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Extracellular vesicles (EVs) are membrane enclosed spherical particles devoted to
intercellular communication. Cancer-derived EVs (Ca-EVs) are deeply involved in tumor
microenvironment remodeling, modifying the inflammatory phenotype of cancerous and
non-cancerous residing cells. Inflammation plays a pivotal role in initiation, development,
and progression of many types of malignancies. The key feature of cancer-related
inflammation is the production of cytokines that incessantly modify of the surrounding
environment. Interleukin-1b (IL-1b) is one of the most powerful cytokines, influencing all the
initiation-to-progression stages of many types of cancers and represents an emerging
critical contributor to chemoresistance. IL-1b production strictly depends on the activation
of inflammasome, a cytoplasmic molecular platform sensing exogenous and endogenous
danger signals. It has been recently shown that Ca-EVs can activate the inflammasome
cascade and IL-1b production in tumor microenvironment-residing cells. Since
inflammasome dysregulation has been established as crucial regulator in inflammation-
associated tumorigenesis and chemoresistance, it is conceivable that the use of
inflammasome-inhibiting drugs may be employed as adjuvant chemotherapy to
counteract chemoresistance. This review focuses on the role of cancer-derived EVs in
tuning tumor microenvironment unveiling the intricate network between inflammasome
and chemoresistance.
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INTRODUCTION

In the complexity of cancer progression, the intricate interplay between inflammation and tumor
microenvironment (TME), depicts an extraordinary multifaceted scenario in the development of
acquired drug resistance and in the clinical outcome of malignant processes (1, 2). Extracellular
vesicles (EVs), in particular cancer-derived (Ca-EVs), represent signal transducer or messengers in cell-
cell communication (3–5), responsible for the continuous modification of TME (6, 7). TME includes
cancerous and non-cancerous cellular components such as fibroblasts, stromal, immune, and endothelial
cells. The cross-talk between TME components can induce a dysregulated inflammatory and immune
response (1, 2). Inflammation, indeed, plays a pivotal role in tumor initiation, by dynamically and
incessantly modifying TME via the release of cytokines and soluble mediators generating a “vicious
cycle”. This, in turn, endorses oncogenic plasticity toward immune-suppression, more aggressive
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phenotype and reduction of therapeutic efficacy. One of the main
mechanisms contributing to inflammation is mediated by
cytoplasmatic complexes known as inflammasomes.
Inflammasomes are activated by endogenous/exogenous danger
signals and changes in cytoplasm homeostasis. Upon activation,
inflammasomes act as “signal integrators” by the release of
inflammasome-effectors cytokines. Inflammasomes are pivotal
hubs of innate immunity and modulate immune/inflammatory
responses by cross-talking with different cellular components.
Inflammasome inappropriate activation, creating a pro-
inflammatory TME and suppressing local immunity, appears as
an emerging player in all the initiation to progression stages of
cancer (8–11). Crucial novel modulators of inflammasome are EVs
that, on the basis of the different nature of their cellular source,
positively or negatively affect inflammasome cascade in diverse
cancerous and non-cancerous recipient cells (12–14). In this
scenario, EVs, with their Janus face behavior, strongly contribute
to the immune/inflammation-associated modification of TME, and
play a critical role in tumorigenesis and chemoresistance.
EVs: ANOTHER BRICK IN THE WALL

EVs are a heterogeneous group of membrane enwrapped
spherical particles, produced by nearly all types of cells. There
are no unique markers able to classify EVs on the bases on their
biogenesis (ectosomes, exosomes, apoptotic bodies), for this
reason the MISEV2018 guidelines suggest classifying EVs
based on physical parameters, such as size (small and medium/
large EVs) density or biochemical composition (15–17). EVs,
found in body fluids and in cell culture media, carry various
biomolecules, including proteins, lipids, metabolites, RNA, and
DNA (16, 18). Upon interaction with target cell, EVs deeply
impact cellular recipient cells responses, highlighting the pivotal
role of EVs as signal transducers or messengers in cell-cell
communication at close or distant sites. Intercellular
communication is a key feature of tumor progression and
metastasis. Cancer cells can release EVs that enter the
circulation and reach distant organs, where they can generate
favorable environmental conditions, enabling the outgrowth of
disseminated tumor cells. This process, known as pre-metastatic
niche formation, requires a series of predefined steps involving
induction of vascular leakiness, alteration of stromal components
and immune-escape (19, 20).

