. We studied the combinations of the following sets 
of parameter values: n ∈ {15, 30, 60, 100, 150, 300, 500} , �RR ∈ {1, 1.5, 2, 3, 4, 5} , 
� ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} , and p2 from 0.1 to 0.95 by incre-
ments of 0.05.

Given each configuration for p2 and �RR , we have a specific bound for � (see 
details in Appendix 1). We remove the following three cases which cause undefined 
confidence intervals for the existing methods: (1) n = 15 and p2 < 0.3 ; (2) n = 30 
and p2 < 0.2 ; (3) n = 60 and p2 < 0.1 . Based on these skip rules, we have 2,235 
combinations of parameters in this simulation (referred to the parameter space as 
Ω ). In addition, if the simulated data satisfied x11 + x12 = 0 and x11 + x21 = 0 

exp

{
log(�̂RR) ± tn−1,1−�∕2

√
V̂LRR

}
,
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simultaneously, the case was discarded and new data were generated for this combi-
nation until we obtained 20,000 cases that can be used.

Figure  1 presents an example of the performance of the Wald interval when 
p2 = 0.2 and �RR = 1.5, 2 . When �RR = 1.5 and � = 0.2 , the coverage probability 
of the score-based intervals starts off above 95% when n = 30 (95.31%, 95.31%, 
95.54%, and 95.69% for uncorrected, low, medium, and high corrections, respec-
tively). The Wald interval additionally exceeds nominal coverage on average for 
n = 30 with coverage probability of 95.90%. However, as the correlation increases, 
the probability of coverage by the Wald interval decreases for � = 0.5 (94.52%) and 
� = 0.6 (93.32%). This low coverage probability by the Wald interval for n = 30 
is exacerbated by increased �RR from 1.5 to 2. A similar, if slightly less extreme 
trend is observed when n = 60 . Interestingly, when �RR = 1.5 and � = 0.6 , the Wald 
interval does not reach nominal coverage on average until n = 200 , which is a large 
sample size in practice. When �RR = 2 , this holds true for both � = 0.6 and slightly 
weaker � = 0.5.

As expected, the performance of the Wald asymptotic confidence interval is dubi-
ous for small-to-moderate sample sizes. Under weaker correlation between two 
tests, for n = 30, 60, 150 , we see the general trend of over-conservatism of the Wald 
interval, which dissipates for larger sample sizes. The coverage probability quickly 
drops as correlation increases, but recovers as sample size increases.

In the situation described above (Fig. 1), when n = 30 and �RR = 1.5 , the uncor-
rected score interval was above nominal coverage on average for all strengths 
of correlation considered. As the sample size increases, the coverage of the score 
interval stabilizes close to the nominal 95%. Observing the trend over increasing 
strength of correlation further highlights this behavior. Figure 2 shows that, when 
�RR = 2 , p2 = 0.2 , and n = 30, the coverage of all score-based intervals increases 
with increasing correlation, while the coverage of all alternatives decreases. When 
n=100, most confidence intervals display a decrease in coverage probability for 
increasing correlation, while the score-based methods maintain a reasonable level 
of coverage. In fact, the ASCC-H maintains coverage closest to the nominal level 
across all values of � considered in Fig. 2. This effect is still present, if somewhat 
mitigated, when �RR = 1.5 and p2 = 0.4.

Further comparing the proposed ASCC intervals to the uncorrected score asymp-
totic interval, we see that, intuitively, when the uncorrected interval already has 
good coverage then the corrected interval is too conservative. However, the real ben-
efit of the corrected interval presents itself when the score interval has poor cover-
age. In such scenarios, the continuity-corrected score interval not only brings the 
score interval closer to nominal coverage, but the closest out of all the confidence 
interval methods compared. Taking panel 6 of Fig. 1 for example ( p2 = 0.2 , � = 0.6 , 
and �RR = 2 ), Panel 6 is overall the poorest performing scenario in this figure due to 
the strength of correlation and size of �RR relative to p2 . The coverage of the uncor-
rected score interval starts off too conservative when n = 30 , then corrects itself to 
hover just below the nominal level (between 94.55% when n=60 and 94.79% when 
n=500). Applying the ASCC with a strong correction brings the coverage within 
0.01% of nominal coverage while keeping the coverage at or above nominal level for 
sample sizes between 60 and 300.
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The score asymptotic interval was well behaved in most simulation scenarios 
included in our investigation. We observed that the score interval tended to be over-
conservative for small sample sizes no matter the strength of correlation between 
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tests, which we prefer to the frequency with which the Bonett–Price, MOVER Wil-
son, and Wald intervals failed to reach nominal coverage for small-to-moderate 
sample sizes when strong correlation is present. The example represented by Figs. 1 
and 2 illustrates that under situations where the asymptotic score interval does not 
achieve nominal coverage and the alternative intervals also perform poorly (i.e., 
high correlation and large magnitude of effect), the ASCC can help achieve nominal 
coverage.

