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1   |   INTRODUCTION

Throughout the world, the serum creatinine is the most 
common measure for doctors to assess a patient's kidney 
function. Instinctively, they know that when the creati-
nine increases, the kidney function decreases (with ex-
ceptions), and vice versa. How quickly the creatinine is 

rising also has some bearing upon the severity of kid-
ney function loss (Chiou & Hsu, 1975; Jelliffe, 2002; 
Mellas, 2016; Moran & Myers, 1985; Yashiro et al., 2012). 
Generally, the steeper the rise, the greater the impair-
ment in the renal clearance. This creatinine slope is usu-
ally estimated from a graph generated by the electronic 
health record, and translating slope into kidney function 
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Abstract
Introduction: When the serum [creatinine] is changing, creatinine kinetics can 
still gauge the kidney function, and knowing the kinetic glomerular filtration rate 
(GFR) helps doctors take care of patients with renal failure. We wondered how 
the serum [creatinine] would respond if the kinetic GFR were tweaked. In every 
scenario, if the kinetic GFR decreased, the [creatinine] would increase, and vice 
versa. This opposing relationship was hypothesized to be universal.
Methods: Serum [creatinine] and kinetic GFR, along with other parameters, are 
described by a differential equation. We differentiated [creatinine] with respect 
to kinetic GFR to test if the two variables would change oppositely of each other, 
throughout the gamut of all allowable clinical values. To remove the discontinui-
ties in the derivative, limits were solved.
Results: The derivative and its limits were comprehensively analyzed and 
proved to have a sign that is always negative, meaning that [creatinine] and ki-
netic GFR must indeed move in opposite directions. The derivative is bigger in 
absolute value at the higher end of the [creatinine] scale, where a small drop in 
the kinetic GFR can cause the [creatinine] to shoot upward, making acute kidney 
injury similar to chronic kidney disease in that regard.
Conclusions: All else being equal, a change in the kinetic GFR obligates the 
[creatinine] to change in the opposite direction. This does not negate the fact that 
an increasing [creatinine] can be compatible with a rising kinetic GFR, due to 
differences in how the time variable is treated.
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is a decidedly qualitative art. Creatinine slope analysis 
became more quantitative when the science of creatinine 
kinetics was applied, a technique that has been called 
the kinetic glomerular filtration rate (GFR) (Chen, 2013, 
2018a, 2018b; Chen & Chiaramonte, 2019). Now, the cre-
atinine trajectory with all its slopes can be decoded into a 
kinetic GFR format that shows how the kidney function 
is evolving. Insight into the underlying kidney function 
by using the kinetic GFR has improved the diagnosis and 
treatment of patients who suffer from an acute kidney 
injury (AKI) (Bairy, 2020; Bairy et al., 2018; Dash et al., 
2020; Dewitte et al., 2015; Endre et al., 2016; Khayat et al., 
2019; Kwong et al., 2019; Latha et al., 2020; O'Sullivan 
& Doyle, 2017; Pianta et al., 2015; Yoshida et al., 2019). 
With creatinine kinetics being modeled mathematically, 
a question that naturally arises is how much does the 
[creatinine] change in response to a change in kinetic 
GFR? The answer can be found using derivatives.

1.1  |  Kinetic GFR equation

Changes in the serum creatinine follow passively from 
changes in the GFR, so like cause and effect, the change in 
GFR precedes and actively drives the change in creatinine. 
The creatinine serves mostly as a surrogate to calculate the 
GFR. The [creatinine] is relatable to the GFR by a differen-
tial equation (Chen, 2018a; Chen & Chiaramonte, 2019). 
The rate of change in the creatinine amount is a function 
of the rate of creatinine coming in minus the rate of creati-
nine going out of its volume of distribution, which is total 
body water (TBW) (Chow, 1985; Edwards, 1959; Jones 
& Burnett, 1974; Pickering et al., 2013). Most of the gain 
comes from creatinine being generated by the muscles, the 
mass of which remains more or less the same in the short 
term, so that the rate of creatinine addition is usually taken 
to be a constant: Gen. Most of the creatinine loss occurs 
via the kidneys, so that the rate of creatinine excretion is 
GFRK·[Cr]t, a product of the kinetic GFR and the serum 
[creatinine] at an instant in time. On the left side of the dif-
ferential equation, the instantaneous rate of change in cre-
atinine amount is d

dt

(
[Cr]t ⋅ Vt

)
, where [Cr]t is the serum 

[creatinine] at a given point in time, as before, and Vt is the 
volume of distribution at the same point in time. Further, 
Vt is allowed to vary at a steady rate to mimic the clini-
cal reality that patients have many fluid inputs and out-
puts (I's/O's), like intravenous (IV) fluids and urine output. 
The net balance of the I's/O's divided by the time period 
over which they occur can be modeled as a constant rate of 
change in the creatinine's volume of distribution: ΔV

Δt
. Thus, 

volume as a function of time is Vt = V0 +
ΔV

Δt
t, where V0 is 

the initial volume at a time zero for each clinical time inter-
val. The full differential equation can be written as:

This first-order linear differential equation's solution, 
as previously published, is:

where [Cr]0 is the initial serum [creatinine] for each clini-
cal time interval (Chen, 2018a; Chen & Chiaramonte, 2019). 
That is to say, the serum [creatinine] at a given time is equal 
to the initial [creatinine] plus a time-evolved portion of the 
spread between the initial [creatinine] and the [creatinine] 
reached at a new steady state if the kinetic GFR and volume 
change rate remained at those levels.

To show how the [creatinine] trajectory is shaped by the 
kinetic GFR and other variables, we can graph the [Cr]t for 
a typical occurrence of AKI. Let us say that a patient with 
a baseline [creatinine] of 1.0 mg/dL develops acute tubular 
injury, and his GFR drops to 10  mL/min and stays there. 
He receives copious amounts of IV fluids in an attempt to 
reverse the renal failure, so that the net of the I's/O's is +6 L 
in 24 h, or ΔV

Δt
= 0.25 L∕h. The creatinine generation rate is 

found by multiplying the baseline [creatinine] by its corre-
sponding steady-state GFR: Gen = 1 mg∕dL × 90 mL∕min

. His initial volume of distribution, V0, is taken to be TBW 
(Bjornsson, 1979), and a typical value is 42 L. The drop in 
GFR to a constant (average) value of 10  mL/min perturbs 
the steady state, so [creatinine] will change. We graphed the 
serum [creatinine] (y) versus kinetic GFR (x) to directly vi-
sualize the relationship between the two. If we imagine the 
tangent to this curve, it appears that the slope is consistently 
negative (Figure 1). We hypothesize that the tangential slope 
of [creatinine] versus kinetic GFR will always be negative.

