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Abstract

Multi-zinc finger proteins are an emerging class of cofactors in DEAH-RHA RNA helicases 

across highly divergent eukaryotic lineages. DEAH-RHA helicase•zinc finger cofactor 

partnerships predate the split of kinetoplastid protozoa, which include several human pathogens, 

from other eukaryotic lineages 100–400 Ma. Despite a long evolutionary history, the prototypical 

DEAH-RHA domains remain highly conserved. This short review focuses on a recently identified 

DEAH-RHA helicase•zinc finger cofactor system in kinetoplastid RNA editing, and its potential 

functional parallels with analogous systems in embryogenesis control in nematodes and antivirus 

protection in humans.
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Introduction

RNA and their ribonucleoprotein complexes (RNPs) in nearly all aspects of gene expression 

are remodeled by helicases, which are nucleoside triphosphate dependent molecular motors 

that unwind double helical nucleic acids [1–4]. All helicases are divided into six 

superfamilies (SFs) based on amino acid sequence and structure. The eukaryotic RNA 
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helicases are monomeric and belong to SF1 and SF2. The ring-forming helicases (typically 

hexameric) belong to SF3-to-6. SF1 and SF2 helicases are further divided into several 

protein families and subfamilies. The DEAH-RHA subfamily helicases are placed within 

SF2 and are found in all eukaryotes. These proteins are named after the sequence Asp-Glu-

Ala-His (DEAH), which is also known as the Walker B motif or motif II, and after the RNA 

helicase A (RHA), which is also a member of SF2. Several excellent recent reviews have 

described in detail the function and architecture of RNA helicases in general and DEAH-

RHA RNA helicases in particular [1–4].

Highlighting the wide distribution of DEAH-RHA helicase-dependent processes is the 

participation of these proteins in a unique process of RNA editing in the single 

mitochondrion of kinetoplastid protozoa [5–7]. This processing involves site-specific 

insertion and deletion of uridylates at many mRNA sites in protein-catalyzed reactions 

directed by small guide RNAs (gRNAs). The gRNAs exhibit complementarity to fully edited 

mRNA through canonical and G•U base pairs. In Trypanosoma brucei, the causative agent 

of human African trypanosomiasis or sleeping sickness [8], the holo-editosome targets most 

mitochondrial mRNAs and consists of over 30 proteins, including two RNA helicases, one 

of which is a DEAH-RHA helicase [5, 7, 9–11]. Ribosome biogenesis in yeast and humans 

requires the largest number of different helicases, including several DEAH-RHA proteins. 

The spliceosome, which comprises over a hundred proteins, also requires a large set of RNA 

helicases, including four different DEAH-RHA proteins in yeast [1, 2, 12, 13].

DEAH-RHA helicases participate in almost every kind of RNA processing reaction in RNA 

biology and are specifically regulated by a class of protein cofactors that typically contain 

G-patch domains. The characterized G-patch protein cofactors have been reviewed in 

detail [14]. The single DEAH-RHA helicase in kinetoplastid RNA editing does not have a 

typical G-patch protein cofactor, but instead it binds a zinc finger (Znf) protein cofactor. 

Only two other DEAH-RHA helicase•Znf cofactor systems have been reported so far. One 

system participates in the control of embryogenesis in nematodes and the other system 

participates in antivirus protection in humans [15, 16]. The presence of a DEAH-RHA 

helicase•Znf cofactor partnership in trypanosomes, nematodes, and humans suggests that 

this partnership is widespread in eukaryotes.

This review compares the sole DEAH-RHA helicase in kinetoplastid RNA editing with other 

subfamily members and examines the available studies and functional models for the known 

DEAH-RHA helicase•Znf cofactor systems. It is feasible that DEAH-RHA helicase•Znf 

cofactor partnerships share mechanistic features despite their taxonomic distance and their 

participation in very different RNA processes.

Domain organization of DEAH-RHA helicases in kinetoplastid protozoa and 

highly divergent organisms

SF1 and SF2 helicases have a catalytic core of tandem RecA-like domains with typical 

motifs for ATP-binding and hydrolysis and for RNA binding and unwinding. The first 

crystal structure of a DEAH-RHA protein revealed a cluster of domains at the C-terminus 

that distinguishes it from other members of the DEAH family [17]. This cluster includes a 
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winged helix motif, a ratchet motif, and an oligonucleotide-binding (OB-fold) domain. 

