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Abstract

Background: The Age–Period–Cohort (APC) analysis is aimed at estimating the following effects on disease incidence: (i) the
age of the subject at the time of disease diagnosis; (ii) the time period, when the disease occurred; and (iii) the date of birth
of the subject. These effects can help in evaluating the biological events leading to the disease, in estimating the influence
of distinct risk factors on disease occurrence, and in the development of new strategies for disease prevention and
treatment.

Methodology/Principal Findings: We developed a novel approach for estimating the APC effects on disease incidence rates
in the frame of the Log-Linear Age-Period-Cohort (LLAPC) model. Since the APC effects are linearly interdependent and
cannot be uniquely estimated, solving this identifiability problem requires setting four redundant parameters within a set of
unknown parameters. By setting three parameters (one of the time-period and the birth-cohort effects and the
corresponding age effect) to zero, we reduced this problem to the problem of determining one redundant parameter and,
used as such, the effect of the time-period adjacent to the anchored time period. By varying this identification parameter, a
family of estimates of the APC effects can be obtained. Using a heuristic assumption that the differences between the
adjacent birth-cohort effects are small, we developed a numerical method for determining the optimal value of the
identification parameter, by which a unique set of all APC effects is determined and the identifiability problem is solved.

Conclusions/Significance: We tested this approach while estimating the APC effects on lung cancer occurrence in white
men and women using the SEER data, collected during 1975–2004. We showed that the LLAPC models with the
corresponding unique sets of the APC effects estimated by the proposed approach fit very well with the observational data.
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Introduction

For more than 50 years, the importance of accurate accounting

for the Age–Period–Cohort (APC) effects has been well recognized

by epidemiologists and mathematicians in disease incidence and

mortality studies. In such studies, the incidence rate is defined as a

ratio of the number of events divided by the total person-years

experience. It is assumed that the numerator of this ratio has a

Poisson distribution and the standard errors (SE) of the incidence

rate are calculated by the ratio of the squared root of the number

of events divided by the total person-years [1]. Often, it is also

assumed that the logarithm of the incidence rate can be modeled

as a linear function of specified regressors: the APC effects. Such

models of the incidence rates belong to the so-called generalized

linear models [2]. In particular, in the Log-Linear Age-Period-

Cohort (LLAPC) model, the observed variable is the logarithm of

the incidence rate, which is approximated by the sum of the APC

effects [2]. The problem is figuring out how to estimate these

effects from the observed incidence rates.

APC analysis
In this work, using the long-term observational data, we

determine the APC effects in the frame of the LLAPC model

[2]. By definition [1], the crude incidence rate for the given age,

time-period (TP) and birth-cohort (BC) intervals, is a ratio of the

number of cancer occurrences, Oi,j,k, divided by the total person-

years at risk, Pi,j,k:

Ii,j,k~
Oi,j,k

Pi,j,k
ð1Þ

where the age intervals are indexed as i~1,:::,n; the time periods

of cancer occurrences as j~1,:::,m; the birth cohorts of cancer

occurrences as k~1,:::,l; and n, m and l are numbers of the age

intervals, time periods, and birth cohorts, correspondingly.

Let us consider that the temporal intervals, indexed by i, j and

k, have the same size (for instance, five-year long intervals that are

usually used in the APC studies). In this case, these indexes and the

n, m and l numbers are related in the following way [2]:
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k~j{izn i~1,:::,n; j~1,:::,m; k~1,:::,lð Þ ð2Þ

and l~mzn{1. It should be noted that, according to (2), index k

is uniquely defined by indexes, i andj. Therefore in (1), index kcan

be omitted, while keeping in mind that incidence rates are also

dependent on the BC effects.

The LLAPC model is usually presented by the following system

of conditional equations:

Yi,j~mzaizbjzck i~1,:::,n; j~1,:::,m; k~1,:::,lð Þ, ð3Þ

and

Yi,j~ln Ii,j

� �
~ln

Oi,j

Pi,j

� �
i~1,:::,n; j~1,:::,mð Þ, ð4Þ

where Yi,j is a logarithm of the observed incidence rate, ai denotes

the age effect, bj - the TP effect, ck - the BC effect, and the

constant term, m, is the intercept [2]. In this model, weights for the

observed data, Yi,j , are chosen to be inversely proportional to their

sampling variances,SE2 Yi,j

� �
:

wi,j~
1

SE2 Yi,j

� � , ð5Þ

where

SE2 Yi,j

� �
~SE2 ln

Oi,j

Pi,j

� �� �
~

SE2(Oi,j)

O2
i,j

~
1

Oi,j
: ð6Þ

Formula (6) is obtained under the assumption that the numbers of

cancer occurrences in each group are independent random

variables characterized by a Poisson distribution. It is also assumed

that the variances of the incidence rates,
Oi,j

P2
i,j

, are entirely due to

variations in the small number of cancer occurrences, Oi,j ,

compared to the total person-years at risk, Pi,j , [3]. From (5) and

(6) it follows that:

wi,j~Oi,j : ð7Þ

The APC problem is to determine from the system of m|n

conditional equations (3) with weights (7) the following: (i) the n

estimates of the age effects, ai; (ii) the m estimates of the TP

effects,bj ; (iii) the l estimates of the BC effects, ck; and (iv) the

intercept, m. Additional constraints on the parameters must be

made to obtain a solution. One approach is to set three effects (one

of the TP effects, bj0
, one of the BC effects, ck0

, and the

corresponding Age effect, ai0
, where i0~j0{k0zn) to zero and

then to use these settings as the reference levels. Another approach

is to set the sums of these effects to zero [2]. In the present work,

we use the first approach.

