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Abstract: Preeclampsia is a pregnancy disorder associated with shallow placentation, forcing pla-
cental cells to live in hypoxic conditions. This activates the transcription factor kappa B (NFκB) in
maternal and placental cells. Although the role of NFκB in preeclampsia is well documented, its
mechanism of activation in trophoblastic cells has been never studied. This study investigates the
mechanism of NFκB activation in a first trimester trophoblastic cell line (HTR8/SVneo) stimulated
by a medium containing serum from preeclamptic (PE) or normotensive (C) women in hypoxic
(2% O2) or normoxic (8% O2) conditions. The results indicate that in HTR8/SVneo cells, the most
widely studied NFκB pathways, i.e., canonical, non-canonical and atypical, are downregulated in
environment PE 2% O2 in comparison to C 8% O2. Therefore, other pathways may be responsible for
NFκB activation. One such pathway depends on the activation of NFκB by the p53/RSK1 complex
through its phosphorylation at Serine 536 (pNFκB Ser536). The data generated by our study show that
inhibition of the p53/RSK1 pathway by p53-targeted siRNA results in a depletion of pNFκB Ser536
in the nucleus, but only in cells incubated with PE serum at 2% O2. Thus, the p53/RSK1 complex
might play a critical role in the activation of NFκB in trophoblastic cells and preeclamptic placentas.

Keywords: NFκB activation pathways; preeclampsia; p53/RSK1 complex; trophoblastic cell line

1. Introduction

The success of each pregnancy is determined by a complex set of processes, including
trophoblast invasion into maternal decidua, remodeling of maternal spiral arteries, and the
adaptation of the maternal immunological system to tolerate the foreign antigens of the
developing fetus [1].
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At the beginning of each pregnancy (<week 10 of gestation), the trophoblastic cell
environment is characterized by low oxygen tension, creating a hypoxic environment
of about 1–2% O2 [2]. This is critical for early embryo development and promotes the
differentiation of trophoblastic cells and their invasion [3,4]. At about week 10 of pregnancy,
the endovascular invasion of trophoblastic cells into the decidual segments of maternal
spiral arteries increases oxygen tension in the intrervillous spaces [5], resulting in the
establishment of normoxic conditions (6–8% O2) for the placental cells [4]. Preeclampsia is
a serious complication affecting 5–8% of all pregnancies that is characterized by maternal
and fetal morbidity or mortality [6]. It is recognized when the blood pressure of previously
normotensive women increases to up to ≥140 mmHg systolic or ≥90 mmHg diastolic at, or
after, 20 weeks’ gestation; additionally, the new onset of hypertension has to be complicated
by at least one of the following symptoms: proteinuria, serum creatinine level >1 mg/dL,
elevated transaminase levels, thrombocytopenia, haemolysis, neurological disorders or
uteroplacental dysfunction (i.a., fetal growth restriction) [7,8]. Although the etiology of this
phenomenon remains a mystery, it is known that both maternal and placental factors play
a significant role in its development.

One of the main causes of preeclampsia is believed to be an inappropriate trophoblast
invasion into maternal decidua at the early stage of pregnancy [6,9]. Abnormal, shallow
placentation forces placental cells to develop in hypoxic conditions (about 1–2% of oxy-
gen), provoking the development of oxidative stress [10]. This not only influences the
metabolism, survival and behavior of the placental cells, but may also cause the generation
of reactive oxygen species (ROS) in the maternal circulation [11]. Moreover, oxidative
stress supports the development of both local and systemic chronic inflammation, which is
regulated by transcription factors, including nuclear factor kappa B (NFkB) [12,13].

NFkB activation is known to occur through various pathways; however, the canonical,
the non-canonical and the atypical pathway are the most well known. In the canonical
pathway, NFkB is activated by a high-molecular-weight complex containing two following
catalytic subunits: Inhibitor of Nuclear Factor Kappa B Kinase Subunit Alpha (IKKα) and
Beta (IKKβ) and a scaffolding subunit i.e., Inhibitor of Nuclear Factor Kappa B Kinase
Subunit Gamma (IKKγ). This complex is responsible for the phosphorylation of both NFkB
and its inhibitor, i.e., NF-Kappa B Inhibitor Alpha (IkBα) or NF-Kappa B Inhibitor Beta
(IkBβ). Following phosphorylation, the inhibitor undergoes ubiquitination and degrada-
tion in the proteasome, allowing for the translocation of free factor kB into the nucleus [14].
In the non-canonical pathway, only homodimer IKKα is responsible for NFkB activation.
Finally, in the atypical pathway, casein kinase 2 (CK2), consisting of CK2α and CK2β
subunits, participates in the degradation of NFkB inhibitor. The activation of NFκB and its
transcriptional activity are governed by its phosphorylation at Serine 536 by the IKKα and
IKKβ kinases. CK2 is generally linked with phosphorylation at Serine 527; however, some
studies report that inhibition of CK2 suppress NFκB phosphorylation at Serine 536 [15–17].

High NFkB expression and activation are observed in both maternal cells and pree-
clamptic placentas [18]. However, while NFkB is known to enhance the expression of genes
implicated in the pathomechanism of preeclampsia (i.e., TNFα, IL-1 or IL-6), its mechanism
of regulation in placental cells remains unclear.