Some DEAH-RHA proteins have additional domains on the N-terminal side of the catalytic 

core of the helicase. These N-terminal domains are thought to be crucial for facilitating the 

recruitment of specific cofactors and the RNA target, and for modulating the function of the 

helicase activity. The kinetoplastid RNA helicase termed REH2 (RNA Editing Helicase 2) 

has all of the conserved features of DEAH-RHA proteins (Fig 1) [10]. Sequence analyses of 

helicase core motifs in all SF1 and SF2 helicases in trypanosomes identified 13 DEAH 

family members [18]. Further sequence and structural predictions indicate that all of these 

proteins are also RHA subfamily members (Fig. 2), except for Tb09.211.4430 and 

Tb927.4.3890. REH2 is the largest DEAH-RHA helicase and the only family member 

characterized in kinetoplastids [9, 10, 19–21]. However, a comparison of the orthologs in 

different kinetoplastids, including T. brucei, T. cruzi and Leishmania, revealed a DEAH 

family member that is unique to T. cruzi and another member that is present in trypanosomes 

but not in Leishmania [18]. REH2 is also substantially larger than the characterized DEAH-

RHA proteins in humans, yeast, and bacteria (Fig. 3). REH2 has two dsRNA-binding 

domains (dsRBDs). The first (dsRBD1) is near the N-terminus of the protein, and the second 

(dsRBD2) is near the N-terminus of the catalytic core. This domain organization is common 

in REH2 orthologs in kinetoplastids (Fig. 4). REH2 has a shorter paralog gene 

(Tb927.4.3020) [9, 11] that carries only one N-terminal dsRBD domain. The possible 

function(s) of Tb927.4.3020 remains undetermined; initial studies using RNAi-inducible 

down-regulation were unable to link this protein to RNA editing [19]. Only the RHA helicase 

in humans (DHX9) is known to carry two dsRBDs, while DHX30 and DHX29 each carry a 

single predicted dsRBD. Other RNA binding sites have been experimentally determined 

(DHX36) [22] or predicted (DXH8) [23] (Fig. 3). It is possible that other auxiliary domains in 

these proteins participate in nucleic acid binding. The complex modular arrangement that 

defines the DEAH-RHA helicase subfamily evidently appeared early in evolution because it 

is present in bacteria and viruses [1, 2]. Because the DEAH-RHA modular structure is well 

conserved in biology, members of this subfamily are distinguished from each other by 

different sets of auxiliary domains mostly found at their N-terminus. A variety of specialized 

auxiliary domains often provide important functional information. Consistent with the early 

split of kinetoplastids from other eukaryotes, the sequences outside the DEAH-RHA 

domains have no obvious homology to yeast or human proteins. The assignment of 

orthologs in kinetoplastids to specific roles and processes will require detailed functional 

studies.

The N-terminus of both kinetoplastid REH2 and human RHA (DHX9) helicases carry two 

dsRBDs; however, the distance in sequence that separates the dsRBDs is very different 

between the two proteins (Fig 3). The presence of the two dsRBDs suggests that REH2 and 

RHA have mechanistic similarities, but it does not imply a shared role in related processes. 

RHA participates in different cellular processes with implications in human diseases 

including several cancers and viral infections. These include control of DNA replication, 

transcription, translation, microRNA biogenesis, RNA processing and transport, genomic 

stability, and retroviral gene expression [3, 14, 24]. REH2 participates in RNA editing in 

kinetoplastid mitochondria. Additional roles for REH2 are feasible but not established yet. 

An early study of the REH2-associated RNP speculated that this complex serves as an 
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“organizer” of mitochondrial genome expression [9]. Indeed, isolations of REH2 are 

enriched in mitoribosomes and other mitochondrial complexes known to participate in 

mRNA 3′ maturation and stability [5, 9]. Among the DEAH-RHA proteins in kinetoplastids, 

a few additional putative auxiliary domains with relatively low E-values can be detected. 

These domains include a RWD domain (named after three major RWD-containing proteins: 

RING finger and WD repeat containing proteins, and DEXDc-like helicases) [25] in 

Tb11.01.3930 that is also observed in the human DHX57 protein (Figs. 2 and 4). As 

mentioned above, the annotation of auxiliary domains is insufficient to enable confident 

predictions of their functional roles. Yet, this information hints to possible mechanistic 

similarities in the way these proteins may operate.

Control of editosome assembly in the single mitochondrion of kinetoplastid 

protozoa

The holo-editosome in T. brucei includes the multi-subunit RECC (RNA editing core 

complex) enzyme and a large number of auxiliary proteins. Most auxiliary proteins are 

found in ribonucleoprotein subcomplexes with mRNA and gRNA [10, 19, 20, 26]. One of these 