Cancer-derived EVs (Ca-EVs) ability to suppress immune anti-
tumor activity, is guaranteed by the exchange of EVs between
cancerous and non-cancerous TME-residing cells, and by the
secretion of immune-modulating molecules (14, 21).
Furthermore, the “exosome-immune suppression” and the Ca-
EVs-mediated transfer of oncogenes or oncometabolites from one
cell to other is also involved in the unrestrained cell proliferation
and, subsequently, in the metastatic spread (14). On the other
hand, Ca-EVs, may also carry tumor-associated antigens, damage
associated molecular pattern (DAMPs), and immune-stimulating
molecules, that can induce an immune anti-tumor response (22,
23) via the recruitment and activation of immune cells in TME
(24, 25). Although the pro-inflammatory and the immune-
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suppressive role of Ca-EVs seem to be contrasting, pro-
inflammatory EVs may still contribute to TME maintenance
(26, 27).
INTERLEUKIN-1b ANDCHEMORESISTANCE:
ANOLDCYTOKINEWITH ANOVEL ROLE

Interleukin-1b (IL-1b) is one of the most abundant and influential
cytokines of TME. IL-1b expression and secretion are induced by
different stimuli such as toll-like receptors (TLRs) ligands, tumor
necrosis factor-a or IL-1b itself. IL-1b production/secretion are
fine-tune controlled by a two-steps transcriptional and post-
translational regulation, requiring the activation of both nuclear
factor kappa B (NF-kB) and nucleotide-binding oligomerization
domain (NOD)-like receptor pyrin domain-containing 3 (NLRP3)
inflammasome-caspase-1 platform. NF-kB activation by
inflammatory stimuli induces biologically inactive pro-IL-1b
production which must be proteolytically cleaved, by
inflammasome-activated caspase-1 (28). Tumor cells can directly
produce IL-1b or can “instruct” cells within TME, such as stromal
ones, to secrete it (26, 29). An uncontrolled increase in IL-1b
release exerts immune-suppressive effects and influences all the
initiation-to-progression stages of many types of cancers and
represents an emerging critical contributor to chemoresistance
(30, 31). Depending on tumor cell types, several “in vitro” and “in
vivo” models highlighted multiple mechanisms for IL-1b
promoted chemoresistance. In pleural mesothelioma, the IL-8/
IL-1b signaling controls chemoresistance by inducing the
overexpression of ATP-binding cassette transporter (ABC) G2,
that determines resistance to cisplatin and pemetrexed (32).
Prostate carcinoma cells engage bone marrow adipocytes in a
functional cyclooxygenase-2 (COX-2)-dependent cross-talk that
promotes IL-1b expression, leading to docetaxel resistance (33).
IL-1b can also induce a reinforcement of NF-kB signaling. In fact,
IL-1b induces a sustained NF-kB that has been related to
chemoresistance in ovarian carcinoma (34), in acute myeloid
leukaemia (35) and in renal cell carcinoma (36). In pancreatic
cancer, IL-1b confers chemoresistance not only by activating NF-
kB (37), but also by up-regulating COX-2 (38), an enzyme linked
to chemoresistance also in cervical carcinoma (39) and in colon
cancer cell lines (40). In bladder cancer, cisplatin-resistance has
been linked to IL-1b-induced increase in aldo-keto reductase 1C1
levels (41). In breast cancer, IL-1b-induced chemoresistance has
been attributed to several mechanisms including: methylation of
the estrogen receptor a, which increases tamoxifen resistance (42);
activation of b-catenin signaling, which increases cisplatin
resistance (43); and induction of epithelial to mesenchymal
transition (EMT), which increases doxorubicin resistance (44).
In melanoma cells, ABCB5 controls IL-1b/IL-8 signaling (45)
which, in turn, influences chemoresistance by activating Smad/
DNA binding protein 1 signaling (46).