This study investigates the process of NFkB activation in a trophoblastic cell line
under stimulation by maternal serum obtained from preeclamptic or normotensive women.
To make the in vitro environment closer to that prevailing in the maternal womb, the
process of NFκB activation was analyzed under hypoxia (2% O2) and normoxia (8% O2).
As the process of preeclampsia begins at the early stage of the pregnancy, the study
employed a human first trimester trophoblast cell line (HTR8/SVneo).

2. Results
2.1. Both the Maternal Serum Type and Oxygen Tension Influence the Level and Activity of Kappa
B in the HTR8/SVneo Cells

HTR8/SVneo cells demonstrate lower NFkB concentration in hypoxia than in nor-
moxia (8% O2). Moreover, the level of factor kB in the cells is influenced by the addition of
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1% of serum from preeclamptic mothers to cell culture medium (Figure 1a,b). Of the tested
experimental variants, the highest NFkB level was observed in cells kept in medium with
preeclamptic maternal serum in 8% O2.
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Figure 1. The differences in NFκB level and activity between HTR8/SVneo cells incubated in hypoxia and normoxia with
medium containing 1% serum from preeclamptic (PE) or normotensive women (C). (a) Western blot membrane showing
bands for NFκB and the control GAPDH protein; (b) NFκB level relative to GAPDH and Tubulin levels; the p-value
was calculated by ANOVA with the Bonferroni post hoc test; * p < 0.05; ** p < 0.01; *** p < 0.001. Data are presented as
mean ± SEM; (n = 3 experiments) (c) EMSA results. (d) EMSA results present as the relative NFκB activity calculated as
percent of positive EMSA control; the p-value was calculated by the ANOVA with the Bonferroni post hoc test; ** p < 0.01;
*** p < 0.001. Data are presented as mean and ± SEM; (n = 3 experiments). Abbreviations: PE 2% O2—hypoxia (2% O2),
medium containing 1% serum from preeclamptic mothers; PE 8% O2—normoxia (8% O2), 1% serum from preeclamptic
mothers; C 2% O2—hypoxia (2% O2), 1% serum from normotensive pregnant women; C 8% O2—normoxia (8% O2), 1%
serum from normotensive pregnant women; NC—negative control; PC—positive control; NS—nonspecific band.

The EMSA results indicate that the addition of serum from preeclamptic pregnant
women to the HTR8/SVneo cell culture influences NFkB activity (Figure 1c); the strongest
reaction was observed for cells incubated with PE 2% O2 (Figure 1d). As NFkB level and
activity is known to be elevated in preeclampsia, our findings indicate that the components
included in maternal serum may play a role in its development.

2.2. The Canonical, Non-Canonical and Atypical NFκB Pathways Are Influenced by the Oxygen
Tension and Maternal Serum

Both oxygen level and maternal serum type influence the level of the studied acti-
vators (IKKα, IKKβ, IKKγ, CK2α) and inhibitors (IκBα and IκBβ) in the studied cells
(Supplementary Materials Figure S1a–g).

The levels of IKKα and CK2α demonstrate a common trendline for results obtained
between stimulation regimens. The cells kept in 8% oxygen tension present higher levels of
IKKα and CK2α proteins in comparison to the cells stimulated by the same maternal serum
in 2% O2; however, the results are not always statistically significant. Interestingly, the cells
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cultured in preeclamptic conditions, i.e., PE 2% O2, demonstrated significantly lower levels
of IKKα and CK2α in comparison to cells living in normoxia with serum obtained from
normotensive pregnant women (p < 0.001 Figure S1a,b).

IKKγ protein expression was influenced by oxygen concentration. Cells living in nor-
moxia demonstrated significantly lower levels of the studied protein than cells stimulated
by the same serum in 2% O2 (i.e., IKKγ in PE 8% O2 < PE 2% O2 and in C 8% O2 < C 2%
O2; p < 0.001 and p = 0.012, respectively). Under normoxia, maternal serum only had a
significant effect at the 8% oxygen concentration: a significant lower level of IKKγ was
observed in PE 8% O2 in comparison to C 8% O2 (p = 0.041) (Figure S1c).

Interestingly, oxygen tension does not seem to play a significant role in the regulation
of IKKβ protein expression, with no significant differences observed between regimens.
However, maternal serum factors appear to have a strong impact on IKKβ protein level in
trophoblastic cells in 2% oxygen tension, with IKKβ level in PE 2% O2 being significantly
lower than in C 2% O2; p = 0.023 (Figure S1d).

Regarding the studied NFκB inhibitors (IκBα and IκBβ), the interaction between oxy-
gen tension and maternal serum appears to regulate their expression; significant differences
in IκBα and IκBβ concentrations were observed between cells incubated with PE 2% O2
and C 8% O2 (p < 0.001 and p = 0.004, respectively) (Figure S1e,f).