RNPs, the REH2-associated protein subcomplex (REH2C) (Fig. 5) includes the REH2 

helicase, two cofactors, and all mRNA classes that participate in editing (i.e., pre-mRNA 

substrates, partially edited intermediates, and fully edited products) [10, 19, 20]. This mRNA-

associated ribonucleoprotein subcomplex (mRNP) associates with variants of a gRNA-

associated RNP (gRNP) (Fig 5). The mRNP binds the gRNP variants via either stable or 

transient RNA-mediated contacts [10, 19]. A photo-crosslinking experiment with a model 

mRNA-gRNA hybrid substrate identified a close interaction (≤4 Å) of REH2 with the 

editing site of the substrate [9, 19]. A model of editosome assembly proposes that mRNP 

basepairing with gRNPs leads to the formation of mRNA-gRNA hybrid substrates. The first 

editing site (ES1) in the mRNA is the position just 5′ of a short initial duplex between 

mRNA and gRNA (termed the anchor duplex) [27, 28]. The ES2 is established as the anchor 

duplex incorporates correctly edited ES1 sequence. This cycle is repeated one site at the 

time as the editing machinery advances along the mRNA in a 3′-to-5′ direction. Transient 

addition of the RECC enzyme to preassembled substrate-loaded multi-RNP scaffolds would 

establish higher-order catalytic holo-editosomes [10]. REH2 and one of its cofactors (H2F1) 

with eight predicted zinc fingers are required for efficient editing in vivo (Fig. 6). This was 

shown by RNAi-mediated silencing experiments [10, 20, 21, 29]. The REH2C subcomplex 

carries an ATP-requiring 3′-5′ unwinding activity that is linked to the REH2 helicase [9]. In 

purifications of REH2 from mitochondrial extract, the unwinding activity is inhibited by 

mutation of conserved carboxylates in the catalytic motif I (in RecA1) or in dsRBD2 (Fig. 

1). Mutations in either domain also prevent copurification of REH2 with mRNA and 

gRNA [9, 19]. In agreement with the RNP docking model, the loss of mRNA association 

leads to a collapse of the stable mRNP-gRNP assembly [19]. Another prediction of the model 

is that mRNP copurification with the RECC editing enzyme requires gRNA (presumably 

most or all gRNA molecules are part of gRNPs). Indeed, a loss of mRNP-RECC association 

is observed upon depletion of gRNA in mitochondria [10]. Thus, formation of complete 

multi-RNP scaffolds enables the transient association of the RECC enzyme with the helicase 

mRNP. This finding also supports the concept of RECC transient addition through its 

Cruz-Reyes et al. Page 4

RNA Dis. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



binding to preassembled mRNA-gRNA duplexes in the multi-RNP scaffolds [10]. A H2F1 

knockdown prevents the normal association of the REH2 helicase with gRNPs and the 

RECC enzyme. H2F1 is a proposed regulator of REH2 that controls both the docking of this 

helicase with gRNPs and the addition of the RECC enzyme to holo-editosomes [10]. 

Consistent with the proposed REH2•H2F1 direct interaction in vivo, recombinant versions of 

REH2 and H2F1 bind directly with each other to form a stable complex in vitro [10]. Yet, 

additional studies are needed to establish how H2F1 and REH2 act in concert during the 

assembly of substrate-loaded holo-editosomes.

Embryogenesis control in nematodes

C. elegans can exist as sequential hermaphrodites. Sperm production occurs during 

development and oogenesis occurs in adults. The switch from sperm production to oogenesis 

requires a controlled posttranscriptional repression of fem-3, a sex-determining gene that 

promotes male development [30–32]. The switch from sperm to oocyte production is 

controlled at different levels including by three critical nuclear DEAH-RHA helicases: 

MOG-1, MOG-4 and MOG-5 (“MOG” stands for Masculinization Of the Germline) [15]. 

These proteins are the orthologs of the DEAH-RHA helicases Prp16, Prp2, and Prp22 in 

yeast. A cofactor of these MOG proteins, MEP-1 (for MOG-interacting and ectopic P-

granules) (Fig. 7) is also essential for the sperm⇒oocyte switch. MEP-1 has seven predicted 

Znf domains (Fig 7). Binding of MEP-1 to each MOG protein was confirmed in yeast two-

hybrid assays and in experiments using in vitro-translated proteins. Disruption in the 

expression of MEP-1 or any of its MOG partners prevents the required repression of fem-3 
mRNA at the translation level. This results in the masculinization of the germline (the “mog 

phenotype”) [15]. Because MOG and MEP-1 are nuclear proteins, it has been unclear how 

the cytosolic inactivation of fem-3 mRNA takes place. A MEP-1 homolog of unknown 

function was identified in Drosophila but not in yeast, suggesting that MEP-1 evolved 

among metazoans. Recombinant MEP-1 binds RNA non-specifically in vitro, although the 

fem-3 mRNA is the only known cognate target of MEP-1 [15]. MEP-1 alone or with its 

helicase partners or other cofactors may provide the required RNA specificity in vivo. Prp16, 