2   |   MATERIALS AND METHODS

2.1  |  Derivative of [creatinine] with 
respect to kinetic GFR

From kinetic GFR Equation (2), we can differentiate the 
serum [creatinine], [Cr]t, with respect to the kinetic GFR, 
GFRK, to find the instantaneous relationship between the 
two, assuming that all of the other variables are constant. This 
derivative 

(
�[Cr]t
�GFRK

)
 allows us to calculate the slope of the tan-

gent to the curve of [Cr]t versus GFRK. In Equation (2), the 

derivative of 
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Next, the derivative of 
(

Gen

GFRK +
ΔV
Δt

− [Cr]0

)
 is 

−Gen(
GFRK +

ΔV
Δt

)2. Putting it 
all together and using the product rule on Equation (2), we 
see that �[Cr]t

�GFRK
 is:

2.2  |  Limits

The derivative in Equation (3) has three special cases that 
threaten a division by zero: (1) ΔV

Δt
= 0, (2) GFRK = −

ΔV

Δt
, 	

and (3) GFRK =
ΔV

Δt
= 0, which itself is a special case of 

(2). Each of these cases can be resolved by using limits. See 
Appendix for derivation details.

Case 1: ΔV
Δt

= 0.

Of the three cases, this is the most important clinically, 
as a stable volume is common or at least is assumed when 
information on I's/O's is unavailable.

Case 2: GFRK = −
ΔV

Δt
.

Case 3: GFRK =
ΔV

Δt
= 0.

3   |   RESULTS

3.1  |  Hypothesis plausibility

To see if our intuition is on the right track that �[Cr]t
�GFRK

 is al-
ways negative, we graphed �[Cr]t

�GFRK
(y) versus GFRK(x) (Figure 

2). For the remaining variables, we kept them constant 
at clinically plausible values and tried various permuta-
tions, such as a low V0, standard time, large ΔV

Δt
 (both ±), 	

high [Cr]0, and small Gen, to see if we could turn �[Cr]t
�GFRK

 
positive. No matter what combination was tried, �[Cr]t

�GFRK
 was al-

ways negative, i.e., below the x-axis.

3.2  |  Rules for the proof

All of the variables have constraints on their values as im-
posed by clinical reality. The rules are:

A.	Creatinine must be positive: [Cr]t > 0 and [Cr]0 > 0.
B.	Volume of distribution must be positive: V0 > 0 and 
V0 +

ΔV

Δt
t > 0.

C.	Kinetic GFR is traditionally non-negative: GFRK ≥ 0.

(3)
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F I G U R E  1   Visualizing the accuracy of �[Cr]t
�GFRK

 as written in Equation (3). The kinetic GFR Equation (2) is graphed as GFRK on the x
-axis and [Cr]t on the y-axis. The red curve slopes downward from left to right, and all of its tangent slopes appear to be negative. Two such 
tangent slopes at GFRK = 10 (orange dot) and GFRK = − 90 (green dot) were calculated by the �[Cr]t

�GFRK
 equation. The derivative slopes are 

negative, as expected, and the calculated lines (black dash for GFRK = 10 and purple dash for GFRK = − 90) do appear to be tangents.



4 of 19  |      CHEN and CHIARAMONTE

D.	The creatinine generation rate must be positive: Gen > 0.
E.	Volume change rate can be positive or negative, but it 

cannot be so negative in magnitude that a patient would 
lose all of the volume of distribution in an allotted time (
ΔV

Δt
> −

V0
t

)
. In theory, a positive volume change rate 

has no upper limit on magnitude 
(
ΔV

Δt
< +∞

)
.

3.3  |  Proof of the hypothesis

The derivative, rearranged to emphasize the leading nega-
tive sign, is hypothesized to always be negative for clini-
cally realistic values, that is, the expression in the curly 
brace must be positive.

The general strategy will be a proof by contradiction. 
We test whether the expression within the curly brace can 
be negative and prove that it cannot, in all six of the sce-
narios that are possible. Thus, the partial derivative �[Cr]t

�GFRK
 

is always negative (except when it is zero at t = 0, which 
is a trivial case). Due to its length, the complete proof is 
presented in the Appendix.

3.4  |  Where is the derivative bigger?

An observation familiar to nephrologists is that a small 
change at the low end of the [creatinine] scale repre-
sents a big change in GFR, whereas a big change at the 
high end of the [creatinine] scale represents a small 
change in GFR. A typical anecdote is that an increase in 
the [creatinine] from 1.0 to 2.0 mg/dL is akin to a 50% 
decrease in the GFR. But the same absolute increase in 
the [creatinine] from 9.0 to 10.0  mg/dL is only a 10% 

drop in the GFR. The statements assume that each [cre-
atinine] was more or less in a steady state, which mod-
els a slowly progressive chronic kidney disease (CKD). 
In CKD, the creatinine excretion rate is nearly equal 	
to but is slightly less than the creatinine production 
rate, which is why the serum [creatinine] slowly in-
creases over time. Since the creatinine production rate 
is relatively constant if the patient's muscle mass re-
mains stable, then the clearance expression 

Creatinine

excretion rate
⏞⏞⏞

UCr×V
PCr

⏟⏟⏟

Plasma

creatinine

 	

is more or less a constant divided by a [creatinine] that 
varies, i.e., a reciprocal function. On a graph of [Cr] ver-
sus GFR in CKD, at the low end of the [Cr] scale, a big 
loss of GFR (x-axis) is needed to raise the [Cr] (y-axis) 

even a tiny bit. That makes the 
tiny

⏞⏞⏞

Δ [Cr]
ΔGFR
⏟⏟⏟

big

 slope small, and 

negative, demonstrated in Figure 3. But at the high end 
of the [Cr] scale, just a tiny loss of GFR leverages a big 

rise in [Cr], making 
big

⏞⏞⏞

Δ [Cr]
ΔGFR
⏟⏟⏟

tiny

 large and, again, negative 

(Figure 3). Thus, a reciprocal function's very nature ex-
plains the anecdote observed in CKD.

Do the slope lessons of CKD carry over into AKI? That 
is, does the AKI analog of Δ[Cr]

ΔGFR
, i.e., �[Cr]t

�GFRK
, follow the same 

pattern as before: low [Cr]0 ⇒ smaller �[Cr]t
�GFRK

 and high [Cr]0 

⇒ larger �[Cr]t
�GFRK

 (in magnitude)? Try a low initial [Cr] like 
1.0 mg/dL. In steady state, that may correspond to a GFR 
of 90  mL/min if the creatinine generation rate were 
90  mg/dL·mL/min. Let the kinetic GFR change from 
90 mL/min and graph its effect on the [Cr]t, using Equation 
(2). For the other parameters of AKI, we kept t = 24 h and 
V0 = 42 L and ΔV

Δt
= 0.25 L∕h. As seen in Figure 4, the tan-

gent to the curve at GFRK = 90 mL∕min has a �[Cr]t
�GFRK

 slope 
that is shallow ( − 0.009722536 mg∕dL per mL∕min). 
Now, try a high initial [Cr] like 9.0 mg/dL, which in steady 
state would correspond to a GFR of 10 mL/min. If we kept 
all other parameters the same, the tangent to this other 