Moreover, our findings indicate that both oxygen tension and maternal serum, either
separately or together, significantly modify the profiles of the canonical, non-canonical
and atypical NFκB activation pathways. The efficiency profiles of the studied pathways
were calculated based on the ratio of one of the activators to one of the inhibitors thus:
IKKα/IkBα, IKKα/IkBβ, IKKβ/IkBα, IKKβ/IkBβ, IKKγ/IkBα and IKKγ/IkBβ for the
canonical pathway and CK2α/IκBα and CK2α/IκBβ for the atypical pathway. The profile
of the non-canonical pathway is only based on IKKα level, as this protein directly activates
kappa B. Interestingly, all calculated ratios, except IKKγ/IkBα and IKKγ/IkBβ, were
significant depleted for cells cultured in PE 2% O2 in comparison to these living in C
8% O2. As IKKγ cooperates with IKKα and IKKβ in the activation of NFkB through the
canonical pathway, and the calculated ratios for IKKα/IkBα, IKKβ/IkBα, IKKα/IkBβ and
IKKβ/IkBβ were significantly lower for cells seeded in PE 2% O2 compared to C 8% O2, it
is possible that the canonical pathway is downregulated in a preeclamptic environment.
The results suggest that the canonical, non-canonical and atypical pathways do not play
a significant role in the activation of NFκB in preeclampsia. The results of the calculated
ratios for the three pathways are presented in Figure 2a–i.
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Figure 2. Comparison of the efficiency of the canonical (a–f), non-canonical (g) and atypical (h,i) NFκB activation pathways.
Each profile was calculated based on the ratio of one of the activators to one of the NFkB inhibitors in the studied
pathway; however, the non-canonical pathway was calculated based only on IKKα protein level. The data are presented as
mean ± SEM (n = 3 experiments), p-value calculated by ANOVA with the Bonferroni post hoc test or Kruskal–Wallis with
Dunn’s post hoc test, depending the data distribution. * p < 0.05; ** p < 0.01, *** p < 0.001.

2.3. The Distribution of p53/RSK1 Complex in HTR8/SVneo Cells Depends on Oxygen Tension;
the Serum of Preeclamptic Women Favours the Maintenance of p53/RSK1complex Formation
in Hypoxia

The presence of the Tumor Protein p53/Ribosomal protein S6 kinase alpha-1 (p53/RSK1)
complex was found to be characteristic of normoxia (8% O2), irrespective of normotensive or
preeclamptic serum (Figure 3a,b). Hypoxia appears to prevent the formation of p53/RSK1;
however, while supplementation with serum from preeclamptic mothers may sustain its
formation, serum from normotensive women results in a very weak p53/RSK1 reaction in
2% oxygen. (Figure 3c,d).
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Figure 3. Duolink II PLA assay results for HTR8/SVneo cells cultured in normoxic and hypoxic conditions in medium
containing 1% serum from preeclamptic (b,d) or normotensive (a,c) women. Each p53/RSK1 complex in HTR8/SVneo cells
is visualised as an individual fluorescence red spot, nuclei were labelled with DAPI. Red spot – complex of p53/RSK1; blue
spot – nucleus of cell. Magnification 40×; scale bar 50 µm.

2.4. The Depletion of IKKα by Targeted siRNA Downregulates the Phosphorylated Fraction of
NFkB at Serine 536 (pNFκB) in the Nucleus of Cells Stimulated by Serum from
Normotensive Women

A significant reduction in IKKα level was observed following administration of tar-
geted siRNA (Figure 4a). As IKKα is known as NFkB S536 kinase, the nuclear fraction was
analyzed for phosphorylation at the Serine 536 fraction of kappa B after the administration
of both non-targeted and targeted siRNA (IKKα siRNA). In cells stimulated with serum
from normotensive women, a significant reduction of pNFκB was observed in the nuclear
fraction in both normoxic and hypoxic conditions after inhibition of IKKα. No significant
change in pNFkB S536 was observed following the addition of IKKα siRNA to the culture
with preeclamptic maternal serum (Figure 4b,c).
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Figure 4. Western blot results. (a) inhibition of IKKα by targeted siRNA; Western blot results for the cytoplasmic fraction
(b) the differences in relative pNFkB Ser536 fraction to Histone H3 in nucleus of HTR8/SVneo cells. Cells were cultured for
96 h in hypoxic or normoxic conditions with medium containing 1% serum from preeclamptic or normotensive women. For
the first 48 h, the cells were incubated only with medium containing maternal serum. After 48 h and 72 h, the cell medium
was supplemented with the following factors: none, i.e., cells without siRNA (1), non-targeting siRNA (2) and siRNA
targeted against mRNA coding for IKKα (3). The relative level of pNFkB Ser536 compared to Histone H3 in the nuclear
fraction was analyzed. Values are presented as mean ± SEM; (n = 3 experiments). The difference in pNFkB Ser536 level
between cells stimulated by negative and targeted siRNA was compared using Student’s t-test; ## p < 0.01. The difference in
pNFkB Ser536 level between the four culture types (i.e., oxygen tension and serum type) which were not stimulated with
siRNA were analyzed by ANOVA with the Bonferroni post hoc test; * p < 0.05, ** p < 0.01. (c) Western blot results for the
nuclear fraction.