From the aforementioned settings and from (1–7), it follows

that:

1. Im~exp(m) presents the modeled incidence rate of getting the

cancer, when the anchored parameters are: ai0~0, bj0
~0, and

ck0
~0.

2. Im
i,.,.~exp(mzai) presents the modeled Age-specific incidence

rate of getting the cancer in a given age interval i, when TP and

BC effects are absent.

3. Im
.,j,.~exp(mzbj) presents the modeled TP-specific incidence

rate of getting the cancer for a given TP interval, j, when Age

and BC effects are absent.

4. Im
.,.,k~exp(mzck) presents the modeled BC-specific incidence

rate of getting the cancer for a BC interval, k, when Age and

TP effects are absent.

5. Im
i,j,k~exp(mzaizbjzck) presents the modeled incidence rate

of getting a particular type of cancer in a given Age interval, i,
a TP interval, j, and a BC interval, k, when all of these effects

are present.

In 2), 3) and 4), the Age effects,ai, the TP effects,bj , and the BC

effects, ck, can be presented as logarithms of the incidence rate

ratios: ai~ln(Im
i,.,.=Im), bj~ln(Im

.,j,.=Im), and ck~ln(Im
.,.,k=Im),

correspondingly. Thus, the ai,bj , and ck parameters are

dimensionless and their variations (with respect to the correspond-

ing successive Age, TP and BC intervals) indicate the temporal

trends of these effects.

Identifiability problem
The system (3) cannot be solved directly by methods of multiple

linear regressions due to the fact that the design matrix of the

system (3) of the LLAPC is rank deficient. (This fact can be directly

checked in practice, for example, using MATLAB function, rank).

This is because the APC effects are linearly interrelated.

Consequently, these effects cannot be uniquely and simultaneously

estimated (multiple estimators of these parameters provide similar

solutions). Mathematically, this problem falls into a category of the

identifiability problems that, in turn, are a special subclass of a more

general class of the ill-posed or incorrectly-posed mathematical

problems. Solving the identifiability problem, in particular, and

the ill-posed problems, in general, requires the use of additional

assumptions and/or a priori knowledge regarding their solutions

[4].

Approaches that have been used in the APC analysis to solve the

identifiability problem are reviewed in several papers (see, for

example, [2,5,6] and references therein). In these approaches,

either three effects (one of the TP effects, one of the BP effects, and

the corresponding Age effect) are set to zero and used as reference

levels or the sums of these effects are equated to zero. However,

these settings are still insufficient for solving the identifiability

problem [2] and required the use of additional constraints on a set

of the parameter estimates to be determined. Although a variety of

additional constraints and the utility of estimable functions (that

are invariant for any particular set of model parameters) have

already been proposed, the identifiability problem still remains

largely unsolved [2,5,6].

In this work, we extended the well-known approach used in the

APC analysis for solving the identifiability problem [2,3,7,8],

where four redundant parameters within a set of the unknown

parameters to be determined are equated to zero. In our

approach, we fixed (set to zero) only three redundant parameters

and used them as reference levels. In contrast to the ‘‘traditional’’

approaches, where all four parameters are equated to zero, we

determined an optimal value of the forth parameter using an

additional heuristic assumption (see below). We used an effect of

the time period adjacent to the anchored time period as such a

parameter. We have shown that by varying this parameter from

2‘ to ‘, all possible solutions of the APC problem can be

obtained. To our best knowledge, such a general solution of the

APC problem (a complete family of estimates of the APC effects)

Solution of the Age-Period-Cohort Problem
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which depends only on the one ‘‘identifiability’’ parameter is given

for the first time in the present work.

A heuristic assumption
To get an optimal value of the identification parameter, we used

a heuristic assumption that the effects of the adjacent cohorts are

close. This assumption is motivated by the fact that the multi-year

adjacent birth-cohorts are overlapping in time intervals. Using this

assumption, we developed a numerical method for determining

the optimal value of the identification parameter. With the optimal

value of this parameter, a unique set of the APC effects can be

determined and thus the identifiability problem is overcome. The

method for obtaining the optimal value of the identifiability

parameter proposed in this work enables one to obtain a distinct

solution(s) of the APC identifiability problem depending on a priori

assumption(s).

Proof-of-concept
We tested the proposed numerical method while estimating the

APC effects on lung cancer (LC) incidence rates in white men and

women, using data collected in the SEER 9 database during 1975–

2004.

Materials and Methods

Data preparation
To test the proposed approach, we used the SEER databases

that include the number of occurrences of different types of cancer

and information on the population at risk obtained from the U.S.

Census Bureau. In our study, data on LC occurrence in white men

and women collected in SEER 9 during 1975–2004 [9] were

utilized. We used data from the nine registries rather than data

from the currently available 17 registries, because the longitudinal

nature of our study required utilization of data dating back three

decades when there were only nine registries.