�[Cr]t
�GFRK
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F I G U R E  2   The partial derivative �[Cr]t
�GFRK

 in Equation (3) is graphed against GFRK as the independent variable. The red curve retains the 
miscellaneous clinical values as chosen in Figure 1. All of its y-values 

(
�[Cr]t
�GFRK

)
 are negative, consistent with the hypothesis that changes 

in [creatinine] and kinetic GFR always move in opposite directions if all of the other variables are kept constant. The blue curve uses a 
more extreme but still allowable set of clinical values like [Cr]0 = 9.0 mg∕dL, V0 = 30 L, ΔV

Δt
= − 0.25 L∕h, Gen = 40 mg/dL ⋅mL/min, while 

keeping t = 24 h. Even so, the blue curve's y-values 
(

�[Cr]t
�GFRK

)
 are persistently negative.
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curve at GFRK = 10 mL∕min has a �[Cr]t
�GFRK

 slope that is 
steeper ( − 0.217521268 mg∕dL per mL∕min) (Figure 4). 
This suggests that AKI recapitulates the behavior of CKD 
in terms of Δ[Cr]

ΔGFR
, albeit in a blunted way.

4   |   DISCUSSION

4.1  |  Clinical significance

The consistently negative value for �[Cr]t
�GFRK

 in the real 
world means that changes in kinetic GFR must always 
move in the opposite direction of changes in the serum 
[creatinine]. If the GFR goes up (even in the slightest), 
then more creatinine is excreted in that instant, and the 
[creatinine] must go down. Conversely, if the GFR goes 
down (even in the slightest), then less creatinine is ex-
creted in that instant, and the [creatinine] must go up. 
Our proof of these assertions would affirm what most 
physicians intuitively sense about the relationship of 

GFR to the [creatinine]. Of course, this assumes that all 
of the other variables of creatinine kinetics like time and 
volume status remain constant, as is done when taking a 
partial derivative. All else being equal, a doctor can con-
fidently know that the GFR can never change the [creati-
nine] in a parallel way. If at the 24-h mark the [creatinine] 
were hypothetically greater than the actual—a positive 
Δ [Cr]—, then the GFR would have to be lower—a nega-
tive ΔGFRK.

4.2  |  Conundrum

One important lesson from applying the kinetic GFR to 
patient care was that an increasing [creatinine] does not 
always imply a decreasing GFR. Most of the time though, 
the two move in opposite directions, and this mental 
shortcut is used daily on the wards. However, there is a 
gray zone where some instances of a rising [creatinine] 
actually indicate an improving GFR. Let us say during an 

F I G U R E  3   Analogous to �[Cr]t
�GFRK

, the Δ[Cr]
ΔGFR

 slopes in chronic kidney disease are also negative. In CKD, the [creatinine] (y-axis) is simply 
the Gen(in this case 90 mg/dL ⋅mL/min) divided by the GFR (x-axis), a reciprocal function as shown by the red curve. At the low end of the 
[creatinine] scale, e.g., green dot ([Cr] = 1 mg∕dL), the Δ[Cr]

ΔGFR
 slope is small in magnitude (−1/90, green dash line is tangent). At the high end 

of the [creatinine] scale, e.g., blue dot ([Cr] = 9 mg∕dL), the Δ[Cr]
ΔGFR

 slope is much larger in magnitude (−0.9, blue dash line is tangent).

F I G U R E  4   To see if acute kidney injury might follow a similar pattern as chronic kidney disease, we visualized the steepness of the �[Cr]t
�GFRK

 
slope when the starting [creatinine], [Cr]0, is low versus high. When the kinetic GFR Equation (2) is graphed as GFRK on the x-axis and [Cr]t 
on the y-axis, the blue curve shows the relationship when [Cr]0 = 1.0 and the red curve shows the relationship when [Cr]0 = 9.0. For a fair 
comparison, the miscellaneous clinical values are kept the same between the two curves. At the low end of the [creatinine] scale, the tangent 
at [Cr]t = 0.96 mg∕dL (blue dot) has a slope of − 0.0097 mg∕dL per mL∕min (green dash line). At the high end of the [creatinine] scale, the 
tangent at [Cr]t = 8.03 mg∕dL (red dot) has a slope of − 0.2175 mg∕dL per mL∕min (black dash line). Qualitatively, the pattern appears to be 
that a low [creatinine] gives a smaller �[Cr]t

�GFRK
 and that a high [creatinine] gives a larger �[Cr]t

�GFRK
, with all derivative signs being negative.
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episode of AKI that a low GFR rises slightly. That would 
increase the creatinine excretion, but if that excretion re-
mained less than the creatinine production, then the net 
positive balance would obligate the serum [creatinine] to 
rise still. It is not until the GFR increases by a sufficient 
amount to make the creatinine excretion equal to the cre-
atinine production that the serum [creatinine] finally sta-
bilizes. Thus, there is a transient period in renal recovery 
when the GFR is increasing and the [creatinine] is too. But 
did we not just prove that GFR cannot move in the same 
direction as [creatinine]? The conundrum is resolved by 
realizing that time is different in the two scenarios. When 
GFR and [creatinine] are both increasing, they are doing 
so relative to time. For example, the [creatinine] may have 
risen from 1.0 initially to 1.9 and then to 2.0 mg/dL (↑ )
, but the latter two values occurred at the 24-  and 48-h 
marks. Concordantly, the kinetic GFR may have been 
calculated to climb from 40 to 44 mL/min (↑ ), but these 
are also at the 24- and 48-h marks. In contrast, the deriva-
tive �[Cr]t

�GFRK
 assumes that time is a constant. It forces us to 

compare GFR and [creatinine] to themselves, but both at 
the 24-h mark, for example. With that time constancy, if 
[creatinine] were to increase marginally, then GFR would 
have to decrease marginally. Furthermore, we could quan-
tify that change by calculating �[Cr]t

�GFRK
's value. Allowing the 

[creatinine], kinetic GFR, and time to all vary simultane-
ously is beyond the scope of this work.

4.3  |  What if Gen is changing?

Differential Equation (1) is set up to assume that the creati-
nine generation rate, Gen, is constant. That may be true for 
the most part, but Gen could be decreased during a critical 
illness such as sepsis (Doi et al., 2009; Prowle et al., 2014). 
More than an academic exercise, this finding has important 
clinical ramifications. If less creatinine is being produced, 
then a [creatinine] trajectory may not rise as quickly, and 
that will mute the apparent severity of the GFR loss during 
AKI, for example. Or, it could make the [creatinine] trajec-
tory fall more quickly during a renal recovery, making the 
GFR gain seem more robust than it really is. Accounting 
for a changing Gen can potentially improve the accuracy 
of the kinetic GFR calculations. Unfortunately, it is not 
known how Gen evolves over time in most of our critically 
ill patients. We can measure it to be decreased, but was the 
evolution a sudden drop, a gradual and linear drop, a logis-
tic model drop, etc.? Until patient data are gathered, it may 
be acceptable to treat a changing Gen as a sudden drop to a 
new value that remains stably low throughout the critical 
illness. If the acute drop is completed within 24  h, then 
the kinetic GFR calculations are easy to adapt. Just use 
the reduced Gen, whatever it is estimated (or, better yet, 

measured) to be, in the kinetic spreadsheet at the onset of 
and for the duration of the critical illness. That said, a Gen 
drop that is linear, like how volume change is modeled, 
can be incorporated into our differential Equation (1) to 
yield a closed-form solution. However, its utility is limited 
to one or two rounds of calculation, since Gen cannot de-
scend into negative values.