The results also indicate that maternal serum (i.e., PE or C) without addition of siRNA
also influences the accumulation of Ser536 kappa B in the nucleus; preeclamptic serum
favours this process (Figure 4b,c).

Because pNFκB nuclear level did not change in cells cultured with serum from
preeclamptic mothers after silencing of IKKα, it may suspect that the canonical or non-
canonical pathways do not play a critical role in the activation of kappa B in trophoblastic
cells in a preeclamptic environment.

2.5. Treatment with MG-132, an Inhibitor of Proteasome Activity, Does Not Influence the
Accumulation of Phosphorylated IkBα Protein in the Cytoplasmic Fraction of Cells Incubated in
Hypoxia with Serum from Preeclamptic Mothers

The level of phosphorylation at the Serine 32/36 fraction of IkBα (pIκBα) increased
dramatically in the cytoplasmic fraction following the addition of 10 µM MG-132 to the
cells for the last three hours of the 96-h stimulation. Only the PE 2% O2 cells did not
demonstrate any elevation in the pIkBα fraction (Figure 5a,b).
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Figure 5. Western blot results for pIκBα Ser32/36 in the cytoplasmic fraction after MG-132 stimulation. The cells were
cultured for 96 h in hypoxic or normoxic conditions with medium containing 1% serum from preeclamptic or normotensive
women. For the last three hours, the culture medium was supplemented with the following factors: MG-132 (3), DMSO
as the MG-132 vehicle (2) or none, i.e., cells incubated only with medium containing maternal serum without MG-132
or DMSO addition (1). (a) The Western blot membrane with pIκBα and Tubulin as a loading control (b) the analysis of
Western blot results. Values are presented as mean ± SEM; (n = 3 experiments). The differences in pIκBα level between cells
with DMSO and MG-132 were analyzed by Student’s t-test, # p < 0.05, ## p < 0.01. The difference in pIkBα level for cells
not stimulated by DMSO or MG-132 but grown in hypoxia/normoxia and control/preeclamptic serum were analysed by
ANOVA with the Bonferroni post hoc test; * p < 0.05, *** p < 0.001.

Western blot results also indicate that maternal serum influences the regulation of
pIkBα level in cytoplasm. The cytoplasmic fraction of cells incubated in PE 8% O2 and
PE 2% O2 demonstrated significantly less pIkBα than those stimulated by serum from
normotensive women.

As the pIκBα cytoplasmic level is lower in the preeclamptic environment, and its level
did not increase in the PE 2% O2 group following MG-132 stimulation, it is possible that
both the canonical and atypical pathways of NFkB activation do not play a significant role
in preeclampsia.

2.6. The p53 Protein Is Implicated in NFκB Activation in HTR8/SVneo Cells Incubated in Hypoxic
Conditions with Medium Containing 1% of Serum from Preeclamptic Mothers

The addition of Silencer Select p53 siRNA to the medium for the last 48 h of the
96-h cell culture reduces the p53 protein level in the cells (Figure 6a). The p53/RSK1
complex is known to activate NFκB by its phosphorylation at Ser536, independent of
the cytoplasmic degradation of the kappa B inhibitor [19]. As the Duolink II PLA assay
revealed that p53/RSK1 is detectable in all four variants of stimulation, the next stage of
our study investigated whether it has an impact on the activation of NFκB in the studied
environments. It was found that knockdown of p53 by its targeted siRNA significantly
reduces the level of pNFκB Ser536 in the nucleus of HTR8/SVneo cells incubated in PE 2%
O2; however, the pNFκB fraction does not change significantly in other three environments
(Figure 6b,c). This suggests that factors existing in the serum of preeclamptic women
influence the activation of NFκB by the p53/RSK1 pathway in hypoxic conditions.
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Figure 6. Western blot results. (a) inhibition of p53 by its targeted siRNA; Western blot results for the cytoplasmic fraction,
(b) the differences in relative level of pNFkB Ser536 to Histone H3 in nucleus of HTR8/SVneo cells. Cells were cultured for
96 h in hypoxic or normoxic conditions with medium containing 1% serum from preeclamptic or normotensive women.
For the first 48 h, the cells were incubated only with medium containing the maternal serum. After 48 h and 72 h, the cell
medium was supplemented with the following factors: none i.e., cells without siRNA (1), non-targeting siRNA (2) and
targeted siRNA against mRNA coding for p53 (3). The relative level of pNFkB Ser536 to Histone H3 in the nucleus was
analyzed. Values are presented as mean ± SEM; (n = 3experiments). The difference in pNFkB Ser536 level between cells
stimulated by negative and targeted siRNA was calculated by the Student’s t-test; ## p < 0.01. The difference in pNFkB
Ser536 level between the four culture types (i.e., oxygen tension and serum type) which were not stimulated with siRNA
were analyzed by ANOVA with the Bonferroni post hoc test; ** p < 0.01, *** p < 0.001. (c) Western blot results for nuclear
fraction containing pNFkB Ser536 and Histone H3, as a loading control.