From SEER 9, we extracted the first primary, microscopically

confirmed LC cases stratified by gender and race. The number of

the LC occurrences in white men and women and the

corresponding person-years at risk extracted from the SEER 9

were grouped in six five-year cross-sectional TP groups: 1975–79,

… , 2000–04; 18 five-year age groups: 17 groups, ranging from 0

to 84 years, and the 18th group including all cases for the ages

85+; and 17 BC groups corresponding to the birth year groups of

1890–94, …, 1970–74. In our study, we used only 12 five-year Age

groups from 30–34 years up to 85+, because the observed numbers

of the LC cancer occurrences in younger ages were insignificant.

The grouped data, tabulated by the age and time-period indexes,

are presented in Tables 1, 2, 3, 4.

Statistical methods and software used
For data presented in Tables 1, 2, 3, 4, the LLAPC model was

applied and the corresponding design matrices of the systems of

conditional equations for white men and women were obtained.

These design matrices were checked for rank deficiencies using the

MATLAB function, rank. To solve these systems of conditional

equations, we applied a novel approach (see below) using the

weighted least-square method and utilized the MATLAB function,

regress. For determining the optimal values of the identification

parameters, we used a program developed in-house, inpar, and

written in MATLAB, Version 7.10.0 (R2010a). Validity of the

used LLAPC models for assessing the APC effects in the LC

occurrences in white men and women were checked by three

diagnostic plots [10]: (i) the normal probability plot of the

standardized residuals, (ii) the residuals vs. the modeled values plot;

and (iii) the observed vs. the modeled values plot.

A solution of the identifiability problem
Let us fix one of the TP effects, bj0

, one of the BC effects, ck0
,

and the corresponding Age effect, ai0 , where i0~j0{k0zn (see

(2)). By moving these effects to the left side of the system (3), the

number of unknowns in a new system is decreased by three. In

practice, these effects are used as reference levels and are usually

set to zero.

In such a case, the solution of the APC problem is reduced to

determining one parameter – the identification parameter. Let us

use the effect, bj0{1 (or bj0z1) of the TP, adjacent to the anchored

TP, j0, as the identification parameter designated by d. When the

exact value of d is a priori known, the system (3) can be additionally

corrected for this effect by moving this parameter to the left side of

Table 1. Numbers of LC occurrences,Oi,j

(i~1,:::,12;j~1,:::,6), in white men.

Time-period, j

Age, i 1 2 3 4 5 6

1 62 56 66 56 47 34

2 186 199 189 170 157 127

3 447 462 502 436 427 391

4 1289 1042 1019 993 920 874

5 2522 2260 1971 1754 1723 1646

6 3701 3988 3554 2794 2679 2548

7 4691 5150 5242 4505 3667 3455

8 4629 5581 5828 5927 4891 3903

9 3825 4742 5266 5320 5098 4495

10 2428 3097 3641 3977 4026 3970

11 1112 1414 1735 1907 2160 2233

12 430 611 688 806 882 1046

doi:10.1371/journal.pone.0034362.t001

Table 2. Numbers of LC occurrences,Oi,j

(i~1,:::,12;j~1,:::,6), in white women.

Time-period, j

Age, i 1 2 3 4 5 6

1 54 43 48 61 49 47

2 137 163 148 146 191 130

3 338 376 363 362 354 438

4 714 655 752 798 817 841

5 1157 1340 1230 1342 1406 1371

6 1642 1997 2099 2013 2068 2171

7 1793 2438 2906 2818 2723 2774

8 1563 2557 3212 3743 3776 3115

9 1143 1984 2900 3610 4044 3753

10 696 1228 2027 2774 3340 3496

11 334 614 959 1408 1925 2215

12 162 310 460 582 857 1078

doi:10.1371/journal.pone.0034362.t002

Solution of the Age-Period-Cohort Problem
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(3). Then the left sides of the corrected system will be:

Y c

i,j
~Yi,j i~1,:::,n; j~1,:::,j0{2,j0,:::,mð Þ

Y c

i,j
~Yi,j{d i~1,:::,n; j~j0{1ð Þ: ð8Þ

Note, when the exact value of d is a priori known, the corrected

system (3) has the same weights (7) as system (3) and the design

matrix of this weighted system does not have a rank deficiency (this

can be directly checked by using the MATLAB function, rank). For

assessing the unknowns in the corrected system (3), a standard

weighted least squares method can be used. Thus, estimates of the

intercept,m�, the n{1 numbers of the Age effects, a�i , the m{2

numbers of the estimates of the TP effects, b�j , and the l{1

numbers of the estimates of the BC effects, c�k, and their

confidence intervals (CI ) can be obtained. Here and below,

asterisks ( � )denote estimates or set values of the unknown

parameters. It should be noted that, in general, these estimates

depend on given values of the four redundant parameters: ai0
, bj0

,

ck0
and d.

By varying the identification parameter, d, within the interval of

its expected variation, a family of estimates of the APC effects can

be obtained. In fact, let us suppose the values of the expected

variation of the identification parameter lie within an interval,

½{L; L�, where Lw0. In this interval, let us choose the following

net points:

{L,{Lz
2L

N
,{Lz2

2L

N
,:::,{Lz(N{1)

2L

N
,L ð9Þ

where Nis a natural number bigger than, say, 10, i.e. Nw10. The

consequent values of these net points can be used as the variable

values of the identification parameter:

ds~{Lzs
2L

N
s~0,1,:::,Nð Þ: ð10Þ

For each dsvalue, one can obtain estimates of the APC effects (m�,
a�i , b�j , and c�k) and their CIs, as was described previously.