4.4  |  Conclusion

Doctors need to estimate the kidney function in the non-
steady state to care for their patients who develop acute 
renal failure. The GFR affects most facets of diagnosis and 
therapy, and the most cost-effective way to estimate GFR 
at the bedside is to use the kinetic GFR equation (Endre 
et al., 2016; Khayat et al., 2019). Its math contains a lot of 
relationships that are waiting to be discovered. How the 
GFR influences the serum [creatinine] is important to in-
vestigate, and we can now prove what doctors intuitively 
think. If the GFR were to decrease further, then the [cre-
atinine] would have to go up even more, and vice versa. In 
other words, their changes always move in opposite direc-
tions, as signified by the perpetual negative sign of �[Cr]t

�GFRK
. 

This does not contradict the paradoxical observations that 
an increase in serum [creatinine] can be compatible with 
a gain of kinetic GFR or that a decrease in [creatinine] can 
be compatible with a loss of kinetic GFR, because these 
changes are evolving over time. In contrast, time is fixed 
in the taking of the partial derivative.

4.5  |  Future work

Solving this derivative was just the beginning. We have 
since differentiated [creatinine] with respect to each of 
the other variables, and all of the other derivative pairs 
have been found via implicit differentiation. Likely, the 
most interesting derivative is �[Cr]t

� ΔV
Δt

. If ΔV
Δt

 is negative, the loss 
in volume concentrates the [creatinine] so that Δ [Cr] is 
expected to be positive. Alternatively, if ΔV

Δt
 is positive, the 

gain in volume dilutes the [creatinine] so that Δ [Cr] is felt 
to be negative. Do these thought experiments prove that 
yet another derivative is always negative? The answer is 
no, and the potentially positive partial derivative of [Cr]t 
with respect to ΔV

Δt
 is (see Appendix):

�[Cr]t

�ΔV

Δt

=

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

⎡⎢⎢⎢⎣

GFRK�
ΔV

Δt

�2 ⋅ ln

�
V0

V0+
ΔV

Δt
t

�
+

�
1+

GFRK
ΔV

Δt

�
⋅

t

V0+
ΔV

Δt
t

⎤⎥⎥⎥⎦

×

�
Gen

GFRK +
ΔV

Δt

−[Cr]0

�
+

⎡⎢⎢⎢⎢⎣
1−

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎥⎦
⋅

−Gen�
GFRK +

ΔV

Δt

�2 .
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APPENDIX 

LIMITS
From the kinetic GFR equation (Equation (2) in the main text), the derivative of the serum [creatinine] 

(
[Cr]t

)
 with re-

spect to kinetic GFR 
(
GFRK

)
 is:

The following three cases of a division by zero represent removable discontinuities that can be resolved by using limits.

Case 1: ΔV
Δt

= 0.
We will solve the limit piecewise, proceeding through the various components of �[Cr]t

�GFRK
.

To begin with, the exponential can be resolved as:

The dominant term in the Taylor series for ln
(
1 +

−
ΔV
Δt
t

V0+
ΔV
Δt
t

)
 is 

−
ΔV
Δt
t

V0+
ΔV
Δt
t
+⋯. Substitute this in:

Now, let ΔV
Δt

 go to zero, and the limit is seen to be:

�[Cr]t
�GFRK

= −

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0+
ΔV

Δt
t

�
⋅

�
Gen

GFRK +
ΔV

Δt

−[Cr]0

�

+

⎡⎢⎢⎢⎢⎣
1−

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt
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⋅

−Gen�
GFRK +

ΔV
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�2
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ΔV
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(
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GFRK
ΔV
Δt

)

= exp

[(
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GFRK
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(
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V0 +
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)]
= exp

[(
1 +
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1 +

−
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exp

[(
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(
−
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=exp
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Another part of the derivative affected by ΔV
Δt

= 0 is 1
ΔV
Δt

⋅ ln

(
V0

V0+
ΔV
Δt
t

)
. Again, using the dominant term in the Taylor 

series for 
ln

(
V0

V0+
ΔV
Δt
t

)
, the limit becomes:

The rest of the derivative in the limit as ΔV
Δt

 approaches zero is straightforward:

Case 2: GFRK = −
ΔV

Δt
.

Although it is unlikely that the GFRK will equal the negative of the volume change rate, the limit is interesting to solve. 
Letting GFRK approach − ΔV

Δt
 is equivalent to stating that GFRK = −

ΔV

Δt
+ h, and letting h approach zero. This substitu-

tion transforms �[Cr]t
�GFRK

 into:

We will solve the limit piecewise. First, find the Taylor expansion of the e0-like expression:

Substitute in the e0-like Taylor expansion, and the first half of the limit becomes:

lim
ΔV
Δt

→0

1
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t
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t
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Substitute in the e0-like Taylor expansion, and the second half of the limit becomes:

Add the two halves of the limit together, and the problematic division by h→ 0 is subtracted out:

Now, let h go to zero, and the limit is seen to be:

Case 3: GFRK =
ΔV

Δt
= 0.

In the even more unlikely event that the kinetic GFR and the volume change rate are both zero, the dual limit ap-
proaching zero can be solved by at least two ways:

(1). Equation (1) was the limit of �[Cr]t
�GFRK

 as ΔV
Δt

→ 0. Now, take the limit as GFRK → 0:

The Taylor expansion of the e0-like term e
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2
⋅ ln2