Considering the implication of IL-1b in influencing all the
initiation-to-progression stages of many tumors and
chemoresistance, this cytokine is considered a promising
therapeutic target for many types of cancers (30).
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THE INFLAMMASOME: A DOUBLE-EDGE
SWORD

As already mentioned, inflammasome activation is the mandatory
event for IL-1b maturation and secretion. Inflammasomes are
cytoplasmic molecular platforms devoted to detecting pathogen
associatedmolecular patterns (PAMPs) andDAMPs, playing a key
role in innate immunity (47). The inflammasome platform is
composed by a danger sensor receptor, an adaptor protein
(Apoptosis-associated speck-like protein containing a CARD,
ASC), and an effector enzyme (caspase-1). The receptor family
includes the nucleotide-binding and oligomerization domain
(NOD)-like receptors (NLRs) family, composed of at least 22
members, the most characterized of which is NLRP3 (47). Upon
activation, NLRP3 oligomerizes and assembles into a multimeric
platform including a coreunit comprehendingASCand the effector
pro-caspase-1. The oligomerization of inflammasome components
culminates in the autocatalytic activation of caspase-1, responsible
for IL-1b and IL-18maturation (47–49). Inflammasome activation
may also induce the processing of gasdermin-D (GSDMD), leading
to pyroptosis, an inflammatory formof cell death (50). The physical
interaction among inflammasome components is mediated by the
adaptor protein ASC which holds a pyrin (PYD) and a CARD
domain which, assembling into a speck, consents the connection
betweenNLRP3and caspase-1.NLRP3possesses threedomains: an
N-terminal effector PYD, involved in ASC recruitment via PYD-
PYD interaction, a central NACHT domain carrying an ATPase
activity essential forNLRP3activationandplatformassembly, anda
C-terminal leucine-rich repeats domain, possibly involved in auto-
regulation, protein-protein interaction, and signal sensing (51).
Inflammasome-platform assembly is also regulated by the
phosphorylation of Ser-295 of NLRP3. This post-translational
modification, accomplished by several protein kinases (PKs)
including PKA, PKD and PKG (52, 53), impedes inflammasome
platform assembly. Because component assembly is mandatory for
inflammasome activation, it represents an attractive target for the
development of selective NLRP3 inhibitors, as discussed later.
NLRP3 involvement in cancer is currently a very debated topic.
NLRP3 and NLRP3-associated pyroptosis have been defined “a
double-edge sword” (54) on the basis of their capability to achieve
bothananti-tumorigenicandapro-tumorigenicactivity indifferent
types of malignancies (9–11, 54, 55). The contrasting roles of
NLRP3 inflammasome can be due to multiple factors such as
type, heterogeneity and stage of cancer cells, or TME
characteristics (8–11). Metabolites, cytokines and EVs released by
TME residing cells, represent the key drivers of NLRP3 hyper-
activation. NLRP3 dysregulated activation can induce a chronic
inflammatory environment that boosts tumor progression and
extinguishes local immunity (9).

Recently the uncontrolled inflammasome activation has also
been associated to chemoresistance. In oral squamous carcinoma
NLRP3 activation promotes 5-Fluorouracil resistance “in vitro”
and “in vivo” (56); and NLRP3 inflammasome has been detected
in cisplatin-resistant lung cancer cell lines (57). Conversely,
NLRP3-induced pyroptosis, sensitizes gastric and epatocellular
carcinoma to cisplatin (58, 59).
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NLRP3 inflammasome has been also linked to cardiotoxicity of
anticancer agents. The inhibition of NLRP3, as well as of the
oligomerization of the myeloid differentiation primary response
gene 88 (MyD88), reduces the cardiotoxicity and increases the
anticancer properties of sunitinib, in renal cancer-bearing mice
(60). Myd88 is molecular platform which oligomerization and
assembly induces NF-kB activation and the release of cytokine and
factors involved in cancer cell survival and chemoresistance (60).
Pharmacological reduction of NLRP3 activity has been suggested
as a tool to alleviate doxorubicin-induced cardiotoxicity while
preserving or even improving its anti-cancer activity (61). On the
other hand, pyroptosis‐associated cytokines can induce either an
evasion of immune surveillance, or an effective immune
response (62).
EVs AND INFLAMMASOME: TWO PIECES
OF THE SAME PUZZLE