Thus, the corresponding family of estimates of the APC effects

can be obtained. Theoretically, by varying d from {? to ?, one

can obtain all possible estimates of the APC effects (m�, a�i , b�j , and

c�k) and their CIs.

The optimal value of the identification parameter,d, can be

determined within the interval of its expected variation using an

additional assumption. As such, the heuristic assumption that

differences between the effects of the adjacent birth-cohorts are

small can be used. This assumption is based on the fact that the

multi-year adjacent birth-cohorts are overlapping in time intervals,

and the identification of a cohort associated with a particular

range for period and age is somehow ambiguous [11–13].

Using this heuristic assumption, one can numerically determine

the optimal value of the identification parameter by minimizing

(with respect to d) the weighted average of the squared differences

between the estimates of the adjacent BC effects, (c�
kz1

{c�
k
)2. This

minimization problem can be formulated as follows:

1Pl{1
k~1 Wk

Xl{1

k~1
Wk(c�

kz1
{c�

k
)2?mind, ð11Þ

where the weights, Wk, are reciprocals of the variances of the

differences between estimates of the adjacent BC effects,

(c�
kz1

{c�
k
). This problem can be solved numerically by getting

the net values (10), and calculating for each ds the corresponding

weighted average (11). Thus, from these net values, the optimal

value,dopt, which minimizes this weighted average, can be

obtained.

Assessing model adequacy
To check the goodness of the fit of the modeled values obtained

by a multiple linear regression analysis of the observed values, the

R2 statistic as well as the F statistic and its p value, are usually

used. However, to compute these statistics, the design matrix of the

system of the conditional equations, presenting the model under

consideration, has to include a column with ‘‘1’’. Otherwise, the

obtained numeric values of these statistics can be incorrect and

Table 3. Person-years at risk, Pi,j (i~1,:::,12;j~1,:::,6), in
white men.

Time-period, j

Age, i 1 2 3 4 5 6

1 3284057 3855379 4218571 4424306 4174881 3887514

2 2598673 3175924 3771661 4219556 4424293 4096518

3 2275776 2512806 3135608 3793720 4153454 4306562

4 2325082 2186474 2468035 3068524 3666173 4037804

5 2404950 2229637 2105450 2374601 2977762 3582781

6 2204543 2211782 2053507 1977980 2245790 2829250

7 1821543 1961338 1959708 1865543 1803522 2053431

8 1389295 1552676 1684938 1701145 1628237 1576438

9 996592 1122555 1250158 1388558 1429569 1377036

10 652571 736459 848489 980199 1109274 1144139

11 401832 418328 473233 562482 679997 780334

12 262164 294780 315600 362588 444092 563766

doi:10.1371/journal.pone.0034362.t003

Table 4. Person-years at risk, Pi,j (i~1,:::,12;j~1,:::,6), in
white women.

Time-period, j

Age, i 1 2 3 4 5 6

1 3277344 3828844 4155771 4300824 3981556 3645262

2 2599490 3155782 3737364 4147045 4306404 3920423

3 2300756 2542175 3160584 3788868 4119406 4229870

4 2382884 2223398 2483822 3068156 3669074 4030720

5 2530882 2304491 2155724 2419363 3029227 3631242

6 2368611 2388806 2169153 2056652 2310912 2903761

7 2025933 2179103 2181316 2031330 1933061 2163455

8 1731036 1896283 2027322 2033914 1876816 1773427

9 1396446 1550817 1682718 1806203 1819431 1685872

10 1066964 1197864 1333645 1470545 1599559 1592268

11 763277 821648 921957 1044540 1168045 1265313

12 586549 734488 842347 975578 1130917 1296494

doi:10.1371/journal.pone.0034362.t004

Solution of the Age-Period-Cohort Problem
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even erroneous [14,15]. In our case, the design matrix of the

system of the weighted conditional equations of the corrected

system (3) with weights (7) does not include the column with ‘‘1’’.

Therefore, for assessing the validity of the results obtained by the

proposed approach, we utilized the following diagnostic plots [10]:

(i) the normal probability plot of the standardized residuals; (ii) the

residuals vs. the modeled values plot; and (iii) the observed vs. the

modeled values plot. Plot (i) allows one to assess the plausibility of

the assumption that standardized residuals, e�i,j (the observed

weighted values, Y c
i,j less the modeled weighted values, (Y c

i,j
)�,

divided by their estimated SE), have a normal distribution. If the

assumption of normally distributed residuals is correct, the plot

should be sufficiently straight. Plot (ii) checks the aptness of the

model. When the model is appropriate, the residuals should be

randomly distributed around 0, so all, but a very few e�i,j (about

95% of the total number of residuals) should lie between the values

of 22 and 2. Plot (iii) should exhibit points located close to the line

with a slope of +1 going through the point (0, 0). This plot provides

a visual assessment of the effectiveness of the model in making

predictions.

Results

In this section, we present the results of the testing of this

approach, while estimating the APC effects on lung cancer (LC)

incidence rates in white men and women, using SEER 9 data,

collected over a 30-year time period.