�
V0

V0 +
ΔV

Δt
t

�
+

h3

6 ⋅ ΔV

Δt

3
⋅ ln3

�
V0

V0 +
ΔV

Δt
t

�
+⋯

⎞
⎟⎟⎠

⎤
⎥⎥⎦
⋅

− Gen

h2

⎡⎢⎢⎣
−

h
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
−

h2

2 ⋅ ΔV

Δt

2
⋅ ln2

�
V0

V0 +
ΔV

Δt
t

�
−

h3

6 ⋅ ΔV

Δt

3
⋅ ln3

�
V0

V0 +
ΔV

Δt
t

�
+⋯

⎤⎥⎥⎦
⋅

− Gen

h2

Gen

h ⋅ ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
+

Gen

2 ⋅ ΔV

Δt

2
⋅ ln2

(
V0

V0 +
ΔV

Δt
t

)
+
h ⋅ Gen

6 ⋅ ΔV

Δt

3
⋅ ln3

(
V0

V0 +
ΔV

Δt
t

)
+⋯

⎡⎢⎢⎢⎢⎢⎣

−
Gen

2 ⋅ ΔV
Δt

2
⋅ ln2

�
V0

V0+
ΔV

Δt
t

�
−
h ⋅Gen

3 ⋅ ΔV
Δt

3
⋅ ln3

�
V0

V0+
ΔV

Δt
t

�

+
1
ΔV

Δt

⋅ ln

�
V0

V0+
ΔV

Δt
t

�
⋅ [Cr]0+

h

ΔV

Δt

2
⋅ ln2

�
V0

V0+
ΔV

Δt
t

�
⋅ [Cr]0+

h2

2 ⋅ ΔV
Δt

3
⋅ ln3

�
V0

V0+
ΔV

Δt
t

�
⋅ [Cr]0+⋯

⎤⎥⎥⎥⎥⎥⎦

−
Gen

2 ⋅ ΔV

Δt

2
⋅ ln2

(
V0

V0 +
ΔV

Δt
t

)
+

1
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅ [Cr]0

(2)lim
GFRK → −

ΔV
Δt

�[Cr]t
�GFRK

= −
1
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

[
Gen

2 ⋅ ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
− [Cr]0

]
.

lim
ΔV
Δt

→0

�[Cr]t
�GFRK

= e
−GFRK ⋅ t

V0

⏟⏞⏟⏞⏟

e0 - like

⋅

t

V0
⋅

�
Gen

GFRK
− [Cr]0

�
−

⎛
⎜⎜⎜⎝
1 − e

−GFRK ⋅ t

V0

⏟⏞⏟⏞⏟

e0 - like

⎞⎟⎟⎟⎠
⋅

Gen�
GFRK

�2

lim(
ΔV
Δt
,GFRK

)
→ (0,0)

�[Cr]t
�GFRK

=

[
1 −

GFRK ⋅ t

V0
+⋯

]
⋅

t

V0
⋅

(
Gen

GFRK
− [Cr]0

)
⋯

⋯ −

(
1 −

[
1 −

GFRK ⋅ t

V0
+

(
GFRK

)2
⋅ t2

2 ⋅
(
V0

)2 +⋯

])
⋅

Gen(
GFRK

)2
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The problematic division by GFRK → 0 is subtracted out:

Now, let GFRK go to zero, and the limit is seen to be:

(2). The same limit as above would be found if Equation (2) had let ΔV
Δt

 approach zero:

Substitute in the Taylor expansion of ln
(

V0

V0+
ΔV
Δt
t

)
 as ΔV

Δt
→ 0:

Now, let ΔV
Δt

 go to zero, and the limit is seen to be:

The dual limits in Equations (3) and (4) are mathematically equivalent, which also validates the precursor limits in Equation 
(1): stable volume 

(
ΔV

Δt
= 0

)
 and Equation (2): GFRK = −

ΔV

Δt
.

A fourth case of division by zero, V0 +
ΔV

Δt
t = 0, has a limit that is undefined, which is just as well since patients cannot 

have a zero volume.

lim(
ΔV
Δt
,GFRK

)
→ (0,0)

�[Cr]t
�GFRK

=

[
t ⋅ Gen

V0 ⋅ GFRK
−

t

V0
⋅ [Cr]0 −

t2 ⋅ Gen(
V0

)2 +
GFRK ⋅ t2

(
V0

)2 ⋅ [Cr]0 +⋯

]
⋯

⋯ −

(
GFRK ⋅ t

V0
−

(
GFRK

)2
⋅ t2

2 ⋅
(
V0

)2 +⋯

)
⋅

Gen(
GFRK

)2

lim(
ΔV
Δt
,GFRK

)
→ (0,0)

�[Cr]t
�GFRK

=
t ⋅ Gen

V0 ⋅ GFRK
−

t

V0
⋅ [Cr]0 −

Gen ⋅ t2(
V0

)2 +
GFRK ⋅ t2

(
V0

)2 ⋅ [Cr]0 −
t ⋅ Gen

V0 ⋅ GFRK
+

Gen ⋅ t2

2 ⋅
(
V0

)2 +⋯

lim(
ΔV
Δt
,GFRK

)
→ (0,0)

�[Cr]t
�GFRK

= −
t

V0
⋅ [Cr]0 −

Gen ⋅ t2

2 ⋅
(
V0

)2 +
GFRK ⋅ t2

(
V0

)2 ⋅ [Cr]0 +⋯

(3)lim(
ΔV
Δt
,GFRK

)
→ (0,0)

�[Cr]t
�GFRK

= −
t

V0
⋅ [Cr]0 −

Gen ⋅ t2

2 ⋅
(
V0

)2 .

lim
GFRK → −

ΔV
Δt

�[Cr]t
�GFRK

= −
1
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

[
Gen

2 ⋅ ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
− [Cr]0

]

lim(
GFRK ,

ΔV
Δt

)
→ (0,0)

�[Cr]t
�GFRK

= −
1
ΔV

Δt

⋅

−
ΔV

Δt
t

V0 +
ΔV

Δt
t
⋅

[
Gen

2 ⋅ ΔV

Δt

⋅

−
ΔV

Δt
t

V0 +
ΔV

Δt
t
− [Cr]0

]

lim�
GFRK ,

ΔV
Δt

�
→ (0,0)

�[Cr]t
�GFRK

=
t

V0 +
ΔV

Δt
t
⋅

⎡⎢⎢⎢⎣
−

Gen ⋅ t

2 ⋅
�
V0 +

ΔV

Δt
t
� − [Cr]0

⎤⎥⎥⎥⎦

(4)lim(
GFRK ,

ΔV
Δt

)
→ (0,0)

�[Cr]t
�GFRK

= −
t

V0
⋅

(
Gen ⋅ t

2 ⋅ V0
+ [Cr]0

)
.
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Proof  that �[Cr]t
�GFRK

 is  always negative

The derivative, rearranged to emphasize the leading negative sign, is hypothesized to always be negative for clinically 
realistic values, i.e., the expression in the curly brace must be positive.

The general strategy will be a proof by contradiction. We test whether the expression within the curly brace can be 
negative and prove that it cannot, in all six of the scenarios that are possible.

The curly brace's sum breaks up into two groups:

GROUP 1:

The ratio of initial-to-final volume 
V0

V0+
ΔV
Δt
t must be positive, and a positive number raised to any real exponent is also 

positive.
In 

1
ΔV
Δt

⋅ ln

(
V0

V0+
ΔV
Δt
t

)
, a negative ΔV

Δt
 makes the fraction 

V0

V0+
ΔV
Δt
t
> 1

, which makes its logarithm positive. Here, the product 
1
ΔV
Δt

⋅ ln

(
V0

V0+
ΔV
Δt
t

)
 is negative. On the other hand, a positive ΔV

Δt
 makes the fraction V0

V0+
ΔV
Δt
t
< 1, which makes its logarithm nega-

tive. Either way, the product 1
ΔV
Δt

⋅ ln

(
V0

V0+
ΔV
Δt
t

)
 is negative. (A zero ΔV

Δt
 is handled separately.)