In line with Fagerland et  al. [2], we found that the coverage probability of the 
MOVER Wilson interval is lower than other methods in most of our simulated sce-
narios. In Fig. 1, when n = 30, 60 and �RR = 1.5 , the MOVER Wilson interval does 
not meet nominal coverage even when � = 0.2 , at 94.58% and 94.91%. The cover-
age only worsens as the strength of correlation increases. The same can be seen in 
Fig. 2, where the coverage probability of the MOVER Wilson interval only sporadi-
cally exceeds the nominal level for various correlation strengths. For the same com-
bination of parameters, the average confidence interval lengths can be seen in Fig. 3. 
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For sample sizes 30, 60, and 100, the MOVER Wilson interval consistently has the 
shortest interval lengths across all values of � studied. This is at odds with the poor 
coverage probability described above.

An exception is when p1 and p2 take on relatively large values, taking �RR = 2 
and � = 0.3 in Fig.  4. When p2 = 0.1, 0.2 (and thus p1 = 0.2, 0.4 , respectively), 
the MOVER Wilson interval has the lowest coverage probability on average for all 
sample sizes. However, as p2 increases to 0.45, the MOVER Wilson interval main-
tains coverage very close to the nominal level, only dipping to 94.90% when n=300. 
Contrastingly, the performance of the Bonett–Price interval when n=15 plummets 
to 93.09%, recovering to 94.69% when the sample size reaches 60, but never meet-
ing nominal coverage. Thus, in Fig. 4, when p2 is large causing p1 to lie closer to 
the exterior of the parameter space, the Bonett–Price and the Wald intervals have 
coverage the farthest below nominal while the MOVER Wilson interval maintains 
satisfactory coverage. The trend of improved performance is seen as p2 increases in 
the panels of Fig. 4. This indicates that, when the correlation is moderate, the bias 
which may affect the MOVER Wilson interval in general may be mediated for large 
values of the response probabilities.

Figure 5 looks at the performance of the considered confidence intervals under a 
typical sample size (n=100) and probability of success ( p2 = 0.1 ) for a broad range 
of true relative risk values. Weak correlation ( � = 0.05 ) and a more moderate cor-
relation ( � = 0.2 ) are considered. We see similar trends as observed in previous fig-
ures, with decreasing coverage for stronger correlation. For very small values of rela-
tive risk ( 𝜃RR < 1 ) all confidence intervals tend to be overly conservative. When �RR 
is 5, most confidence intervals drop just below nominal coverage. In this case, using 
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the nonparametric interval preserves coverage above nominal level. On the other hand, 
all the ASCC corrections fall below nominal coverage, but attain the closest coverage 
to 95% of any alternatives (particularly ASCC-H). This is excepting the Wald inter-
val which, as expected under weaker correlations and sufficient sample size, performs 
well—intermediate coverage to the nonparametric interval and alternatives.

We further compare the proposed four CIs: ASCC-L, ASCC-M, ASCC-H, and the 
nonparametric interval, with regard to the proportion of scenarios under which each 
confidence interval method achieves nominal 95% coverage among all the configura-
tions in Ω in Fig. 6. That proportion for a given sample size n is computed as

∑
(�RR,�,p2�n)∈Ω(n)

I
�
CP(�RR, �, p2�n) ≥ 95%

�

�Ω(n)� ,

Fig. 6  Mean squared deviation of the average coverage probability from the nominal 95% coverage 
(MSE) and the proportion of cases with average coverage probability exceeding the nominal 95% for five 
confidence intervals for correlated relative risk by study sample size



1 3

Statistics in Biosciences 

where |Ω(n)| is the size of the parameter space given sample size n, and 
CP(�RR, �, p2|n) is the coverage probability given the study design parameters: 
�RR, � , and p2 . The score interval is added as reference. Both ASCC-M and ASCC-
H have the guaranteed coverage proportion above 80% for all these studies sample 
sizes, and their proportions of guaranteed coverage probability are much higher than 
that of the ASCC-L interval. In Fig. 6, we also show the average deviation of simula-
tion-based coverage probability from nominal 95% coverage (or MSE), specifically

For MSE, the proposed ASCC-M interval generally has lower MSE than ASCC-
H. Based on the results from MSE and the proportion of guaranteed coverage, we 
would recommend the proposed ASCC-M interval among the three ASCC intervals.