Prp2, Prp22, and their human orthologs control steps of pre-mRNA assembly with several 

snRNPs. Thus, the MOG•MEP-1 system could control similar steps. Yet, splicing defects 

were not observed in mog-1 null mutant animals [33]. It was speculated that the 

MOG•MEP-1 system mediates epigenetic effects that are coupled with splicing. One such 

effect is the deposition of the exon junction complex (EJC) near exon-exon junctions of 

mRNAs. This post-splicing accumulation of EJCs by the spliceosome machinery is known 

to affect the fate of mRNAs such as nuclear export, degradation, subcellular mRNA 

localization, and translational yield [34]. Consistent with this idea, two core components of 

EJC in C. elegans are also required for the sperm⇒oocyte switch [35, 36]. The precise 

mechanism of action of the MOG•MEP-1 system remains to be determined.

Antiviral response in vertebrates

The zinc-finger antiviral protein (ZAP) is a host factor that inhibits the replication of a broad 

spectrum of important viruses, including HIV, Ebola virus and Sindbis virus [37, 38]. ZAP has 

four predicted zinc fingers (Fig. 7), and its activity has been associated with two RNA 
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helicases, the DEAH-RHA protein DXH30 and the DEAD protein p72. In addition, ZAP 

inhibits human retrotransposons in association with another helicase, MOV10 [39, 40]. ZAP 

also acts against hepatitis B virus transcription and replication [41]. ZAP specifically inhibits 

viral replication by a mechanism that involves direct ZAP binding to the viral mRNA and 

recruitment of the RNA exosome to degrade the viral mRNA target [38]. ZAP activity 

requires normal expression of the cellular factor DXH30 that carries a conserved N-terminal 

dsRBD (Fig. 3). ZAP and DXH30 are thought to form a complex in vivo. Direct binding 

between these proteins only requires their N-termini [38]. The ZAP-interacting N terminus 

fragment in DXH30 includes the dsRBD but not the catalytic core. The DXH30-interacting 

N terminus fragment in ZAP includes all four zinc fingers. The specific elements or motifs 

in ZAP and DXH30 that mediate their direct interaction remain to be defined.

The zinc finger motifs of ZAP are required for RNA binding and antiviral activity [42]. The 

small N terminal fragment of ZAP with all four zinc fingers binds DXH30 and leads to the 

same antiviral activity as the full-length ZAP. Each of the four zinc fingers in ZAP may be 

an RNA binding unit because mutation of any of the zinc fingers reduced ZAP’s activity to 

some extent. ZAP also binds directly with the exosome component hRrp46p through a 30 

amino acid binding region. This ZAP-exosome interaction is relevant because depletion of 

the exosome subunits hRrp41p or hRrp46p significantly reduced ZAP’s antiviral 

activity [38]. Thus, ZAP is a hub with distinct binding surfaces that bring together the 

DXH30 helicase, target viral mRNAs, and the RNA processing exosome. It has been 

proposed that the ZAP antiviral activity involves the removal of secondary structure in 

bound target mRNAs via DXH30-catalyzed unwinding to facilitate the exosomal nucleolytic 

degradation of relatively disentangled RNA conformers [37]. The few identified ZAP-

responsive RNA fragments have no known sequence motifs. The only common feature in 

these fragments is that they are at least ~500 nucleotides long, so the source of binding 

specificity for these RNAs has been elusive. A crystal structure of a N-terminal fragment 

(residues 1–225) with all four fingers in ZAP provided insights into RNA target recognition 

by ZAP [16]. The structural features of ZAP (discussed in more detail below) suggest that the 

target RNA is recognized by its tertiary structure rather than its base sequence. This explains 

why only a few ZAP-responsive RNAs are known and why they are at least 500 nucleotides 

long and have no easily identified sequence motifs.

Do DEAH-RHA helicase•Znf cofactor systems in distant species share 

common mechanisms of RNA target recognition?

Eukaryotic DEAH-RHA helicase are known to bind a group of regulatory factors termed G-

patch proteins, which carry one or more conserved G-patch motifs [14]. G-patch cofactors 

typically establish direct contacts with the C terminal domains in DEAH-RHA helicases. 

The G-patch and OB-fold domains act in concert and are thought to provide specificity in 

RNA binding and activation of RNA-dependent NTPase and unwinding activities.

A second group of DEAH-RHA helicase cofactors are proteins that have multiple zinc-

fingers. Three DEAH-RHA helicase•Znf cofactor systems in organisms that diverged 100–

400 Ma [43] were identified in kinetoplastid protozoa, nematodes and humans. All three 
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helicase•Znf protein systems impact the functional or regulatory fate of specialized mRNPs. 