Increasing evidence highlights the pivotal role of Ca-EVs on
NLRP3 activation in different types of cancers (summarized in
Table 1). Prostate cancer derived-EVs, by inducing NLRP3
activation and IL-1b maturation, modify the inflammatory
response of ME residing cells in a tumor-promoting fashion
(12). Furthermore, prostate cancer tumor progression is
characterized by increased inflammasome activation (62). Lung
cancer-derived EVs induce NLRP3 activation in macrophages,
thus providing a positive feedback loop to promote cancer
progression via IL-1b secretion in mice (63, 64). EVs released
by primary cultures of human glioblastoma, up-regulate
microglial inflammasome signaling and influence both
microglial cells polarization and glioma-microglia crosstalk
(65). Furthermore, EVs derived from colon adenocarcinoma
cells mediate radiation-induced antitumor immunity by
inducing NLRP3 activation in mice (66).

The role of EVs in immune-escape and immune-stimulation
also relies on their ability to modulate inflammasome cascade
positively or negatively and IL-1b production in recipient cells
(12–14) (summarized in Table 1). This different effect is both
related to the nature of the EVs-releasing and -receiving cells and
to the different EVs mechanisms of action (Figure 1). In fact, on
the one hand, Ca-EVs activate NLRP3 inflammasome platform
in non-immune receiving cells via ERK1/2-mediated pathway
(12), on the other hand non-cancerous cell-derived EVs
negatively modulate NLRP3 inflammasome activation in
immune cells (13). This latter effect is mediated by EVs
intrinsic metabolic activity that, through adenosine production,
induces the activation of the adenosine A2a receptor, a member
of the purinergic P1 receptor family (13). This novel mechanism
of action highlights the active role of EVs in microenvironment
homeostasis, via the autonomous synthesis of metabolic
products able to alter microenvironment composition and cell
behavior (13). Furthermore, the involvement of A2a receptor in
this EVs effect, offers a novel point of view on the roles of EVs/
purinergic receptors on cancer immunology (12). In fact, up to
date, only the connection between EVs/type P2 purinergic
April 2022 | Volume 12 | Article 888135
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receptors (P2Rs) and tumor-inflammatory signaling has been
demonstrated (27). Only few reports demonstrate that the
activation of P2Rs on immune cells induces the release of: (i)
EVs containing IL-1b and IL-18, exerting a pro-inflammatory
action, favor tumor progression at the expense of an effective
immune response; (ii) EVs presenting P2Rs on their surfaces
which activation, by extracellular ATP, can lead to the release of
IL-1b, IL-18 and ATP itself (27). As discussed below,
inflammasome and IL-1b dysregulation are crucial players in
inflammation-associated tumorigenesis and chemoresistance. In
this scenario, EVs by exerting an interaction-dependent effect on
the receiving cells or by releasing immune-metabolites, can be
considered novel crucial players in determining tumorigenesis
and chemoresistance. The functional link between NLRP3
activation and EVs is further demonstrated by the finding that
embryonic stem cell-derived EVs ameliorate the cardio-toxicity
induced by the antineoplastic agent doxurobcin, by inhibiting
NLRP3 signaling in mice (67). Nonetheless, further research is
needed to increase the knowledge in this emerging research area.
INFLAMMASOME TARGETING DRUGS:
POTENTIAL ANTI-CANCER THERAPEUTIC

Inflammation sustained by inflammasome activation has been
implicated in the insurgence or progression of several human
pathologies, including cancer. For this reason, several efforts have
Frontiers in Oncology | www.frontiersin.org 4
been made to identify potential effective inhibitors of
inflammasome to be used as new anti-cancer therapeutics
(summarized in Table 1). Each step leading to inflammasome
activation, may represent a good candidate for therapeutic targeting.