3. Discussion

Preeclampsia is characterized by elevated expression and activation of NFkB [18].
However, the mechanism of NFkB activation in placental cells remains unknown. This
is the first study to provide information about the possible pathway regulating NFkB
activity in a trophoblastic cell line, i.e., HTR8/SVneo. The functional study indicated
that the p53/RSK1 complex promotes NFkB activity in trophoblastic cells living in a
preeclamptic environment.

NFκB is a transcription factor required for the proper course of pregnancy. At the
beginning of a pregnancy, the trophoblastic cells grow in an environment characterized
by low oxygen tension, i.e., about 1–2% O2. These conditions promote proliferation
and differentiation of trophoblastic cells into invasive cell subtypes [20]. Generally, the
process of implantation requires an inflammatory environment, which is generated by both
maternal and trophoblastic cells and it is related with elevated expression of inflammatory
factors (i.e., IL-1, IL-6 IL-8 or TNFα) and molecules responsible for the degradation of the
extracellular matrix (e.g., metalloproteinases; MMP2 and MMP9) [21–24]. Their expression
is regulated by the active form of NFκB [25–30]. The necessity of NFκB in the process of
implantation was confirmed on the animal models. The suppression of NFκB activation
and its translocation into nucleus of cells in mice uterus was found to delay the process
of implantation confirmed in animal models whereas the complete loss of NFκB activity
in knockout mice results in death [31,32]. As implantation proceeds, the oxygen level in
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the environment increases; this steers trophoblast differentiation toward remodeling of the
maternal spiral artery and allows the placenta to mature into an exchange organ [33,34].
The inflammatory reaction is gradually slowed, thus allowing the development of an
immunosuppression stage needed to maintain pregnancy. This is accompanied by a
reduction in the activity of NFκB [35].

In women demonstrating clinical symptoms of preeclampsia after week 20 of gestation,
the process of trophoblast invasion into the maternal decidua is known to be abnormal.
Although it is typical to observe a low oxygen level for trophoblastic cells up to week
10–12 of gestation, longer periods of hypoxia have an impact on their biology [20,24].

In such cases, extended hypoxia results in the generation of hypoxia-induced reactive
oxygen species (ROS), which intensify NFκB activation in cells [36]. Preeclamptic placentas
are known to demonstrate both higher expression and activation of NFκB [37–39]; however,
the mechanism of its activation in trophoblastic cells remains a mystery.

Therefore, this study examined the mechanism of NFκB activation in the HTR8/SVneo
trophoblastic cell line, i.e., first trimester cells, under normoxia (8% O2) and hypoxia (2%
O2). The cultures were additionally incubated with medium supplemented by serum from
either preeclamptic (PE) or normotensive (C) women; this provided an indication as to
whether only oxygen, only some unidentified factors present in maternal serum, or both
together might influence the regulation of NFκB activation.

It was observed that the NFκB level in HTR8/SVneo cells falls as oxygen tension
reduces. However, the PE 2% O2 cells demonstrated higher, but not significant, level of
NFκB in comparison to the PE C 8% O2. Surprisingly, the nuclear activity of NFκB varies
significantly between PE and C type of stimulation. The EMSA results show that nuclear
activity of NFκB strongly depends on some factors present in the maternal serum used
in HTR8/SVneo cell culture, with higher activity being observed in cells inoculated with
PE serum, both in hypoxia and normoxia. This is consistent with studies on placental
samples, showing that the NFκB is activated nearly 10-fold more in preeclamptic placentas
than these from normotensive pregnancies [38]. Interestingly, although NFκB was found
to be augmented under PE, none of the NFκB activation pathways described elsewhere,
i.e., canonical, non-canonical or atypical, seem to play a dominant role in this process. This
observation is consistent with those of our previous study based on placental samples
obtained from preeclamptic and normotensive women [18]. Although both studies indicate
that the canonical, non-canonical and atypical pathways demonstrate lower efficiency in
a preeclamptic environment, based on activator to inhibitor ratios, this is not sufficient
evidence that these pathways are downregulated in preeclampsia. Therefore, further
functional studies were warranted.

The canonical, non-canonical and atypical pathways were inhibited using IKKα-
targeted siRNA or proteasome inhibitor (i.e., MG-132), and the nuclear level of the Serine
536- phosphorylated form of NFκB or cytoplasmic level of phosphorylated at Serine
32/36 form of IkBα were examined.

It is known that IKKα takes part in the canonical and non-canonical activation of
NFκB [40]. In addition, NFκB activation has been found to be suppressed by specific
siRNA molecules inhibiting IKKα [41,42]. This kinase assists in the activation of NFκB by
phosphorylating Serine 536, allowing for kappa B translocation into the nucleus [43]. In the
present study, incubation with IKKα-targeted siRNA resulted in a significant depletion of
NFκB Ser536 in the nuclear fraction for the C 8% O2 and C 2% O2 cultures in comparison
to the same cultures supplemented with non-targeted siRNA. For the PE 8% O2 and PE
2% O2 cultures, concentration of NFκB Ser536 remained at a similar level for all variants,
i.e., those incubated with IKKα targeted siRNA and those with non-targeted siRNA. This
suggests that the downregulation of IKKα-dependent pathways of NFκB activation does
not inhibit the activation of the kappa B factor in preeclampsia.