In trypanosomes, the mitochondrial REH2•H2F1 system was proposed to modulate the 

assembly and remodeling of mRNA-gRNA hybrids that are targeted by the editing 

enzyme [10]. In the worm germline, the nuclear MOP•MEP-1 system is thought to control 

epigenetic remodeling of mRNP complexes that modulate the translation fem-3 mRNAs, 

and thereby, the switch from spermatogenesis to oogenesis. The location of EJCs near exon-

exon junctions by the spliceosomal machinery could be used to mark fem-3 transcripts for 

downstream cytosolic inactivation [44]. In humans, the cytosolic DXH30•ZAP system 

specifically binds viral mRNA targets and promotes their exosomal degradation [37, 38]. The 

Znf cofactors modulate the function of their helicase partners in RNA editing, RNA splicing 

related processes, and the destruction of viral RNAs. It is likely that Znf cofactors can 

modulate DEAH-RHA helicase in additional RNA processes where they are present.

A critical question that applies to these three helicase•Znf cofactor systems is how they 

achieve RNA target specificity. The problem is complicated by the fact that multiple related 

substrates must be recognized with efficiency and specificity. Moreover, substrate specificity 

may not always involve consecutive sequence-dependent cis-elements. For example, most 

mitochondrial mRNAs in trypanosomes require editing, and many viral mRNAs are 

specifically targeted by exosomes. Also, in the lifetime of mRNAs, the mRNPs undergo 

constant remodeling including the addition and removal of EJC at positions of variable 

sequence near splice junctions in mRNAs. Thus, neither, the editing substrates, viral 

mRNAs, or splice junction sites appear to carry sequence-specific motifs that are easy to 

identify.

The crystal structure of ZAP provides important clues as to how relatively small protein 

regions with a tandem array of zinc finger domains may achieve complex specificities in 

RNA recognition [16]. Structural and functional analyses of residues 1–225 in ZAP identified 

an RNA binding surface involving multiple positively-charged residues. The four Znf motifs 

in the ZAP structure are positioned to flank two sides of a positively charged cleft that likely 

binds folded RNA. Model structures of the ZAP-RNA interaction suggested that the target 

RNA should have a specific tertiary structure to precisely fit into the three-dimensional 

RNA-binding cleft of ZAP. The same principle may apply to other Znf cofactors, with the 

level of complexity in RNA recognition influenced by the number in zinc finger domains 

involved. Thus, protein dimerization, as in ZAP and MEP-1 [15, 16], would provide a larger 

platform to coordinate complex RNA features. Moreover, the protein may bind several 

related RNA targets if each zinc finger contributes differently to the binding of the distinct 

RNAs. This would meet the need for specific recognition of a large set of diverse editing 

substrates, viral mRNAs, or splice sites. Thus, in an analogy to ZAP, the tandem zinc finger 

array in other proteins, including H2F1 and MEP-1, could be arranged to build up specialized 

modules for the binding of complex RNA tertiary structures rather than specific sequences.

A second critical question is whether or not DEAH-RHA helicase•Znf cofactor systems 

share a common function. Monomeric DEAH-RHA helicases appear to require a 3′ single-

stranded extension, and they are not highly processive. Instead, they promote both local 3′-

to-5′ unwinding of discrete structures and RNP assembly [1, 2]. The proposed role of ZAP in 

removing double-helical structure of 3′ ends in bound mRNAs via DXH30-catalyzed 
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unwinding for exosome-mediated degradation serves as a guide to propose a common 

function for other zinc-finger cofactors. In kinetoplastid RNA editing, H2F1 could recruit 

mRNA targets for REH2-catalyzed unwinding of structure that may interfere with annealing 

of a gRNA next to the editing site. Interestingly, a photo-crosslinking experiment with a 

synthetic RNA substrate containing a photo-reactive thio-U base detected a close-proximity 

(≤ 4 Å) contact of REH2 with the editing site. This localized REH2 at the catalytic center of 

the editosome, and suggests that the helicase could contribute to local unwinding of the 

substrate including at the editing site, the abutting 3′ residues for gRNA annealing, or 

both [9]. Finally, MEP-1 may assist in modulating RNA structure of bound sites via MOP-1 

catalyzed unwinding. This unwinding may facilitate engagement by spliceosome 

components including during EJC deposition. In these three systems, the zinc-finger protein 

alone could specifically bind to the RNA target. Its helicase partner could then catalyze 

cycles of local structure remodeling on the bound RNA, thus facilitating access and activity 

of the components of the RNA editing enzyme, exosome, or spliceosome.