Testing of the approach
The SEER 9 data collected during 1975–2004 for LC in white

men and women were used for testing of the proposed approach.

In this testing, preparation of the SEER-based data was performed

as described in the Materials and Methods section. The obtained

number of cancer occurrences and the total person-years at risk for

the given age intervals and time periods are presented in Tables 1,

2, 3, 4.

Data presented in Tables 1, 2, 3, 4 were used to obtain the

crude incidence rates and their variances. The tabular presenta-

tion of the logarithms of these incidence rates is shown in Table 5.

In this table, the LC incidence rate data are portioned in to six

time periods (1975–79, …, 2000–04 the modeled Age-specific

incidence rates,h�i ), j~1,:::,6; 17 BC groups (1890–94,…,1970–

74), k~1,:::,17; and 12 Age groups (30–34,…,80–84,85+),

i~1,:::,11,12. Here, the cross-sectional incidence rates are shown

in the columns. The rows of this table show the incidence rates for

12 Age groups. The incidence rates for 17 BC groups (longitudinal

data) are presented along the upper-left to lower-right diagonals.

The logarithm of the incidence rate of the anchored cell

(j0~6,k0~9) is denoted by a ‘‘+’’ symbol. The problem is to

estimate: 12 Age effects (a�i ); six TP effects (b�j ); 17 BC effects (c�k);

and the intercept (m). In total, 36 unknown parameters have to be

determined from 72 observed values of Yi,j (i~1,:::,12;j~1,:::,6).

Using Table 5 and formulas (3) and (7), the design matrices for

the LLAPC model of LC in white men and women were built and

their rank deficiencies were checked (see Materials and Methods).

The obtained rank deficiencies of these design matrices were equal

to 4. Therefore, four parameters had to be fixed to determine the

APC effects for LC in white men and women by using the

corresponding systems of the conditional equations (3) with

weights (7). This was done in two steps: (i) by choosing one of

the Age effects, one of the TP effects, and one of the BC effects as

anchors and setting them to 0; and (ii) by determining the optimal

value of the identification parameter – effect of the TP, adjacent to

the anchored TP.

To perform the first step, we chose the cell with indexes 9 and 6

(i.e. i0~9 andj0~6) as the anchored cell in Table 5. This means

that the Age interval, 70–74, and the TP of 2000–04 (j0~6) were

chosen as the anchors. Since the indexes, i, j and k are linearly

interrelated by formula (3), the anchored BC index was k0~9.

This index corresponds to the BC group of 1925–29. To perform

the second step, we chose the TP effect, adjacent to the anchored

TP, i.e. d~bj0{1~b5. Then, we moved this identification

parameter as well as the anchored parameters to the left side of

the system (3). For the anchored cell, (i0~9,j0~6, k0~9), we set

the corresponding APC effects to zero and used these effects as the

reference levels.

For the obtained conditional systems of equations (8) with

weights (7), we built the corresponding design matrices and

checked the rank deficiencies of these matrices by using the Matlab

function, rank. We found that these matrices do not have a rank

deficiency and their full ranks were equal to 32. We applied the

aforementioned numerical procedure for obtaining dopt from the

net values (11), when L~0:5 and N~1000.

To determine the optimal value of the identification parameter,

dopt, we used our program, inpar, and obtained the values of

dopt,0.14 and dopt,0.03, for men and women, correspondingly.

These optimal values of the identification parameter were used for

estimating the APC effects (m�, a�i , b�j , and c�k), as well as the lower

(CIlo) and upper (CIup) bounds of their 95% confidence intervals

for LC in white men and women. For men, the obtained estimates

of the intercept,m�, and its 95% CI with the lower (CIlo) and upper

(CIup) bounds are: m� = 27.34, CIlo = 27.36, and CIup = 27.31.

For women, the analogous estimates are: m� = 27.71,

CIlo = 27.76, and CIup = 27.67. The estimates,a�i , b�j , and c�k,

and their 95% CI with the lower (CIlo) and upper (CIup) bounds

are presented in Tables 6, 7, and 8, correspondingly. In these

tables, the values of the anchored effects are presented in bold. In

Table 5, the values of the identification parameters are presented

in bold italic.

Table 5. Tabular presentation of the logarithms of the

observed incidence rates, Yi,j~ln
Oi,j

Pi,j

� �
(i~1,:::,12;

j~1,:::,6; k~1,:::,17), in the frame of the LLAPC model.