Interestingly, the atypical pathway seems to be also downregulated in preeclampsia.
Studies suggest that the inhibition of proteolytic activity of 26S proteasome complex by
MG-132 has a negative impact on the proteosomal degradation of the phosphorylated
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and ubiquitinated form of kappa B inhibitors [44,45]. In both the canonical and atypical
pathways, the Serine at positions 32 and 36 of IkBα protein is phosphorylated by the
upstream kinases (i.e., IKKα/IKKβ complex or CK2) and then ubiquitinated [46,47], thus
allowing it to be degraded by the proteasome complex. Following IkBα degradation, a
free phosphorylated form of NFκB is translocated into the nucleus [14]. Some studies
indicate that inhibition of proteasome activity by MG-132 results in the accumulation
of phosphorylated and ubiquitinated IkBα in the cytoplasmic fraction [14,19]. In the
present study, the addition of 10 µM MG-132 to the cell medium resulted in an increase in
the level of IkBα Ser32/36 in the cytoplasmic fraction for all stimulation variants except
PE 2% O2; this suggests that simultaneous presence of hypoxia and factors existing in
preeclamptic serum influences NFκB activation via a pathway independent of proteosomal
IkBα degradation. Hence, the canonical and atypical pathways seem to be downregulated
in preeclamptic environment.

Previous studies indicate that cells employ a method of NFκB activation independent
of IkBα degradation e.g., oxidative stress induced the activation and nuclear translocation
of NFκB without the IkBα degradation in an endothelial cell line [48]. In this process, the
p53/RSK1 complex plays a dominant role, being responsible for the phosphorylation of
NFκB at Serine536 [19,49]. It is known that preeclampsia is related to the accumulation
of ROS and inflammatory factors in maternal blood, and that the HTR8/SVneo cell line
generates mitochondrial ROS in hypoxic condition [34,50–52]. Therefore, in the present
study, the combination of maternal serum and hypoxic conditions certainly influenced the
generation of oxidative stress. Interestingly, the Duolink II PLA analysis suggests that the
p53/RSK1 complex is present in HTR8/SVneo cells, irrespective of the stimulation variant.
While the cells incubated in normoxia demonstrated similar levels of p53/RSK1, higher
levels were observed in PE 2% O2 than C 2% O2.

Interestingly, following treatment with p53-targeted siRNA, the level of NFκB Ser536
in the nuclear fraction was depleted only in the PE 2% O2 cells; no significant change
was observed in the other variants. This suggests that the p53/RSK1 complex might
play different roles in cells depending on the mode of stimulation. The literature data
indicates that protein complex might play a different role in the same cell depending
on the environment [53]. Our present findings do not indicate that p53/RSK1 plays any
significant role in NFκB activation in the C 8% O2, C 2% O2 and PE 8% O2 cultures: only
the PE 2% O2 cells demonstrated a significant nuclear depletion at Ser536-phosphorylated
NFκB. This suggests that in cases of hypoxia supported by factors present in PE, NFκB
activation occurs depending on the p53/RSK1 complex, and that it is possible that the
same mechanism acts in preeclamptic placentas, which demonstrate more intense NFκB
expression and activation.

The present study has some limitations. Firstly, a significant difference in maternal
weight was observed between the preeclamptic and normotensive serum donors. Maternal
overweight might predispose to the appearance of some factors in maternal blood which
influence the result of the study. We believe that factors typical of preeclampsia dominate
in pooled maternal serum. However, further studies based on overweight pregnant women
without comorbidities are needed to check the reaction of the cells against factors character-
istic of obesity. Second, the first trimester trophoblastic cell line was stimulated with serum
obtained from mothers in the last trimester of pregnancy. As the cells may demonstrate
different reactions to maternal serum obtained from the first, second and third trimesters,
and hence differences in the NFkB activation pathways, the further studies are warranted.

Our findings cast light on the mechanisms behind higher activation of kappa B factor
in placental cells. This may help in defining more targeted preventive strategies. At present,
no treatment exists for preeclampsia itself, and existing strategies are based on treating its
clinical manifestations (hypertension and neurological symptoms) or on labor induction,
at the cost of prematurity. Low-dose aspirin (ASA) can be prescribed in the first trimester
to prevent preeclampsia in high-risk pregnancies [54]. ASA generates particles that act as
“braking signals” in inflammation, i.a., by inhibition of nuclear translocation and connection
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of NFkB with DNA [55,56]. However, ASA supplementation must be commenced early to
be effective [54]. Hence, a better understanding of the modes of kappa B activation may
open a window of opportunity to efficiently treat the root mechanisms of preeclampsia.

4. Materials and Methods
4.1. Collection of Blood Samples

Venous blood was collected into vacutainer EDTA tubes from preeclamptic and nor-
motensive women before delivery. Preeclampsia was recognized after week 20 of gestation
when the maternal blood pressure in previously normotensive woman increased over
140/90 mmHg (measured twice with an interval of at least six hours) and protein was
observed in the maternal urine (>300 mg/24 or at least 2+ during a single urine test).
Patients with late preeclampsia were qualified to the study at approximately the same
week of gestation as the control group (p > 0.05). The control group included only healthy
pregnant women, whose blood pressure did not exceed the value 130/80 mmHg.