The Gen

GFRK +
ΔV
Δt

− [Cr]0 represents the spread between the initial [creatinine] and the eventual steady-state [creatinine]. If 
the [creatinine] is rising, the spread is positive. If the [creatinine] is falling, the spread is negative. Since Gen

GFRK +
ΔV
Δt

− [Cr]0 
can take on either sign, it determines the overall sign of the three-term product in Group 1.

GROUP 2 :

In Gen(
GFRK +

ΔV
Δt

)2, Gen is positive, and the square 
(
GFRK +

ΔV

Δt

)2
 is positive in the real numbers.

In 
1 −

(
V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

, a positive ΔV
Δt

 makes 0 < V0

V0+
ΔV
Δt
t
< 1 and the exponent 1 + GFRK

ΔV
Δt

> 0. A base between zero and one 

raised to a positive exponent has a range between zero and one as well. Subsequently, 
1 −

(
V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

 is positive.

However, a negative ΔV
Δt

 makes V0

V0+
ΔV
Δt
t
> 1, and raising this to any positive or negative exponent 1 + GFRK

ΔV
Δt

 makes it posi-

tive and potentially greater than one. Subsequently, 1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

 can be either positive or negative, thus de-

termining the overall sign of Group 2.

�[Cr]t
�GFRK

= −

⎧
⎪⎪⎨⎪⎪⎩

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
⋅

�
Gen

GFRK +
ΔV

Δt

− [Cr]0

�
+

⎡⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎥⎦
⋅

Gen�
GFRK +

ΔV

Δt

�2

⎫
⎪⎪⎬⎪⎪⎭

(5)

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
always positive

⋅

1
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
always negative

⋅

(
Gen

GFRK +
ΔV

Δt

− [Cr]0

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
can be ± ; determines sign

.

(6)

Gen�
GFRK +

ΔV

Δt

�2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

always positive

⋅

⎡
⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤
⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
can be ± ; determines sign

.
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Broadly, there are 3 ways to falsify the hypothesis by having a curly brace value that is negative. Referring to expression 
(5)—Group 1—and expression (6)—Group 2, the ways are:

1. Positive or zero Gen

GFRK +
ΔV
Δt

− [Cr]0 in Group 1 and Negative 1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

 in Group 2.

2. Positive Gen

GFRK +
ΔV
Δt

− [Cr]0 and Positive 1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

 and |Group1| > |Group2|
�����������������������������

3rd condition

.

3. Negative Gen

GFRK +
ΔV
Δt

− [Cr]0 and Negative 1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

 and |Group1| < |Group2|
�����������������������������

3rd condition

.

Test Each Falsifying Way:
1. If Gen

GFRK +
ΔV
Δt

− [Cr]0 ≥ 0, then − GFRK < ΔV

Δt
≤ − GFRK +

Gen

[Cr]0
. (Note: ΔV

Δt
= 0 is covered separately.)

Substitute these ΔV
Δt

’s into the exponent 1 + GFRK
ΔV
Δt

 to get the two bounds: zero on one end and 
Gen
[Cr]0
ΔV
Δt

, after simplifying and 

back-substituting, on the other end.

Analyze the more interesting bound on the exponent: 1 −
(

V0

V0+
ΔV
Δt
t

)
( Gen

[Cr]0
ΔV
Δt

)

:

i. If ΔV
Δt

 is negative, then 
1 −

�
V0

V0 +
ΔV

Δt
t

�

���������������
>1

⎛
⎜⎜⎝

Gen

[Cr]0

ΔV

Δt

⎞
⎟⎟⎠

���
Negative

 and the whole expression is positive, specifically that 0 < 1 −

(
V0

V0+
ΔV
Δt
t

)
( Gen

[Cr]0
ΔV
Δt

)

< 1.

ii. If ΔV
Δt

 is positive, then 
1 −

�
V0

V0 +
ΔV

Δt
t

�

���������������
<1

⎛
⎜⎜⎝

Gen

[Cr]0

ΔV

Δt

⎞
⎟⎟⎠

���
Positive

 and the whole expression is positive, specifically that 0 < 1 −

(
V0

V0+
ΔV
Δt
t

)
( Gen

[Cr]0
ΔV
Δt

)

< 1 

again.

In both cases, the 1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

 was positive, but it needed to be negative. Therefore, Way #1 does not falsify 

the hypothesis.

2. As learned in 1, if Gen

GFRK +
ΔV
Δt

− [Cr]0 > 0, then 1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

 has to be positive. Together, they satisfy two 

out of the three conditions in 2. The 3rd condition, then, is key.
Requiring |Group 1| > |Group 2| is equivalent to asking if

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0+
ΔV

Δt
t

�
⋅

�
Gen

GFRK +
ΔV

Δt

−[Cr]0

�

�����������������������������������������������������������������������������������������������������������������������
Group 1 negative

+
Gen�

GFRK +
ΔV

Δt

�2 ⋅

⎡⎢⎢⎢⎢⎣
1−

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎥⎦
���������������������������������������������������������������������������

Group 2 positive

<0
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Given that Gen

GFRK +
ΔV
Δt

> [Cr]0, let Gen

GFRK +
ΔV
Δt

= a[Cr]0. Then a > 1.

Also, since Gen

GFRK +
ΔV
Δt

 is greater than a positive value of [Cr]0, then GFRK +
ΔV

Δt
> 0.

In Group 2, Gen(
GFRK +

ΔV
Δt

)2 =
Gen

GFRK +
ΔV

Δt
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=a[Cr]0

⋅

1

GFRK +
ΔV
Δt

=
a[Cr]0

GFRK +
ΔV
Δt

. Substitute these in:

Let 
(
1 +

GFRK
ΔV
Δt

)
⋅ ln

(
V0

V0+
ΔV
Δt
t

)
= − x. Because GFRK +

ΔV

Δt
> 0, we restrict ΔV

Δt
> − GFRK. If ΔV

Δt
 is negative, then 

GFRK
ΔV
Δt

< − 1 and 1 + GFRK
ΔV
Δt

 is negative. If ΔV
Δt

 is positive, then 1 + GFRK
ΔV
Δt

 is positive. Whichever sign 1 + GFRK
ΔV
Δt

 has, the 

ln

(
V0

V0+
ΔV
Δt
t

)
 must take on the opposite sign, making 

(
1 +

GFRK
ΔV

Δt

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Neg/Pos

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Pos/Neg

 negative either way, so x has to be 

positive (x > 0).

(Note: ΔV
Δt

= − GFRK and ΔV
Δt

= GFRK = 0 are covered separately.)
Substitute in: e−x ⋅ − x ⋅ a−1

a
+ 1 − e−x < 0.

Multiply both sides by ex: − x ⋅ a−1
a

+ ex − 1 < 0.
Let f (x) = ex − a−1

a
⋅ x − 1. Is this function always negative when x > 0

Differentiate the function: f � (x) = ex − a−1

a
.