Time-period, j

Age, i 1 2 3 4 5 6
Birth-cohort,
k

1 Y1,1 Y1,2 Y1,3 Y1,4 Y1,5 Y2,6 17

2 Y2,1 Y2,2 Y2,3 Y2,4 Y2,5 Y2,6 16

3 Y3,1 Y3,2 Y3,3 Y3,4 Y3,5 Y3,6 15

4 Y4,1 Y4,2 Y4,3 Y4,4 Y4,5 Y4,6 14

5 Y5,1 Y5,2 Y5,3 Y5,4 Y5,5 Y5,6 13

6 Y6,1 Y6,2 Y6,3 Y6,4 Y6,5 Y6,6 12

7 Y7,1 Y7,2 Y7,3 Y7,4 Y7,5 Y7,6 11

8 Y8,1 Y8,2 Y8,3 Y8,4 Y8,5 Y8,6 10

9 Y9,1 Y9,2 Y9,3 Y9,4 Y9,5 Y9,6
+ 9

10 Y10,1 Y10,2 Y10,3 Y10,4 Y10,5 Y10,6 8

11 Y11,1 Y11,2 Y11,3 Y11,4 Y11,5 Y11,6 7

12 Y12,1 Y12,2 Y12,3 Y12,4 Y12,1 Y12,6 6

1 2 3 4 5 6

doi:10.1371/journal.pone.0034362.t005
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Figure 1 exhibits the results of the APC analysis of the LC

occurrence in white men and women, anchored to the 2000–04

TP and to the 1930–34 BC. The anchored effects are presented by

open circles. The identification parameters are presented by

asterisks. The error bars show the 95% confidence intervals.

Panels 1A and 1B present trends of the TP effects on LC

occurrence in white men and women, correspondingly. For men,

these factors decreased from 1975 until 2004, while for women,

these factors increased from 1975 to 1990 and then remained

nearly constant.

Panels 1C and 1D present the obtained trends of the BC effects

on LC occurrence in white men and women, correspondingly. For

both men and women, these trends increase from the BC of 1890–

94 until the BC of 1925–29, then decrease until the BC of 1950–54

and then remain almost unchanged.

Panels 1E and 1F present the obtained trends of the Age effects

on LC occurrence in white men and women, correspondingly.

These trends increase from Age 30 until Age 70–75 and, then,

decrease at older ages.

Figure 2 demonstrates the APC effects on LC incidence rates in

white men and women, anchored to the Age interval of 70–74, the

TP of 2000–04, and the BC of 1930–34. The rates for the

anchored Age, TP and BC are presented by open circles. The

error bars show the 95% confidence intervals.

Panels A and B of this figure present the trends of the modeled

TP-specific incidence rates vs. TP interval indexes,j, of LC in men

and women, correspondingly. The estimates of the modeled TP-

specific incidence rates, Im�
.,j,., and their variances SE2 were

obtained by formulas:

Im�
.,j,.~exp(m�zb�j ) j~1,:::,m ð12Þ

SE2(Im�
.,j,.)~(Im�

.,j,.)2 SE2(m�)zSE2(b�j )
h i

j~1,:::,m: ð13Þ

For men, the TP-specific incidence rates of LC decreased from

1975 until 2004, while for women these increased from 1975 to

1990 and then remained nearly constant.

Panels C and D of Figure 2 present the trends of the modeled

BC-specific incidence rates vs. BC interval indexes,k, for men and

women, correspondingly. The estimates of the modeled BC-

specific incidence rates, Im�
.,.,k, and their variances SE2 were

obtained by formulas:

Im�
.,.,k~exp(m�zc�k) k~1,:::,lð Þ ð14Þ

SE2(Im�
.,.,k)~(Im�

.,.,k)2 SE2(m�)zSE2(c�k)
� 	

k~1,:::,lð Þ: ð15Þ

For both men and women, the BC-specific incidence rates of LC

increase from the cohort of 1890–94 until the cohort of 1925–29,

Table 6. Estimates of the Age effects, a�i with the lower (CIlo)
and upper (CIup) bounds of their 95% CI , on LC occurrence in
white men and women.

Men Women

Age, i ai
* CIlo CIup ai

* CIlo CIup

1 25.45 25.64 25.25 24.46 24.82 24.11

2 24.25 24.40 24.11 23.38 23.65 23.11

3 23.24 23.36 23.12 22.52 22.74 22.30

4 22.34 22.44 22.24 21.77 21.95 21.59

5 21.63 21.71 21.55 21.24 21.39 21.09

6 21.05 21.11 20.99 20.78 20.89 20.67

7 20.57 20.61 20.53 20.43 20.51 20.35

8 20.22 20.24 20.19 20.16 20.21 20.11

9 0 ---- ---- 0 ---- ----

10 0.10 0.07 0.12 0.03 20.02 0.09

11 0.00 20.04 0.05 20.11 20.20 20.03

12 20.36 20.43 20.30 20.67 20.79 20.54

doi:10.1371/journal.pone.0034362.t006

Table 7. Estimates of the TP effects, b�j , with the lower (CIlo)
and upper (CIup) bounds of their 95% CI , on LC occurrence in
white men and women.

Men Women

Time-
period, j bj

* CIlo CIup bj
* CIlo CIup

1 0.50 0.42 0.59 20.30 20.46 20.14

2 0.49 0.42 0.55 20.13 20.26 20.01

3 0.42 0.37 0.46 20.04 20.13 0.05

4 0.28 0.25 0.32 0.00 20.06 0.06

5 0.14 ---- ---- 0.03 ---- ----

6 0 ---- ---- 0 ---- ----

doi:10.1371/journal.pone.0034362.t007

Table 8. Estimates of the BC effects, c�k , with the lower (CIlo)
and upper (CIup) bounds of their 95% CI , on LC occurrence in
white men and women.