The nonparametric confidence interval typically often has the largest MSE for 
sample sizes less than n = 100 . This reflects to expected conservatism of nonpar-
ametric methods in general, the price paid for making fewer assumptions in the 
construction of the method. The insights above indicate that, relative to all other 
confidence interval methods considered, the nonparametric confidence interval’s 
coverage probability rarely drops below the nominal coverage level on average. This 
means that the proposed nonparametric confidence interval has a general tendency 
to be conservative, even when the performance of alternative methods is poor.

3.2  Case Studies

3.2.1  Airway Hyper‑Responsiveness

The airway hyper-responsiveness (AHR) study [39] was used in the literature to 
compare CIs for two correlated proportions, including the recent article by Fager-
land et al. [2]. Children often experience pulmonary complications following stem 
cell transplant (SCT). AHR is indicative of the degree of sensitivity of the lungs to 
foreign stimuli and is associated with unfavorable respiratory symptoms [40]. A pro-
spective pediatric study of 21 participants compared the incidence of AHR before 
and after stem cell transplant (see data in Table 2). The test for AHR is binary (posi-
tive/negative) and is paired data by pre- and post-SCT measurements. We obtain the 
same confidence intervals for the uncorrected asymptotic score, Wald, Bonett–Price, 

MSE =

∑
(�RR,�,p2�n)∈Ω(n)

[CP(�RR, �, p2�n) − 95%]2

�Ω(n)� .

Table 2  Observed counts 
of pediatric airway hyper-
responsiveness (AHR) before 
and after stem cell transplant 
(SCT)

Pre-SCT Post-SCT

AHR No AHR Total

AHR 1 1 2
No AHR 7 12 19
Total 8 13 21
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and MOVER Wilson intervals as Fagerland et  al. [2] in Table  3. Similar to their 
findings, we find an increased risk of AHR following SCT.

The Wald CI is quite wide compared to alternatives, with a width of 0.94. This 
is only surpassed in width by the proposed nonparametric method, with a width of 
1.08. This is intuitive, as nonparametric methodology tends to be conservative by 
not making distributional assumptions, which is likely appropriate in a study of this 
size. The proposed ASCC method widens the original score asymptotic CI from 
0.84 to 0.85, 0.87, and 0.89 for continuity corrections of increasing strength, which 
is particularly important in a study of this size. The MOVER CI has the shortest 
width at 0.80.

3.2.2  Breast Cancer Detection

We additionally apply the methods described above to data from a prospective study 
of adult women at risk for invasive breast cancer [41]. Dense breast tissue is asso-
ciated with an increased risk of breast cancer and a greater likelihood of a false-
negative mammogram from a screening for early detection of breast cancer [42]. 
Advanced medical techniques are therefore needed to detect invasive breast can-
cer in women with dense breast tissue. Sonogram and magnetic resonance imag-
ing (MRI) are traditionally accepted detection technology. However, sonograms are 
labor intensive and associated with low specificity while gold-standard MRIs are 
expensive and thus unrealistic as a population screening technology. Increasingly 
popular alternative detection technologies are digital breast tomosynthesis (DBT) 
and abbreviated magnetic resonance imaging (AB-MRI).

Comstock et  al. [41] sought to compare the detection rates of DBT and AB-
MRI to the results of surgical biopsy, the standard of care for breast cancer diag-
nosis. A total of 1430 women aged 40-75 with dense breast tissue were enrolled 
in the study between December 2016 and November 2017 (see data in Tables 4 
and   5). The primary outcome was detection of breast cancer, defined as either 
invasive breast cancer or ductal carcinoma in  situ (DCIS) which is a cancerous 
noninvasive lesion. During the course of the study, each participant received DBT 

Table 3  CI lengths for �
RR

 for the AHR pre- and post-SCT study

Method 95% CI

Lower limit Upper limit Width

Asymptotic score 0.0653 0.9069 0.8416
ASCC-L 0.0628 0.9167 0.8539
ASCC-M 0.0603 0.9265 0.8662
ASCC-H 0.0555 0.9461 0.8906
Wald asymptotic 0.0625 0.9996 0.9371
Bonett–price hybrid Wilson score 0.0677 0.9227 0.8550
MOVER Wilson score 0.0686 0.8695 0.8008
Nonparametric method 0.0551 1.1333 1.0781
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screening and AB-MRI screening for breast cancer. Formal diagnosis with breast 
cancer was obtained by follow-up within two years of study conclusion via surgi-
cal biopsy, the standard of care (SOC) diagnosis method.