Several small molecules and natural compounds have been
identified as inhibitors of the interaction between NLRP3
inflammasome monomers. As examples MCC950 and
OLT1177, block NLRP3 oligomerization by inhibiting ATP
hydrolysis via the NACHT domain, which is pivotal for receptor
oligomerization and anti-cancer effects (68). MC950 inhibits LPS-
induced inflammasome activation in pancreatic cancer cell lines
(69), delays cell growth in a mouse model of head and neck
squamous cell carcinoma (70) and inhibits pituitary prolactinoma
growth and prolactin expression/secretion in rats (71). Similarly,
inhibition of NLRP3 by OLT1177 enhances antitumor immunity,
thus reducing melanoma growth (68). Oridonin, a natural
terpenoids found in traditional Chinese herbal medicine,
impedes inflammasome assembly by forming covalent bond
with NLRP3 Cys279 (72). Oridonin administration effectively
prevents the formation of colorectal cancer liver metastasis (73)
and improves oxaliplatin efficacy (74). Oridonin derivative, with
potent anticancer effects, has been very recently synthesized (75).

ASC polymerization can be another target for broad-
spectrum therapeutics. MM01 (under patent procedure:
application number, 20382237.4-1109) is a small-molecule
interfering with ASC speck formation (76). Xantone, used in
the early twentieth century as an ovicide and larvicide (85) can
TABLE 1 | Roles of EVs and drugs in inflammasome modulation.

Role and mechanism of action References

EVs-mediated inflammasome
activation
Prostate cancer-derived EVs
(PCa-EVs)

PCa-EVs induce caspase-1/IL-1b activation via ERK1/2-mediated lysosomal destabilization and cathepsin B activation in
non-cancerous PNT2 cells

(12)

Lung cancer-derived EVs
(LCa-EVs)

LCa-EVs induce NLRP3-mediated IL-1b secretion in macrophages thus promoting lung cancer development (63, 64)

Glioblastoma-derived EVs
(GMB-EVs)

GMB-EVs induce inflammasome/IL-1b activation in microglial cells thus inducing microglial cells M1 polarization (65)

Colon adenocarcinoma-
derived EVs (CCa-EVs)

CCa-EVs induce AIM2 and NLRP3 activation, and prompt IL-1b-mediated anti-tumor effect during radiation in mice (66)

EVs-mediated inflammasome
inhibition
Amniotic fluid stem cell-derived
EVs (HASC-EVs)

HASC-EVs inhibit NLRP3/caspase-1 activation via an intrinsic metabolic activity leading to A2a purinergic receptor
activation in THP1 cells

(13)

Embryonic stem cells-derived
EVs (ES-EVs)

ES-EVs reduce doxorubicin-induced NLRP3/Caspase-1/IL-1b/IL-18/Pyroptosis activation in M1 macrophages thus
converting pro-inflammatory M1 into anti-inflammatory M2 macrophages

(67)

Drug-mediated inflammasome
inhibition
OLT1177 OLT1177 blocks NLRP3 oligomerization and IL-1b secretion thus enhancing anti-tumor immunity and reducing tumor

growth in melanoma cells
(68)

MCC950 MCC950 inhibits NLRP3 activation and reduces tumor growth of pancreatic cancer cells; head and neck squamous
adenocarcinoma; and pituitary prolactinoma

(69–71)

Oridonin and its derivate Oridonin and its derivate impede NLRP3 assembly and prevents liver colorectal cancer metastasis (72–75)
MM01 and Xantone MM01 and xantone prevent inflammasome activation interfering with ASC speck formation (76, 77)
VX-765 VX-765 inhibits caspase-1 activation, thus preventing inflammasome activation and pyroptosis (78, 79)
Ritonavir Ritonavir blocks caspase-1 activation in pancreatic cancer (80, 81)
Anakinra Anakinra blocks the binding of IL-1 to its receptors. It is under clinical investigation for the treatment of metastatic

cancers
(82)

Natriuretic Peptides (NPs) NPs interfere with NLRP3 activation by the induction of NLRP3 phosphorylation that inhibits ASC oligomerization. NPs
counteract inflammasome activation in prostate cancer cell lines

(53, 62, 83,
84)
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inhibit ASC speck formation without affecting inflammasome
components expression (77). Although MM01 and xantone can
be useful for the treatment of a broad range of diseases based on
inflammasome dysregulation, they have not yet been tested on
cancer models.