Men Women

Birth-
cohort,
k ck

* CIlo CIup ck
* CIlo CIup

1 20.83 20.64 21.01 21.12 21.52 20.72

2 20.64 20.49 20.78 21.05 21.34 20.77

3 20.46 20.34 20.58 20.86 21.09 20.63

4 20.33 20.23 20.42 20.67 20.85 20.48

5 20.24 20.17 20.32 20.41 20.56 20.27

6 20.17 20.11 20.22 20.22 20.33 20.11

7 20.13 20.09 20.17 20.12 20.20 20.05

8 20.03 0.00 20.05 20.04 20.10 0.01

9 0 ---- ---- 0 ---- ----

10 20.05 20.02 20.08 20.07 20.12 20.01

11 20.11 20.06 20.15 20.14 20.23 20.06

12 20.23 20.17 20.30 20.34 20.46 20.22

13 20.35 20.27 20.43 20.57 20.72 20.41

14 20.37 20.26 20.48 20.67 20.86 20.47

15 20.36 20.22 20.50 20.56 20.81 20.31

16 20.39 20.18 20.60 20.81 21.18 20.44

17 20.47 20.07 20.88 20.69 21.31 20.07

doi:10.1371/journal.pone.0034362.t008
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decrease until the cohort of 1950–54 and then remain almost

unchanged.

Panels E and F of Figure 2 present the cross-sectional Age-

specific incidence rates, observed in the 2000–04 time period

(dotted lines), and the estimates of the modeled Age-specific

incidence rates anchored to the 2000–04 time period and to the

1930–34 birth cohort (solid lines) of LC in white men and women,

correspondingly. The estimates of the modeled Age-specific

incidence rates, Im�
i,.,., and their variances SE2 were obtained by

formulas:

Im�
i,.,.~exp(m�za�i ) i~1,:::,nð Þ ð16Þ

SE2(Im�
i,.,.)~(Im�

i,.,.)2 SE2(m�)zSE2(a�i )
� 	

i~1,:::,nð Þ: ð17Þ

The modeled Age-specific incidence rates at the anchored ages are

shown by the open circles. The error bars show 95% confidence

intervals. As can be seen, the modeled Age-specific incidence rates

of LC in men and women have the ‘‘reverse bathtub’’ shapes that

are increasing with Age, reaching maximum (at the age interval of

75–79) and then fall at older ages. It is important to notice that

values of the modeled Age-specific incidence rates and the

corresponding values of the observed cross-sectional Age-specific

incidence rates are significantly different. This is because the

Figure 1. The Time-period (TP), Birth-cohort (BC) and Age effects on LC occurrence. Panels A and B present the trends of the TP effects for
white men and women, correspondingly. Data are presented for six time periods (1975–79, 1980–94,…, 2000–04 years) indexed asj~1,2,:::,6. Panels
C and D present the obtained trends of the BC effects for white men and women, correspondingly. Data are presented for 17 BC groups (1890–94,
1895–99,…, 1970–74 years) indexed as k~1,2,:::,17. Panels E and F present the obtained trends of the Age effects vs. Age intervals (30–34, 35–39, …,
80–84, 85+ years), indexed as i~1,2,:::,11,12, for white men and women, correspondingly. The anchored effects are presented by open circles. The
identification parameters are presented by asterisks. The error bars show the 95% confidence intervals.
doi:10.1371/journal.pone.0034362.g001
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estimates of the modeled Age-specific incidence rates are ‘‘cleaned-

up’’ from the TP and BC effects, while the observed cross sectional

Age-specific incidence rates are significantly influenced by these

effects.

Figure 3 exhibits the results of assessing the validity of using the

LLAPC model for determining the APC effects in the LC

occurrences in white men and women. Panels 3A and 3B exhibit

the probability distribution plot of the standardized residuals, e�i,j .
The vertical axes present the obtained quintiles of the standardized

residuals and the horizontal axes show the corresponding quintiles

of the standard normal distribution. For both men and women, the

plots are sufficiently straight, except for several points which have

very small or large quintiles.

The vertical axes of panels 3C and 3D exhibit the standardized

residuals, e�i,j , and the horizontal axes exhibit the modeled

weighted values,(Y c
i,j

)�. As seen from Panel 3C for men, all but

two values of the standardized residuals, e�i,j , fall into the [22,2]

interval, while for women, all of these values are distributed within

the interval. This indicates that the models of multiple regressions

we used are appropriate for presenting the corresponding

observational data.

Panels 3E and 3F exhibit the observed weighted values, Y c
i,j , on

the vertical axes vs. the modeled weighted values, (Y c
i,j

)�, on the

Figure 2. The TP-, BC- and Age-specific incidence rates of LC occurrence. Panels A and B present the TP-specific incidence rates in white
men and women, correspondingly. Data are presented for six time periods (1975–79, 1980–94,…, 2000–04) indexed asj~1,2,:::,6. Panels C and D
present the obtained BC-specific incidence rates in white men and women, correspondingly. Data are presented for 17 cohort groups (1890–94,
1895–99,…, 1970–74) indexed as k~1,2,:::,17. Panels E and F present the obtained Age-specific incidence rates vs. age intervals (30–34, 35–39, …,
80–84, 85+), indexed as i~1,2,:::,11,12, in white men and women, correspondingly. The cross-sectional Age-specific incidence rates, observed in the
2000–04 time period are shown by dotted lines. The anchored effects are presented by open circles. The error bars show the 95% confidence
intervals.
doi:10.1371/journal.pone.0034362.g002
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horizontal axes for men and women, correspondingly. For both

men and women, the regression function used accurately models

the actual observed values.