Interestingly, when comparing DBT to SOC in Table 6, the nonparametric CI 
is of intermediate width (1.74) between those of the score intervals (ranging from 
1.748 for uncorrected to 1.749 for high correction) and the Wald, Bonett–Price, 
and MOVER intervals. This is likely owing to the large study sample size. Com-
paring AB-MRI to SOC presented in Table 7, the nonparametric CI is the long-
est at 7.231. We see the same increasing trend in the widths of the score-based 
CIs, from 7.208 uncorrected to 7.209 with high correction. In both DBT and AB-
MRI comparisons, the MOVER interval again has the shortest width at 1.717 
and 7.147 for DBT and AB-MRI, respectively. This particular case study illus-
trates that the continuity correction modification of the proposed interval makes 
only a small, likely not practically significant, difference in large studies where 

Table 4  Diagnostic accuracy 
of DBT compared to standard 
of care

DBT Invasive cancer or DCIS

Present Absent Total

Positive 9 36 45
Negative 14 1371 1385
Total 23 1407 1430

Table 5  Diagnostic accuracy of 
AB-MRI compared to standard 
of care

AB-MRI Invasive cancer or DCIS

Present Absent Total

Positive 22 187 209
Negative 1 1220 1221
Total 23 1407 1430

Table 6  CI lengths for �
RR

 for the breast cancer detection study comparing DBT to SOC

Method 95% CI

Lower limit Upper limit Width

Asymptotic score 1.2795 3.0274 1.7479
ASCC-L 1.2794 3.0275 1.7481
ASCC-M 1.2794 3.0276 1.7482
ASCC-H 1.2792 3.0278 1.7486
Wald asymptotic 1.2717 3.0100 1.7383
Bonett–price hybrid Wilson score 1.2744 3.0037 1.7293
MOVER Wilson score 1.2705 2.9880 1.7175
Nonparametric method 1.2711 3.0116 1.7405
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the asymptotic approximation assumed by the original score interval is likely 
reasonable.

The lower limits for comparing AB-MRI to SOC are all above 6, which indicate 
that AB-MRI is a test that could have a very high false-positive rate. Meanwhile, the 
lower limits for comparing DBT to SOC are between 1.2 and 1.3 indicating a better 
performance of DBT as compared to AM-MRI.

4  Discussion

As our simulations have shown, imposing a continuity correction to Tang’s itera-
tive asymptotic score interval can be quite beneficial in certain situations. In particu-
lar, for small sample sizes, the asymptotic score with continuity correction provides 
the closest average coverage probability to the specified nominal level as correla-
tion increases. Additionally, in both small (N=30) and moderate (N=60,100) sam-
ple sizes, ASCC was shown to be beneficial under increasing strength of correlation 
when the probability of event is small relative to the true relative risk. Practically, 
this indicates that if an investigator expects a stronger correlation between the two 
tests in the study, and expects small probabilities of observing the event but a larger 
effect size, you will more likely meet nominal coverage when applying ASCC than 
Tang’s original score interval (or any other studied methods, save the nonparametric 
CI).

When the sample size is large and/or the correlation is low, applying a continuity 
correction can be conservative compared to the uncorrected asymptotic score inter-
val. This contrasts with the behavior of the Wald, Bonett–Price, and Mover Wilson 
intervals in such situations, which are over-conservative for weakly correlated sam-
ples, but experience unacceptably low average coverage probabilities with increas-
ing strength of correlation. Therefore, in situations with moderate sample and effect 
sizes, the standard recommendation holds to use the uncorrected asymptotic score 
interval. However, for larger anticipated effect sizes with strong correlation between 
tests, we recommend the asymptotic score with continuity correction for general 

Table 7  CI lengths for �
RR

 for the breast cancer detection study comparing AB-MRI to SOC

Method 95% CI

Lower limit Upper limit Width

Asymptotic score 6.2443 13.4526 7.2083
ASCC-L 6.2443 13.4527 7.2085
ASCC-M 6.2442 13.4528 7.2086
ASCC-H 6.2441 13.4531 7.2090
Wald asymptotic 6.1671 13.3892 7.2220
Bonett–price hybrid Wilson score 6.1815 13.3580 7.1764
MOVER Wilson score 6.1704 13.3173 7.1469
Nonparametric method 6.1643 13.3954 7.2311
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practice. We developed an R shiny app at the link: https:// dongy uanwu. shiny apps. 
io/ Paire dRR/.