In both groups, the patients met the following criteria: single pregnancy, no symptoms
indicating chronic diseases or gestational diabetes mellitus or hypertension before preg-
nancy, BMI < 30kg/m2, no fetal chromosomal aberrations and no uterus activity, which
signals delivery. The clinical characteristics of the women from whom the blood samples
were obtained are presented in Supplementary Materials (Table S1). Informed consent was
obtained from all women qualified to the study. The study was approved by the Medical
University Ethics Committee and the protocol complies with the ethical principles of the
Declaration of Helsinki.

After blood collection, the samples were immediately centrifuged (10 min at 2000× g)
and the collected plasma was stored at −30 ◦C. Before the experiments, the samples were
thawed and 20% CaCl2 was added to plasma at a ratio of 1:100 (CaCl2:plasma). Following
incubation (one hour, 37 ◦C) to induce fibrin clot formation, the samples were centrifuged
(10 min. 3000× g) to obtain the serum (recalcified plasma). Sera from preeclamptic or
normotensive women were merged in the two independent tubes, sterilized (0.22 µm PES
filter) and stored at −30 ◦C until use in culture medium.

4.2. Cell Culture

The immortalized first trimester trophoblast cell line HTR8/SVneo (CRL-3271) was
obtained from the American Type Culture Collection (ATCC) and maintained at 37 ◦C
and 5% CO2, in medium supplemented with 10% Fetal Bovine Serum (FBS) (Gibco-BRL,
Waltham, MA, USA) and 1% penicillin/streptomycin (Invitrogen, Waltham, MA, USA).
For the experiments, the cells were incubated with Ham’s F-12K Nutrient Mix medium
(Gibco Invitrogen, Carlsbad, CA, USA) containing 1% penicillin/streptomycin and 10%
FBS (Gibco-BRL, Waltham, MA, USA) for 24 h. Following this, they were incubated in
stimulating medium, i.e., Ham’s F-12K medium containing 1% penicillin/streptomycin and
1% human serum from preeclamptic or normotensive women, for 96 h, with the medium
being replaced each day. All experiments were performed at 5% CO2 and 37 ◦C under
hypoxia (2% O2) or normoxia (8% O2). The experiments were conducted in InVivo2 Physio-
logical Cell Culture Workstations (Baker Ruskinn, Sanford, ME, USA) to maintain constant
conditions of oxygen and temperature. All experiments were repeated three times (n = 3
experiments).

4.3. Total Protein Extraction

Briefly, 0.25 × 106 HTR8/SVneo cell suspensions were seeded in 6-well plates in
medium with FBS and incubated in hypoxic or normoxic conditions for 24 h. Next, the
stimulating medium was added. After 96-h incubation in stimulating medium, the cells
were washed twice in dPBS (Gibco Invitrogen, Carlsbad, CA, USA) and treated with
RIPA buffer (Sigma, St. Louis, MO, USA) with Halt™ Protease and Phosphatase Inhibitor
Cocktail (Thermo Scientific, Waltham, MA, USA). The cells were transferred into chilled
Eppendorfs and incubated on ice for 30 min. After centrifugation at 14,000 rpm for 10 min,
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the supernatant (total protein fraction) was collected and stored at −80 ◦C for further
analysis. Total protein concentration was measured using the BCA method (Thermo
Scientific, Waltham, MA, USA).

4.4. Cytoplasm and Nuclear Fraction Isolation

The 0.8 × 106 cells were seeded in a 25 cm2 flask in medium with FBS and incubated
in hypoxic or normoxic conditions for 24 h. Next, the stimulating medium was added.
After 96-h incubation in stimulating medium, the cells were washed twice in dPBS (Gibco
Invitrogen, Carlsbad, CA, USA) and cytoplasmic fraction buffer was added. Further
processes were performed according to the manufacturers’ instructions (NE-PER Nuclear
and Cytoplasmic Extraction Kit, Thermo Scientific, Waltham, MA, USA). The concentration
of protein in each subfraction was measured by the BCA method (Thermo Scientific,
Waltham, MA, USA).

4.5. Small Interfering RNA (siRNA) and MG-132 Transfection

Briefly, 0.8 × 106 cell suspensions were seeded in 25 cm2 flasks in medium with FBS
and incubated in hypoxic or normoxic conditions for 24 h. Next, the stimulating medium
was added. During the 96-h incubation, the stimulating medium was supplemented with
siRNA or MG-132 as follows: siRNA transfection. On the third and fourth day of incubation,
the stimulating medium was supplemented with Opti-MEM™ I Reduced Serum Medium
(Gibco Invitrogen, Carlsbad, CA, USA) containing Lipofectamine RNAiMAX (Thermo
Scientific, Waltham, MA, USA) and 100 µM of Silencer®Select Validated siRNA for p53
(mix s605 and s607) or CHUK (Conserved Helix-loop-helix Ubiquitous Kinase) coding for
IKKα (mix s3076 and s3077) or Ambion® Silencer Negative Control #1. MG-132 stimulation.
A total of 10 µM MG-132 (Calbiochem, Darmstadt, Germany) was added three hours before
the end of the 96-h stimulation. The cytoplasm and nuclear fractions were then isolated.
Each experiment was repeated three times.