Furthermore, a better understanding of the functional synergy between RNA helicases and 

their cofactors during RNA substrate recognition will involve identification of relevant 

domains and specific amino acids required for intra-protein and inter-protein contacts in the 

helicase•cofactor complexes. The requirements for Znf cofactor binding to cognate helicases 

may exhibit important differences. The N-terminus in both DXH30 and ZAP suffices for 

association between these proteins in vivo. For DXH30, the ZAP-binding region includes a 

dsRBD but not the catalytic core. In ZAP, the DXH30-binding region has all zinc fingers and 

renders full virus protection [37]. The direct interaction of MEP-1 with MOG helicases, 

examined in yeast and with in vitro-translated proteins, only required the N-terminus of 

MEP-1 including its zinc fingers. The MOG helicase requirements for interaction were not 

examined, so the MEP-1 binding to MOG helicases may involve one or more zinc fingers. 

Alternatively, determinants outside the zinc fingers may be responsible for the protein-

protein interaction. Nonetheless, a recombinant REH2 helicase fragment (residues 1261–

2167) and H2F1 form a stable complex in vitro [10]. That tested REH2 fragment lacked 

dsRBD1 and dsRBD2, so the helicase core and the C terminal domain cluster were sufficient 

to bind H2F1. Only full length H2F1 was tested in that study. Overall, the N-terminus of 

DXH30 and MOG were shown to bind ZAP and MEP-1, respectively. In contrast, the C-

terminus of REH2 sufficed to bind H2F1 in vitro. This suggests that these helicases differ in 

their binding mechanism to their cognate Znf cofactors. An alternative model could be that 

both N-and C-termini in the RNA helicases engage in direct contacts with their Znf 

cofactors in vivo. Yet, either terminus of the helicase may suffice to detect an association in 

the applied assays in vitro or in yeast.

Structural proteomics of a recombinant complex between Prp43 and its G-patch cofactor 

Ntr1 mapped primary contacts between the G-patch motif and the helicase C-terminal 

domains, namely, the winged helix, the ratchet, and the OB-fold domains [45]. However, a 

few contacts between sites outside the G-patch motif and N-terminus helicase positions were 

also observed. Potentially, contacts of cofactors with both N- and C-termini of the helicase 

may lead to higher binding affinities between the two proteins. Finally, binding of the Znf 

cofactors to the helicases could induce changes in the conformation and function of their 

helicase partners. The aforementioned structural proteomic study of Prp43 found major 
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rearrangements in the OB-fold domain on binding of the G-patch protein Ntr1 [45]. G-patch 

and zinc-finger cofactors are structurally very different; however, both proteins appear 

critical in directing DEAH-RHA helicases to specific substrates and processes. A DEAH-

RHA protein could employ either a G-patch or a zinc-finger cofactor. Alternatively, the same 

helicase could use both cofactors in the same or different processes, but no G-patch cofactor 

has been identified with the discussed helicases. For example, MOG-4 in nematodes (the 

homolog of Prp2 in yeast) could also use a G-patch protein, whereas Prp2, which binds the 

G-patch protein Spp2, could also have a zinc-finger cofactor. A recent structural study of the 

MLE (Drosophila Maleless) helicase, a RHA homolog that controls the IncRNA-mediated 

assembly of the ribonucleoprotein dosage compensation complex during activation of X-

linked genes in Drosophila, showed a stable core with inter-domain contacts between 

RecA2, dsRBD2 and the OB-fold domain [46]. The structure may represent a transition “on” 

state showing how DEAH-RHA helicases couple ATP hydrolysis and RNA translocation. 

Coupling of a cofactor with its helicase partner may modulate the intricate inter-domain 

contacts in the helicase core and thereby its functions in specific RNA or RNP recognition 

and remodeling.

Future Directions

Several questions need to be addressed to better understand the mode of action of DEAH-

RHA helicase•Znf protein systems in their targeted RNA processes, and their impact on 

diseases associated with these processes. How do Znf regulators specifically target their 

monomeric DEAH-RHA helicase partners? How do the helicase and Znf proteins interact 

and cooperate to enable specific RNA or RNP recognition and remodeling? Is the assembly 

of the helicase with its Znf cofactor regulated in vivo? Crystal structures are available for 

several DEAH-RHA helicases, and for ZAP, but not for any G-patch proteins nor for any 

DEAH-RHA helicase•Znf cofactor complexes. Structural information of a complex between 

a helicase with its Znf cofactor will be very important to further understand how these 

emerging protein partner systems function.

Conclusions

Multi-Znf proteins are an emerging class of DEAH-RHA helicase regulators. A previous 

class of DEAH-RHA helicase cofactors includes G-patch proteins. Three DEAH-RHA 

helicase•Znf protein partnerships have been identified so far in taxonomically distant 

species. The recently discovered system in trypanosome RNA editing includes REH2, the 

largest known DEAH-RHA subfamily member, and its H2F1 cofactor with eight zinc fingers. 