Additional to the improved operating characteristics of the proposed ASCC 
intervals under the above scenarios are the computational benefits of the proposed 
method. Provision of a closed form of the uncorrected and continuity-corrected 
asymptotic score interval decreases computation load relative to the iterative solu-
tion search previously required by Tang et al. [30]. Further, closed-form expressions 
for the confidence limits are more accessible to clinical audience and avoid common 
optimization challenges in the root-finding process. Regardless of the decision to 
impose a continuity correction, the use of the closed-form solution is recommended. 
R function implementations of all available methods can be obtained from the 
authors upon request.

In agreement with the findings of Duan et al. [32], we illustrate that the U-sta-
tistic-based nonparametric method is conservative when the sample size is small. 
In fact, in the majority of simulation scenarios studied, the nonparametric interval 
rarely drops below nominal coverage probability. The nonparametric interval fre-
quently meets or exceeds nominal coverage, as shown in the bottom panel of Fig. 6. 
As a specific example, in Fig.  1, the nonparametric method only shows coverage 
probabilities consistently below nominal coverage when � = 0.6 and �RR = 2 , while 
the performance of most other methods is severely challenged.

Though we recommend the use of the asymptotic score interval (corrected or 
uncorrected based on the characteristics of the available data) for practical use to 
achieve coverage probability closer to the nominal level, the practical context of the 
analysis may warrant the choice of more conservative coverage at the expense of a 
wider interval. This makes our extension of Duan’s nonparametric interval for cor-
related RD to correlated RR useful. The decision to use the nonparametric confi-
dence interval should in general be motivated by a risk–benefit assessment informed 
by the real-world consequences of failing to capture the true value of the param-
eter under study in the confidence interval. This may be particularly desirable in 
the drug development context, where national regulatory agencies tend to prefer 
conservative inferential techniques. Note that for both the RD and RR, the intervals 
are nonparametric in the sense that the derivation of the point estimate and the vari-
ance–covariance matrix are conducted without distributional assumptions, as out-
lined in Sect.  2.3.2. However, the variance of RD and RR are both derived using 
the Delta method, and hence some asymptotic behavior can be observed in the lines 
representing the nonparametric interval in the simulation summaries.

In the small sample case where a conservative CI is desired, one could also consider 
an exact CI for the correlated RR. In contrast with traditional methods, exact CIs do 
not rely on the asymptotic normal approximation to the binomial distribution to hold 
reasonably, but instead use the binomial distribution directly to enumerate all cumula-
tive probabilities of interest for interval construction. Thus, exact CIs can be computa-
tionally intensive and are often most feasible in small-to-moderate sample size settings. 
This provides the benefit of improved coverage in small sample settings but sacrifices 
the simple closed-form expression and ease of computation of our proposed nonpara-
metric interval for the paired RR. According to the authors of the ExactCIdiff package 
in R, even in relatively small sample sizes (such as n=100) the computation for a single 

https://dongyuanwu.shinyapps.io/PairedRR/
https://dongyuanwu.shinyapps.io/PairedRR/
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exact confidence interval for the difference of two correlated proportions can take an 
hour to complete on an HP laptop with Intel(R) Core(TM) i5=2520M CPU@2.50 GHz 
and 8 GB RAM. This puts a time comparison outside of the scope of the current simu-
lation study. Extensive development in this area can be found in the literature [43]. We 
believe a conservative interval is a good addition to any simulation study for compari-
son purposes but preferred to include an interval with less computational intensity. For 
similar reasons, we did not include the Bonett–Price with continuity correction in our 
simulation study. Fagerland et al. [2] found that the continuity-corrected Bonett–Price 
interval was so overly conservative, it approached the performance of an exact CI rather 
than an approximation.

In this paper, improved methodology for calculating confidence intervals for the cor-
related relative risk is presented in the context of a two-by-two contingency table. A 
future direction of research is to extend the methods and notations described here to 
two-way contingency tables of higher dimension. One example would be a study that is 
stratified by covariate(s) (e.g., gender, race). Estimation in this setting entails providing 
confidence interval formulas for the stratified correlated relative risk.