4.6. Western Blot Assays

Western blot was used for analyses of total, nuclear and cytoplasm proteins. Fol-
lowing SDS-PAGE electrophoresis and PVDF membrane transfer, the membrane was cut
perpendicular to the Protein Ladder. Each fragment of the membrane was blocked with
5% Bovine Serum Albumin (BSA) (one hour, room temp). Next, the membranes were
incubated overnight at 4 ◦C with one of the following first primary antibodies: IKKα (MA5-
16157), IKKβ (LF MA0192), IKKγ (PA5-27335), CK2α (LF MA0223), IkBα (PA5-22120), IkBβ
(PA5-84615), p53 (PLA-0072), NFkB (MA5-15563), phospho-NFkB-Ser536 (SAB4504490),
phospho-IkBα-Ser32/36 (MA5-15224), Tubulin (PA5-29444), GAPDH (MA5-15738) or His-
tone H3 (PA5-16183). The next day, the membranes were washed in TBST and incubated
with HRP conjugated secondary antibody (one hour, room temp). The proteins were
identified by chemiluminescence (ChemiDoc, Bio-Rad Laboratories, Hercules, CA, USA).
The optical density of the bands was analyzed using ImageLab software (Bio-Rad Bio-Rad
Laboratories, Hercules, CA, USA). Each experiment was replicated three times.

4.7. Electrophoretic Mobility Shift Assay (EMSA)

The LightShift™ EMSA Optimization and Control Kit (Thermo Scientific, Waltham,
MA, USA) was used to check the activity of NFkB in the HTR8/SVneo cell nuclear fraction
after stimulation. The nuclear extract (4 ug) was incubated in 1X Binding Buffer with
poly(dIdC) and biotinylated at the 5′-end of the primers, including the region (underlined)
recognized by the active form of NFkB (5′-Biotin-AGTTGAGGGGACTTTCCCAGGC- 3′).
The mixture was incubated for 20 min and subjected to electrophoresis on 6% retardation
gel. It was then transferred to a nylon membrane. Next, the membrane was crosslinked
with the DNA under UV, and treated with Blocking buffer. All further procedures were
performed according to the manufacturers’ instructions. HeLa nuclear cell lysate after
TNFα stimulation (Abcam, Cambridge, UK) was used as control, either with biotinylated
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primers (positive control) or a mix of biotinylated and non-biotinylated primers (negative
control). Each experiment was replicated three times.

4.8. Duolink II PLA Technology Assay

Briefly, HTR8/SVneo cell suspension was seeded, 0.01 × 106 cells per well, in FBS
medium on the Coverglass TC-treated 8-well chambers (Eppendorf, Hamburg, Germany)
and incubated in hypoxic or normoxic conditions for 24 h. Next, the stimulating medium
was added. After 96-h incubation in stimulating medium, the cells were washed twice
in dPBS and fixed in ice-cold methanol (15 min, room temp.). Following washing and
permabilization in dPBS with 0.1%Triton X-100, the cells were incubated with Duolink
Blocking Solution (one hour at 37 ◦C) in a humidity chamber. The cells were incubated in
a mix of primary antibodies against RSK1 (PA5-29215) 1:300 and p53 (MA5-12557) 1:200
in Duolink Antibody Diluent overnight at 4◦C. The next steps were performed accord-
ing to the Duolink® In Situ Red Starter Kit Mouse/Rabbit instructions (Sigma-Aldrich,
St. Louis, MO, USA). The complex was visualised with a ZEISS Axio Vert.A1 TL/RL-
LED fluorescence microscope (ZEISS, Jena, Germany). Each experiment was replicated
three times.

4.9. Statistical Analyses

The Statistica v13 (Statsoft, Statsoft, Kraków, Poland) and GraphPad Prism 5.0 (Graph-
Pad Software, USA) packages were used for statistical analyses. The normal distribution
was determined by the Shapiro–Wilk test. Normally distributed data were analyzed by
the Student’s t-test (for single comparison) or ANOVA with the Bonferroni post hoc test
(for multiple comparison). The non-normally distributed data were analyzed by the Mann–
Whitney U-test or Kruskal–Wallis with Dunn’s post hoc test. The results were considered
as significant for p < 0.05.

5. Conclusions

Although the level and activity of NFκB are elevated in preeclampsia, its mode
of activation remains unknown. In our in vitro model of trophoblast cells cultured in
preeclamptic and normotensive environments, higher NFκB activity was observed in cells
incubated with medium containing serum from preeclamptic women. Our findings indicate
that neither the canonical, non-canonical or atypical activation pathways play a critical
role in NFκB activation in preeclamptic conditions with hypoxia. In this environment,
the inhibition of p53 by a targeted siRNA significantly reduced the nuclear fraction of the
active form of NFκB i.e., NFκB Ser536. This suggests that the p53/RSK1 complex plays a
key role in the activation of NFκB in preeclamptic conditions. The same mechanism might
be actuated in preeclamptic placentas.
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