Because x > 0, then ex > 1. In contrast, because a > 1, then 0 < a−1

a
< 1.

The subtraction yields an f � (x) that is positive, meaning that f (x) is increasing on x > 0.
As x approaches zero from the right, f (x) must have a minimum of lim

x→0+
ex − a−1

a
⋅ x − 1 = 0.

Thus, f (x) is always positive, but that contradicts f (x) = ex − a−1

a
⋅ x − 1 needing to be negative, so Way #2 does not 

falsify the hypothesis.

3. If Gen

GFRK +
ΔV
Δt

− [Cr]0 < 0, then ΔV
Δt

< − GFRK
�����
− or 0

 OR − GFRK +
Gen

[Cr]0
���

+

< ΔV

Δt
.

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
⋅

�
a[Cr]0 − [Cr]0

�
+

a[Cr]0

GFRK +
ΔV

Δt

⋅

⎡
⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤
⎥⎥⎥⎥⎦
< 0

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
⋅ (a − 1) +

a

GFRK +
ΔV

Δt
�������������

Positive

⋅

⎡
⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤
⎥⎥⎥⎥⎦
< 0

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

⋅

GFRK +
ΔV

Δt

ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

a − 1

a
+ 1 −

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

< 0

e

(
1+

GFRK
ΔV
Δt

)
⋅ ln

(
V0

V0 +
ΔV
Δt

t

)

⋅

(
1 +

GFRK
ΔV

Δt

)
⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

a − 1

a
+ 1 − e

(
1+

GFRK
ΔV
Δt

)
⋅ ln

(
V0

V0 +
ΔV
Δt

t

)

< 0
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i. If ΔV
Δt

< − GFRK, then 1 −

(
V0

V0 +
ΔV

Δt
t

)

���������������
>1

(
1 +

GFRK
ΔV

Δt

)

���������������
Positive  is negative, as required in 3. OR:

ii. If − GFRK +
Gen

[Cr]0
< ΔV

Δt
< 0, then 1 −

(
V0

V0 +
ΔV

Δt
t

)

���������������
>1

(
1 +

GFRK
ΔV

Δt

)

���������������
Negative  is positive.

(Note: ΔV
Δt

= 0 is covered separately.)

iii. If 0 ≤ − GFRK +
Gen

[Cr]0
< ΔV

Δt
, then 1 −

(
V0

V0 +
ΔV

Δt
t

)

���������������
<1

(
1 +

GFRK
ΔV

Δt

)

���������������
Positive  is positive.

The latter two cases violate the 2nd condition that 1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

 be negative, so only the first case of 
ΔV

Δt
< − GFRK needs to be considered.

Once again, the 3rd condition is key, but this time |Group 1| < |Group 2|.
Requiring |Group 1| < |Group 2| is equivalent to asking if

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0+
ΔV

Δt
t

�
⋅

�
Gen

GFRK +
ΔV

Δt

−[Cr]0

�

�����������������������������������������������������������������������������������������������������������������������
Group 1 positive

+
Gen�

GFRK +
ΔV

Δt

�2 ⋅

⎡⎢⎢⎢⎢⎣
1−

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎥⎦
���������������������������������������������������������������������������

Group 2 negative

<0

So if Gen

GFRK +
ΔV
Δt

< [Cr]0, let Gen

GFRK +
ΔV
Δt

= b[Cr]0. Then b < 1.

Additionally, because of ΔV
Δt

< − GFRK above, Gen

GFRK +
ΔV
Δt

 must be negative. So, really, b < 0.

In Group 2, Gen(
GFRK +

ΔV
Δt

)2 =
Gen

GFRK +
ΔV

Δt
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=b[Cr]0

⋅

1

GFRK +
ΔV
Δt

=
b[Cr]0

GFRK +
ΔV
Δt

. Substitute these in:

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
⋅

�
b[Cr]0 − [Cr]0

�
+

b[Cr]0

GFRK +
ΔV

Δt

⋅

⎡
⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤
⎥⎥⎥⎥⎦
< 0
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Let 
(
1 +

GFRK
ΔV
Δt

)
⋅ ln

(
V0

V0+
ΔV
Δt
t

)
= x. Here, ΔV

Δt
< − GFRK, which makes 

(
1 +

GFRK
ΔV

Δt

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Positive

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Positive

 always posi-

tive, so x > 0.

Substitute in:ex ⋅ x ⋅ b−1
b

+ 1 − ex < 0.
Multiply both sides by e−x: x ⋅ b−1

b
+ e−x − 1 < 0.

Let f (x) = b−1

b
⋅ x + e−x − 1. Is this function always negative when x > 0

Differentiate the function: f � (x) = b−1

b
− e−x.

Because b < 0, then b−1
b

> 1. In contrast, because x > 0, then 0 < e−x < 1.
The subtraction yields an f � (x) that is positive, meaning that f (x) is increasing on x > 0.
As x approaches zero from the right, f (x) must have a minimum of lim

x→0+

b−1

b
⋅ x + e−x − 1 = 0.

Thus, f (x) is always positive, but that contradicts f (x) = b−1

b
⋅ x + e−x − 1 needing to be negative, so Way #3 does not 

falsify the hypothesis.
Limit cases:
4. If ΔV

Δt
= 0, then the limit solution is given by Equation (1), shown below:

Disregarding the trivial case of t = 0 that makes �[Cr]t
�GFRK

= 0, term by term, the signs have to be

(Note: ΔV
Δt

= GFRK = 0 is analyzed later.)
i. If Gen

GFRK
− [Cr]0 ≤ 0, then the derivative limit is negative, which supports the hypothesis.

ii. If Gen

GFRK
− [Cr]0 > 0, then the derivative limit is potentially positive. Clinically, is it possible that 

e
−GFRK ⋅ t

V0 ⋅

t

V0
⋅

(
Gen

GFRK
− [Cr]0

)
−

(
1 − e

−GFRK ⋅ t

V0

)
⋅

Gen

(GFRK )
2 > 0

Since Gen
GFRK

> [Cr]0, let Gen
GFRK

= c[Cr]0. Then c > 1.