We would like to bring attention to another future direction of research which is not 
exclusive to this paper, but would have greatly added to the quality of the investigation. 
Though we thoroughly searched, it was a difficult task to find any applied example in 
which both the experimental design was applicable and the necessary information to 
construct the 2 by 2 table of interest was published. As a result, we were unable to con-
duct a resampling-based assessment of confidence interval coverage probabilities in our 
real data examples. This is a well-known challenge for methodological research related 
to clinical trial design and analysis. We hope that collaborative movements to make full 
clinical trial data publicly available where appropriate make this possible in our future 
lines of research.

Appendix 1: The Boundary of the Pearson Correlation Coefficient

To obtain the range of the Pearson correlation coefficient � for a pair of 
Bernoulli random variables (X1,X2) , the following inequality is used, 
max (0, p1 + p2 − 1) ≤ p11 ≤ min (p1, p2). The above inequality can be rewritten as

When p1, p2 ≠ 0, 1 , we can solve the right side of the inequality to obtain the upper 
bound of �,

max (0, p1 + p2 − 1) ≤ �
√
p1(1 − p1)p2(1 − p2) + p1p2 ≤ min (p1, p2).
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Moreover, the lower bound of � is obtained by solving the left side of the inequality,

Appendix 1 shows the derivation of the formulas for L� and U�

The lower bound and the upper bound can be further improved when the ranges of 
p12 , p21 , and p22 are utilized. In the R program, we checked all these four cell prob-
abilities to make sure that they are between 0 and 1.

Appendix 2: Proof of Theorem 1: The Nam–Blackwelder CI Based 
on the Test Statistic T(�

0
) is Equivalent to the Score Interval Based 

on the Test Statistic S(�
0
)

Nam and Blackwelder’s interval is calculated from T(�) = ±z1−�∕2 . Given � , the 
score asymptotic CI is calculated using S(�) . These two CI methods are equal if 
T(�) = S(�) . To simplify the notations, we denote x

⋅1 = x11 + x21 and x1⋅ = x11 + x12 . 
These two test statistics are

and

� ≤
min (p1, p2) − p1p2√
p1(1 − p1)p2(1 − p2)

� ≤
min

�
p1(1 − p2), p2(1 − p1)

�
√
p1(1 − p1)p2(1 − p2)

� ≤ min

��
p1(1 − p2)

p2(1 − p1)

� 1

2

,

�
p2(1 − p1)

p1(1 − p2)

� 1

2

�
.

� ≥
max (0, p1 + p2 − 1) − p1p2√

p1(1 − p1)p2(1 − p2)

� ≥
max

�
−p1p2,−(1 − p1)(1 − p2)

�
√
p1(1 − p1)p2(1 − p2)

� ≥ max

�
−

�
p1p2

(1 − p1)(1 − p2)

� 1

2

,−

�
(1 − p1)(1 − p2)

p1p2

� 1

2

�
.

L� = max

{
−

[
p1p2

(1 − p1)(1 − p2)

] 1

2

,−

[
(1 − p1)(1 − p2)

p1p2

] 1

2

}
;

U� = min

{[
p1(1 − p2)

p2(1 − p1)

] 1

2

,

[
p2(1 − p1)

p1(1 − p2)

] 1

2

}
.

T(�) =
x1⋅ − x

⋅1�√
n�(p̂12 + p̂21)
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where p̃21 , p̂12 , and p̂21 are presented in the manuscript. We calculated the difference 
of denominators of T(�) and S(�),

Therefore, T(�) = S(�) . The Nam–Blackwelder 100(1 − �)% CI based on the con-
strained maximum likelihood is exactly the same as the 100(1 − �)% score asymp-
totic CI.

Appendix 3: Closed‑Form Solutions for the Score Interval 
and the Proposed ASCC Intervals

Following the Appendix in Nam [26], we first derive the closed-form estimation of 
confidence limits for the score asymptotic CI. Then, we present the closed-form for-
mula to calculate exact confidence limits of the continuity-corrected score asymptotic 
CI. To simplify the notations, we denote x

⋅1 = x11 + x21 and x1⋅ = x11 + x12.
Similar to the Appendix in Nam [26], we solve the quartic equation to obtain the 

exact values of two confidence limits for the Score Asymptotic CI. The following 
context presents steps to obtain the exact solutions. When � greater than x1⋅∕x⋅1 , the 
equation to calculate the upper confidence limit is

where p̃21 is shown in Sect. 2.2.4.   Solving the equation,

Input p̃21 as an expression of � , we have

S(𝜃) =
x1⋅ − x

⋅1𝜃√
n(1 + 𝜃)p̃21 + (x11 + x12 + x21)(𝜃 − 1)