The long and independent evolutionary history of the RNA processes discussed in this short 

review suggests that analogous helicase•Znf systems are widespread across biology. Studies 

of ZAP, an antivirus protein, provide a guide to suggest potential mechanistic parallels 

between helicase•Znf protein systems. For example, the Znf cofactor may be a hub that 

brings together the RNA substrate, the RNA helicase and either exosome, spliceosome or 

editosome components. Also, structural studies of ZAP suggest a mechanism of RNA target 

recognition that may be used by other Znf cofactors. That is, a tandem array of zinc fingers 

creates a three-dimensional RNA-binding surface that fits complex spatial determinants in 

the RNA targets, not continuous sequence elements. Variations in the number and 

Cruz-Reyes et al. Page 9

RNA Dis. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contribution of each zinc finger in the array to RNA binding may allow specific recognition 

of a set of related substrates. Thus, Znf proteins may directly recruit RNA substrates and 

thus enable modulation of local RNA structure of bound sites via helicase catalyzed 

unwinding. These proposed basic properties of multi-Znf cofactors would meet the needs of 

mitochondrial RNA editing, nuclear EJC remodeling, cytosolic viral mRNA degradation, 

and potentially other RNA processes involving DEAH-RHA helicases.
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Figure 1. Domain organization of REH2 in T. brucei
The domain map at scale and the structure model of REH2 use the same color codes. REH2 

conserved features in a homology model made using ADP-bound Prp43p (PDB ID:2XAU) 

as a template. The conserved features include tandem RecA-like domains (DEXDc and 

HELICc in current domain databases) in the helicase core that are common to SF1 and SF2 

helicase superfamilies. DEAH-RHA subfamily helicases have a unique C-terminal cluster of 

small domains that includes a winged helix and ratchet (together annotated as ‘helicase-

associated domain’ HA2 in domain databases) and an OB-fold domain. REH2-specific 

sequence or elements are depicted in green. REH2 has two predicted dsRBDs: dsRBD1 and 

dsRDB2. The dsRBD1 is only visible in a structure-based search with Phyre2 [47]. The 

dsRBD2 is visible in both a sequence-based analysis with the NCBI’s interface CD-

search [48] and the structure search. In the models of dsRBD1 and dsRBD2 in REH2, the Tb 

protein is in magenta and orange while the archetype dsRBD structure [PDB ID:1DI2, [49]] 

is shown in cyan. The structures were superposed with Theseus [50] and had a maximum 

likelihood rmsd of 1.98 Å for the alpha carbon atoms. Reported K1078A•A1086D mutated 

sites in dsRBD2 and G1365A•K1366Q in motif I are indicated [9, 19]. The inset shows a 

homology model of motif I mutations described in [19]. The mutated sites G1365A•K1366Q 

are shown with the carbons colored white. These mutations in the P loop or motif I (atoms of 

motif I are shown as sticks) remove one H-bond between the beta phosphate of the ADP and 

REH2. Four H-bonds remain after the mutations. The molecular model suggests the loss of 

one H-bond and the positive charge of the Lysine sidechain that should be important in 

countering the negative charge of the phosphate even though the lysine side chain and the 

phosphate are widely separated in the model. The molecular models were rendered by 

PyMOL (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC).
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Figure 2. Graphical representation at scale of DEAH-RHA proteins in T. brucei
Domain annotations were performed using NCBI’s CD-search analyses. In REH2, the 

dsRBD2 is only visible in a structure search (*) as described in Fig. 1. The REH2 paralog 

Tb927.4.3020 has a dsRBD proximal to the helicase domain. A second dsRBD is not visible 

in this protein in either a CD-search or in a Phyre2 search. Functional studies are currently 

reported only for REH2. Conserved domains besides the DEAH-RHA defining features 

described in Fig. 1 are: PHD finger (cd15489), RWD domain (cI02687) and 

R3H_Smubp-2_like domain (cd02641). Also indicated are the number of amino acids for 

each protein and the DEAH family defining residues located at the motif II of the DEXDc 

domain (RecA1).
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Figure 3. DEAH-RHA proteins in highly divergent lineages
The graphical representations are at scale. Predictions from NCBI’s CD-searches gave the 

domain annotations in the human genes (DHX prefix), in their yeast homologs (in brackets), 

and in E. coli Hpr genes. REH2 was described above. Another study identified the N-

terminal dsRBD elements in DHX29 in a structure search (*) [51]. DHX30 has an N-terminal 

dsRBD annotated in UniProtKB [52] that was detected with the Phyre2 server but not with a 