Further, Gen

(GFRK )
2 =

Gen

GFRK
⏟⏟⏟
= c[Cr]0

⋅

1

GFRK
=

c[Cr]0
GFRK

. Substitute these in:

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
⋅ (b − 1) +

b

GFRK +
ΔV

Δt
�������������

Positive

⋅

⎡
⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤
⎥⎥⎥⎥⎦
< 0

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

⋅

GFRK +
ΔV

Δt

ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

b − 1

b
+ 1 −

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

< 0

e

(
1+

GFRK
ΔV
Δt

)
⋅ ln

(
V0

V0 +
ΔV
Δt

t

)

⋅

(
1 +

GFRK
ΔV

Δt

)
⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

b − 1

b
+ 1 − e

(
1+

GFRK
ΔV
Δt

)
⋅ ln

(
V0

V0 +
ΔV
Δt

t

)

< 0

lim
ΔV
Δt

→0

�[Cr]t
�GFRK

= e
−GFRK ⋅ t

V0 ⋅

t

V0
⋅

(
Gen

GFRK
− [Cr]0

)
−

(
1 − e

−GFRK ⋅ t

V0

)
⋅

Gen(
GFRK

)2

lim
ΔV
Δt

→0

�[Cr]t
�GFRK

= e
−GFRK ⋅ t

V0

⏟⏞⏟⏞⏟
Positive

⋅

t

V0
⏟⏟⏟

+

⋅

(
Gen

GFRK
− [Cr]0

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
can be ± or 0

−

(
1 − e

−GFRK ⋅ t

V0

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Positive

⋅

Gen(
GFRK

)2
⏟⏞⏞⏞⏟⏞⏞⏞⏟
Positive
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Let GFRK ⋅ t

V0
= x. By inspection, x > 0 (not considering GFRK = 0 yet or t = 0 at all).

Substitute in:

Multiply both sides by ex: x ⋅ c−1
c

− ex + 1 > 0.
Let f (x) = c−1

c
⋅ x − ex + 1. Is this function always positive when x > 0

Differentiate the function: f � (x) = c−1

c
− ex.

Because c > 1, then 0 < c−1

c
< 1. In contrast, because x > 0, then ex > 1.

The subtraction yields an f � (x) that is negative, meaning that f (x) is decreasing on x > 0.
As x approaches zero from the right, f (x) must have a maximum of lim

x→0+

c−1

c
⋅ x − ex + 1 = 0.

Thus, f (x) is always negative, but that contradicts f (x) = c−1

c
⋅ x − ex + 1 needing to be positive, so the overall deriva-

tive's limit as ΔV
Δt

→ 0 must be negative.
5. If GFRK = −

ΔV

Δt
, then the limit solution is given by Equation (2), shown below:

Clinically, GFRK is positive, forcing ΔV
Δt

 to be negative. (Note: GFRK =
ΔV

Δt
= 0 is analyzed next.) Then, term by term, 

the signs have to be:

−
1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Negative

⋅

⎡
⎢⎢⎢⎢⎢⎢⎣

Gen

2 ⋅ ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Negative

− [Cr]0
⏟⏟⏟
Positive

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The negative sign out in front makes the entire derivative limit negative, which supports the hypothesis that �[Cr]t
�GFRK

 is 

always negative (disregarding the trivial case of t = 0).

6. If GFRK =
ΔV

Δt
= 0, then the limit solution is given by Equation (4), shown below:

e
−GFRK ⋅ t

V0 ⋅

t

V0
⋅

(
c[Cr]0 − [Cr]0

)
−

(
1 − e

−GFRK ⋅ t

V0

)
⋅

c[Cr]0
GFRK

> 0

e
−GFRK ⋅ t

V0 ⋅

t

V0
⋅ (c − 1) −

(
1 − e

−GFRK ⋅ t

V0

)
⋅

c

GFRK
���
Positive

> 0

e
−GFRK ⋅ t

V0 ⋅

GFRK ⋅ t

V0
⋅

c − 1

c
− 1 + e

−GFRK ⋅ t

V0 > 0

e−x ⋅ x ⋅
c − 1

c
− 1 + e−x > 0

lim
GFRK → −

ΔV
Δt

�[Cr]t
�GFRK

= −
1
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

[
Gen

2 ⋅ ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
− [Cr]0

]

lim(
GFRK ,

ΔV
Δt

)
→ (0,0)

�[Cr]t
�GFRK

= −
t

V0
⋅

(
Gen ⋅ t

2 ⋅ V0
+ [Cr]0

)
.
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Disregarding the trivial case of t = 0, term by term, the signs have to be − t

V0
⏟⏟⏟

+

⋅

⎛
⎜⎜⎜⎜⎝

Gen ⋅ t

2 ⋅ V0
⏟⏟⏟
Positive

+ [Cr]0
⏟⏟⏟
Positive

⎞
⎟⎟⎟⎟⎠
.

The negative sign out in front makes the entire derivative limit negative, which supports the hypothesis that �[Cr]t
�GFRK

 is 

always negative.

Conclusion: All six ways that the partial derivative could be positive were falsified. Therefore, the derivative �[Cr]t
�GFRK

 is 

always negative (except when it is zero at t = 0).
Lastly, the partial derivative of [Cr]t with respect to ΔV

Δt
 is derived as follows:

In Equation (2) of the main text, the derivative of 

⎡⎢⎢⎢⎣
1 −

�
V0

V0+
ΔV
Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎦
 with respect to ΔV

Δt
 is 

0 −

⎡
⎢⎢⎢⎣

�
V0

V0+
ΔV
Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤
⎥⎥⎥⎦

�

.

To calculate the derivative of the exponential, let y =
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

 and use logarithms.

Differentiate with the product rule:

Thus,

lny = ln

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

=

(
1 +

GFRK
ΔV

Δt

)
⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
.

1

y
y� = −

GFRK(
ΔV

Δt

)2 ⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
+

(
1 +

GFRK
ΔV

Δt

)
⋅

V0 +
ΔV

Δt
t

V0
⋅

− V0 ⋅ t(
V0 +

ΔV

Δt
t
)2 .

1

y
y� = −

GFRK(
ΔV

Δt

)2 ⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
−

(
1 +

GFRK
ΔV

Δt

)
⋅

t

V0 +
ΔV

Δt
t
.

y� = −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

⎡
⎢⎢⎢⎣

GFRK�
ΔV

Δt

�2 ⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
+

�
1 +

GFRK
ΔV

Δt

�
⋅

t

V0 +
ΔV

Δt
t

⎤
⎥⎥⎥⎦
.

⎡⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎥⎦

�

=

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

⎡⎢⎢⎢⎣

GFRK�
ΔV

Δt

�2 ⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
+

�
1 +

GFRK
ΔV

Δt

�
⋅

t

V0 +
ΔV

Δt
t

⎤⎥⎥⎥⎦
.
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Next, find the derivative of 
(

Gen

GFRK +
ΔV
Δt

− [Cr]0

)
 with respect to ΔV

Δt
:

Using the two intermediate derivatives for the product rule applied to Equation (2) of the main text, we find that �[Cr]t
� ΔV

Δt

 

is:

(
Gen

GFRK +
ΔV

Δt

− [Cr]0

)�

= −
Gen(

GFRK +
ΔV

Δt

)2 .

�[Cr]t

�ΔV

Δt

=

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

⎡⎢⎢⎢⎣

GFRK�
ΔV

Δt

�2 ⋅ ln

�
V0

V0+
ΔV

Δt
t

�
+

�
1+

GFRK
ΔV

Δt

�
⋅

t

V0+
ΔV

Δt
t

⎤⎥⎥⎥⎦

×

�
Gen

GFRK +
ΔV

Δt

−[Cr]0

�
+

⎡⎢⎢⎢⎢⎣
1−

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎥⎦
⋅

−Gen�
GFRK +

ΔV

Δt

�2 .