,

n𝜃(�p
12
+ �p

21
) − [n(1 + 𝜃)p̃

21
+ (x

11
+ x

12
+ x

21
)(𝜃 − 1)]

= n𝜃(1 + 𝜃)�p
12
− 𝜃(𝜃 − 1)(x

11
+ x

12
+ x

21
) −

[
1

2

√
(x

1⋅
− x

⋅1
𝜃2)2 + 4x

12
x
21
𝜃2 −

1

2
x
⋅1
𝜃2

+ (𝜃 − 1)(x
11
+ x

12
+ x

21
) +

1

2
(x

1⋅
+ 2x

21
)

]

=
1

2

[√
(x

1⋅
− x

⋅1
𝜃2)2 + 4x

12
x
21
𝜃2 −

√
(x

1⋅
− x

⋅1
𝜃2)2 + 4x

12
x
21
𝜃2
]

= 0.

x
⋅1𝜃 − x1⋅√

n(1 + 𝜃)p̃21 + (x11 + x12 + x21)(𝜃 − 1)
= z1− 𝛼

2

,

x
⋅1𝜃 − x1⋅ = z1− 𝛼

2

√
n(1 + 𝜃)p̃21 + (x11 + x12 + x21)(𝜃 − 1)

(x
⋅1𝜃 − x1⋅)

2 = z2
1−

𝛼

2

�
n(1 + 𝜃)p̃21 + (x11 + x12 + x21)(𝜃 − 1)

�

z2
1−

𝛼

2

n(1 + 𝜃)p̃21 = x2
⋅1
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�
2x
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𝛼

2
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+ z2
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2
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(10)

1

2
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1−

�

2

√
T =

�
x2
⋅1
+

1

2
z2
1−

�

2

x
⋅1

�
�2 −
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2x
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2

(x11 + x12 + x21)
�
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1⋅
+

1

2
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�
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where T ≥ 0 and T = x2
⋅1
�4 − 2(x2

11
+ x11x12 + x11x21 − x21x12)�

2 + x2
1⋅
 . To calculate 

� , we need to square both sides of Eq.  (10). However, the right side of Eq.  (10), 
denoted as V, is not necessarily nonnegative and redundant solutions of � are added 
in such a case. Therefore, if the solutions of � satisfy V < 0 , the solutions should be 
discarded. Squaring both sides of Eq. (10), we can obtain the quartic equation as

where

Using the Ferrari’s method, the formulas of the roots are

where

The value of S is calculated using different formulas under various conditions. We 
denote that Δ0 = c2 − 3bd + 12ae , Δ1 = 2c3 − 9bcd + 27b2e + 27ad2 − 72ace , and 
Δ = (4Δ3

0
− Δ2

1
)∕27 . If Δ < 0 and Δ0 ≠ 0,

(11)a�4 + b�3 + c�2 + d� + e = 0,

a = x4
⋅1
+ z2

1−
�

2

x3
⋅1

b = −(2x2
⋅1
+ z2

1−
�

2

x
⋅1)[2x⋅1x1⋅ + z2

1−
�

2

(x11 + x12 + x21)]

c = 6x2
⋅1
x2
1⋅
+ z4

1−
�

2

(x1⋅ + x
⋅1)(x11 + x12 + x21) + z2

1−
�

2

x
⋅1x1⋅(6x11 + 5x12 + 5x21)

d = −(2x2
1⋅
+ z2

1−
�

2

x1⋅)[2x⋅1x1⋅ + z2
1−

�

2

(x11 + x12 + x21)]

e = x4
1⋅
+ z2

1−
�

2

x3
1⋅
.

(12)

�1 = −
b

4a
− S −

1

2

√
−4S2 − 2k +

h

S

�2 = −
b

4a
− S +

1

2

√
−4S2 − 2k +

h

S

�3 = −
b

4a
+ S −

1

2

√
−4S2 − 2k −

h

S

�4 = −
b

4a
+ S +

1

2

√
−4S2 − 2k −

h

S
,

k =
8ac − 3b2

8a2

h =
b3 − 4abc + 8a2d

8a3
.