CD-search analysis. An unidentified N-terminal RNA-binding domain in DHX36 was 

determined experimentally (#) [22]. Other conserved domains that flank the DEAH-RHA 

defining features are: RWD (pfam05773), UBA_DHX57 (cd14317), UBA_YLR419W_like 

(cd14271), ZnF_C3H1 (smart05773), S1_DHX8_helicase (cd05684), and DUF3418 

(pfam11898). Protein sizes and the DEAH family defining residues in mot II are indicated as 

in Fig. 2. Some of the proteins listed here have additional conserved domains or sequence 

features that were not detected in the CD-searches but that have been identified through 

functional or sequence analyses. For example, RHA has a domain for binding to RNA 

polymerase II between dsRBD2 and RecA1. Also, the C-terminus of RHA includes two 

RGG-boxes and nuclear localization/export signals [24].
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Figure 4. Graphical representation at scale of REH2 orthologs in kinetoplastids
Domain hits were identified in NCBI’s interface CD-searches [48]. The CD-search detected a 

N-terminal dsRBD only in the T. cruzi protein, and an OB-fold in some of the proteins. 

Three-dimensional structure predictions (*) from the Phyre2 server [47] identified a N-

terminal dsRBD and a OB-fold with high confidence in all orthologs. In the Leishmania 
orthologs, only part of a typical dsRBD was detected. The IDs and sequences of the 

examined proteins were obtained from the kinetoplastid genome resource TriTrypDB [53]. 

The species and ID are given as follows: T. cruzi (TcCLB.511003.30 or XP_8160321), L. 
major (LmjF.34.3230), L. braziliensis (XP_001564561), C. fasciculata 
(CFAC1_290061800 ) and E. monterogeii (EMOLV88_340032900). Also indicated are the 

number of amino acids in each protein and the DEAH family defining residues in motif II.
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Figure 5. Holo-editosomes include assemblies of auxiliary RNPs and the editing enzyme
This review focuses on the REH2C subcomplex (with its protein subunits indicated as gray 

ovals). This subcomplex includes the REH2 helicase, two cofactors (H2F1 and H2F2), and all 

mRNA types involved in editing (pre-edited, partially edited intermediates, and edited). 

GRBC* and GRBC are variants of another subcomplex that contains gRNAs and several 

proteins. These gRNA-bound variants (gRNPs) are distinguished by their content of a 

protein subunit (3010). REH2C binds to GRBC* via stable contacts (in cis) and to GRBC 

via transient contacts (in trans). Both types of interaction are via RNA. H2F1 is proposed to 

recruit mRNA targets for REH2-catalyzed unwinding of localized secondary structure. The 

relatively disentangled RNA conformers are more likely to anneal with gRNA or undergo 

editing at individual sites. The preassembled mRNA-gRNA hybrids in the RNP scaffolds 

can then be processed by the RECC editing enzyme. Thus, the REH2•H2F1 system 

modulates RNA hybrid quality in assembled RNP scaffolds and the ensuing addition of 

RECC enzyme in complete holo-editosomes. The initiating gRNA (colored blue) hybridizes 

to the 3′ most block in the pre-edited mRNA. The mRNAs are shown in red, and the gRNA 

transcripts are shown in various colors.

Cruz-Reyes et al. Page 17

RNA Dis. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Domain organization of H2F1
(A) Structure model of H2F1 with the location of 8 potential zinc fingers (Znf1-8). Znf1-4 

were found by visual inspection. Znf5-8 appeared in conserved domain databases. Znf5 is 

predicted to bind double-stranded RNA. The position of the zinc ligands was precise enough 

for the placement of the zinc atoms for three of the zinc fingers (gray balls by Znf5, Znf7, 

and Znf8). A DNA ligand was proposed by structural similarity with DNA-bound Aart (PDB 

ID:2i13), a designed six-finger zinc finger protein [54]. H2F2 has a glycine-rich C-terminus. 

(B) Shaded multiple-sequence alignment of all 8 putative zinc fingers in H2F1. The two 

conserved cysteines and two conserved histidines that are predicted to co-ordinate a zinc ion 

are enclosed by the red boxes. (C) Graphical representation of H2F1 at scale. Znf1-8 are 

color coded as in panels A and B.
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Figure 7. Domain organization at scale of known zinc finger cofactors of DEAH-RHA proteins
Domain annotations in NCBI’s CD-search predictions. Identification of the zinc fingers 

in H2F1 is described in Fig. 6. The domains in MEP1 (Q21502 - MEP1_CAEEL) are not 

detected in a CD-search analysis but are annotated in UniProtKB. Predicted Znf domains in 

ZAP isoform 1 (Q7Z2W4 (ZCCHV_HUMAN) are not detected in a CD-search analysis but 

are annotated in UniProtKB and were identified in a crystal structure of the N-terminal 

fragment in a homolog protein [16]. Detected conserved domains are WWE (smart00678) 

and PARP (pfam00644).
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