Caspase-1 activation can be targeted for impeding IL-1b
maturation. Caspase-1 inhibition by the small-molecule VX-
765 prevents pyroptosis in a multiple sclerosis model (78) and
in monocytes and macrophages (79). Ritonavir, originally used
as protease inhibitor for the treatment of HIV, effectively block
caspase-1 (80), and induces apoptosis in pancreatic cancer (81).
However, the quite unspecific actions of protease inhibitors
should be taken into account to avoid deleterious side effects.

Specific monoclonal antibodies directed toward IL-1 receptor,
including anakinra, rilonacept, canakinumab and gevokizumab
have been developed to inhibit IL-1b signaling (82). Anakinra, a
recombinant IL-1Ra, blocking the binding of IL-1 to IL-1 receptor,
is under clinical investigation for the treatment of metastatic cancers
(ClinicalTrials.gov Identifier: NCT00072111). An up-to date list of
clinical trials involving IL-1 blockade has been recently published
(86). Nevertheless, the blockade of IL-1 receptor, although
displaying a favourable safety profile, caused a reduction in
neutrophil counts with an overall increased risk for fatal infections.
Frontiers in Oncology | www.frontiersin.org 5
Besides the possibility to inhibit inflammasome components,
several strategies aimed to inhibit the pathways leading to
inflammasome activation. Antioxidant compounds can inhibit
ROS-mediated inflammasome platform assembly, P2X7 receptor
antagonist can be used to impede K+ efflux known to be involved
in NLRP3 activation (86). A strategy, explored by our group, is
the induction of NLRP3 phosphorylation. We have indeed
showed that, natriuretic peptides (NPs), by binding to NPs
Receptor-1, can induce an increase in cGMP levels which
culminates in the activation of PKG (53, 83, 84). Moreover, we
showed that EVs, isolated from amniotic fluid-derived stem cells
can activate PKA via A2a adenosine receptor in immune cells
(13). Both PKA and PKG can phosphorylate NLRP3 at Ser295,
thus leading to the inhibition of inflammasome assembly and IL-
1b secretion (13, 53). Furthermore, NPs are able to counteract
both the constitutive and EVs-induced NLRP3 activation in
cancerous and non-cancerous prostate cells (62), supporting
the critical role of these molecules in prostate cancer (87).
Based on the fact that NPs analogues are already in clinical use
for cardiovascular diseases (88, 89) and of the growing interest
toward the use of EVs as therapeutics (90), further studies are
needed to better define the potential anti-cancer efficacy of NPs
and EVs.
FIGURE 1 | EVs and inflammasome. Schematic representation of EVs-induced effect on inflammasome activation. Ca-EVs (light blue) are up-taken by non-
cancerous cells and, via the induction of intracellular signaling pathways, including ERK1/2 MAPK, induce inflammasome platform assembly and the maturation of
IL-1b which release affects the microenvironment in a tumor-promoting fashion. EVs released by non-cancerous cells violet may produce soluble factor (Adenosine)
that, via receptor (adenosine A2a receptor) engagement on the target cell, activates protein kinases (PKA) which impedes inflammasome platform assembly through
NLRP3 phosphorylation (P).
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CONCLUSION

Chemoresistance represents a major challenge in the clinic. Cancer
cells response to therapy is deeply influenced by immune/
inflammation-associated TME modifications. Therefore, the
management of TME-mediated resistance may deeply affect the
efficacy of cancer therapies. The key players that trigger TME
modifications are multiple and strictly interconnected via a
complex network of cell-cell communication. Given the pivotal
role of inflammasome and related cytokines in TME re-modeling,
they represent promising therapeutic targets for the development of
novel anticancer approaches aimed to re-educate TME toward a
favorable inflammatory/immune anti-tumorigenic phenotype.
Frontiers in Oncology | www.frontiersin.org 6
EVs have been recently discovered as novel active contributors of
inflammasome/IL-1b modulation. Further studies are needed to
better define the potential anti-cancer therapeutic efficacy of
inflammasome-modulating drugs as adjuvant chemotherapy to
counteract chemoresistance in a multidrug approach.
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