 Statistics in Biosciences

1 3

If Δ < 0 and Δ0 = 0,

If Δ > 0,

If Δ = 0 and Δ0 ≠ 0 , the formula in case Δ > 0 can be used to calculate S. If Δ = 0 
and Δ0 = 0 , thus Δ1 = 0 , at least three roots of Eq.  (11) are equal. In this special 
case, four roots of Eq.  (11) are denoted as the triple root �tri and the unique root 
�uni . The roots are calculated using the following procedure. Solving the equation, 
6a�2 + 3b� + c = 0 , to obtain two values. Plugging in the two values to the left side 
of Eq. (11) to obtain the value satisfied the quartic equation. This common root of 
the two equations is �tri , then the unique root is calculated by �uni = −3�tri − b∕a . 
If S = 0 , the associated depressed quartic equation of Eq.  (11) is a biquadratic 
equation,

the four roots of Eq. (11) can be obtained by solving the upper equation.
Because of symmetry, the lower confidence limit also satisfies Eq. (11). After the 

four roots are obtained, calculating the corresponding values of V. The roots with V < 0 
are discarded, then plugging in the left roots to Eq. (7) to select the upper and lower 
confidence limits �U and �L satisfying S(�U) = −z1− �

2

 and S(�L) = z1− �

2

.
To calculate confidence limits of the 100(1 − �)% Continuity-corrected Score 

Asymptotic CI, we need to solve the equation,

Q =

3

√√√√Δ1 +
√

(Δ2
1
− 4Δ3

0
)

2

S =
1

2

√
−
2

3
k +

1

3a
(Q +

Δ0

Q
).

Q = 3
√
Δ1

S =
1

2

�
−
2

3
k +

1

3a
(Q +

Δ0

Q
).

� = arccos

⎛
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Δ1

2

�
Δ3

0

⎞
⎟⎟⎟⎠

S =
1

2

�
−
2

3
k +

2

3a

√
Δ0 cos

�

3
.

�4 + (
8ac − 3b2

8a2
)�2 +

256a3e + 16ab2c − 3b4 − 64a2bd

256a4
= 0,

�x1⋅ − x
⋅1𝜃� − x

⋅1

𝛿n√
n(1 + 𝜃)p̃21 + (x11 + x12 + x21)(𝜃 − 1)

= z1− 𝛼

2

,



1 3

Statistics in Biosciences 

where � is a constant (e.g., � = 2 ). Thus, solving the equation,

to obtain �U . And solving the equation,

to obtain �L . From Eq. (13), we can obtain the quartic equation like Eq. (11) where

Then the four roots are calculated by Eq. (12) obtained from the Ferrari’s method. 
Because �U satisfies Eq.  (13), only one of the four roots is selected as �U . From 
Eq. (14), the quartic equation like Eq. (11) is obtained where

The four roots are calculated by Eq. (12) and �L is selected from the four roots using 
the condition that �L satisfies Eq. (14).

(13)
x
⋅1𝜃 − (x1⋅ +

x
⋅1

𝛿n
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Appendix 4: The Asymptotic Based Nonparametric Confidence 
Interval

For correlated binary data of two tests, Duan et  al. [32] estimated the vari-
ance–covariance matrix of (p1 p2)T as

The proof of this estimated covariance matrix could be found in their paper’s appen-
dix using Langes’s rank-based method.

For the log relative risk g(p1, p2) = log(p1∕p2) , using the first-order Taylor expan-
sion, we have

where p̂1 = (x11 + x12)∕n , p̂2 = (x11 + x21)∕n , and �p1,�p2 > 0 . Therefore, the esti-
mated variance of the log relative risk can be obtained using the Delta method

It is straightforward that �VLRR > 0 because p̂1 and p̂2 are nonzero positive values.
Based on V̂LRR , we then constructed a approximated 100(1 − �)% CI for log rela-

tive risk. The simulation results in Duan et al. [32] showed that the t approximation 
with the degree of freedom df0 = n − 1 provided preferable performance of the cor-
responding CI of risk differences. Compared with the normal approximation, the t 
approximation with degrees of freedom df0 leads to slightly conservative test fol-
lowing Brunner et al. [44, 45]. So, a 100(1 − �)% CI of the log relative risk is con-
structed as (L,U):

where tn−1,1−�∕2 is the �∕2 upper quantile of the t distribution with n − 1 degrees 
of freedom. Moreover, the 100(1 − �)% CI of the relative risk is obtained as 
(exp (L), exp (U)).

V̂ =

[
(x11+x12)(x21+x22)
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L = log
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− tn−1,1−�∕2V̂LRR

U = log

(
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