Overall, we can conclude that the LLAPC models used in this

work fit the observational data of LC in white men and women.

Discussion

For many decades, the problem of estimating the APC effects on

cancer incidence rate data has intrigued researchers. The main

difficulty in estimating these effects in the frame of the LLAPC

model arises due to the fact that the APC effects are linearly

interdependent temporal parameters and their values cannot be

uniquely determined. Most of the known approaches for solving

this identifiability problem have significant drawbacks and/or

their computational implementation is complicated [2,16].

In this work, we developed a new computationally effective

approach for solving the identifiability problem in APC analyses.

We showed that the solution of this problem can be reduced to a

problem of determining one unknown identification parameter,

d.We used the effect, bj0{1, of the TP adjacent to the anchored

TP,j0, as such a parameter. We showed that when the

identification parameter is a priori known, the identifiability

problem with multiple estimators does not arise and a unique set

of estimates of the APC effects can be found.

By using a heuristic assumption that the differences between the

BC effects of the adjacent cohorts are close to 0, we showed that

the optimal value of the unknown identification parameter can be

Figure 3. Validation of the performed model estimations of the APC effects on LC occurrences. Panels A and B exhibit the probability
distribution plot of the standardized residuals, e�i,j , for white men and women, correspondingly. The vertical axes present the obtained quintiles of the
standardized residuals and the horizontal axes show the corresponding quintiles of the standard normal distribution. The vertical axes of the panels C
(for white men) and D (for white women) exhibit the standardized residuals, e�i,j , and the horizontal axes exhibit the modeled weighted values,(Y c

i,j
)�.

Panels E (for white men) and F (for white women) exhibit the observed weighted values, Y c
i,j , on the vertical axes vs. the modeled weighted values,

(Y c
i,j

)� , on the horizontal axes.
doi:10.1371/journal.pone.0034362.g003
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obtained by minimizing (with respect to d) the weighted average of

the squared differences between the adjacent BC effects. In other

words, this procedure allows one to determine such a value of the

identification parameter, which provides the ‘‘smoothest’’ trend

within all possible trends of the BC effects. This heuristic

assumption is milder than the one utilized in [17], where the use

of smooth functions for presenting a temporal variation of the BC

effects is required for assessing the APC effects. It should be noted

that the aforementioned assumption was successfully used in our

previous papers [18,19].

In the present work, we extended the approach [2,4,8,9] that is

well-known as the ‘‘equate two effects’’ approach, in which all

redundant parameters are equated to zero to solve the

identifiability problem. Here, we used the LLAPC model with

four redundant parameters to be identified. We equated one of the

TP effects, one of the BC effects, and the corresponding Age effect

to zero and used them as reference levels. We pointed out that by

varying the fourth parameter, which we called the identification

parameter, all possible solutions of the identifiability problem can

be obtained. We proposed a method for obtaining the optimal

value of the identification parameter, by which a unique set of the

APC effects can be determined and thus the identifiability problem

can be overcome.

We tested the proposed approach by estimating the APC effects

on LC occurrence in white men and women. For this purpose, we

used the Age-specific incidence rate data collected in the SEER 9

database during 1975–2004. By the aforementioned assumption

and procedure, we determined the optimal values of the

identifiability parameters and the corresponding unique sets of

the APC effects on LC occurrence in white men and women.

We determined the modeled Age-specific incidence rates and

showed that these rates have the ‘‘reverse bathtub’’ shape falling at

old ages. This is consistent with several publications (see, for

instance, [20–22]) suggesting the existence of a plateau, followed

by a decline in the Age-specific cancer rates. In those studies, only

the observational cross-sectional data were analyzed, while there

was no accounting for the APC effects. In the present work, as well

as in our previous studies [18,19], we have shown that the curves

presenting the modeled Age-specific cancer incidence rates also

have the ‘‘reverse bathtub’’ shape when the APC effects are taken

into consideration. At the present time, the vast majority of the

existing Age-specific models of carcinogenesis (see [23–26] and

references therein) are based on the assumption that cancer rates

are increasing with age. There are only three models [27–29] that

describe the ‘‘reverse bathtub’’ shape behavior of the Age-specific

cancer rates. From these three models, the Weibull-like model [29]

appears to have a better biological background.

Our analyses shows that the TP-specific incidence rates of LC in

men decreased from 1975 until 2004, while in women, these rates

increased from 1975 to 1990 and then remained nearly constant.

Our results are consistent with the statement made in [30]:

‘‘…lung cancer incidence rates are declining in men and have

leveled off after increasing for many decades in women. The lag in

the temporal trend of lung cancer incidence rates in women

compared to men reflects the historical difference in cigarette

smoking between men and women; cigarette smoking in women

peaked about 20 years later than in men.’’

Our analysis also indicates that the variations of the BC-specific

incidence rates of LC in men and women have similar shapes.

This is a new result that was obtained by the approach presented

in this work.

Overall, in our opinion, the present work provides the most

efficient computational approach for determining the APC effects

in the frame of the LLAPC model compared to other currently

used approaches. The proposed approach can be used for the

APC analysis of different types of cancer and other diseases as well.
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