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1 	 | 	 INTRODUCTION

Throughout	the	world,	the	serum	creatinine	is	the	most	
common	measure	for	doctors	to	assess	a	patient's	kidney	
function.	 Instinctively,	 they	know	that	when	 the	creati-
nine	 increases,	 the	 kidney	 function	 decreases	 (with	 ex-
ceptions),	and	vice	versa.	How	quickly	 the	creatinine	 is	

rising	 also	 has	 some	 bearing	 upon	 the	 severity	 of	 kid-
ney	 function	 loss	 (Chiou	 &	 Hsu,	 1975;	 Jelliffe,	 2002;	
Mellas,	2016;	Moran	&	Myers,	1985;	Yashiro	et	al.,	2012).	
Generally,	 the	 steeper	 the	 rise,	 the	 greater	 the	 impair-
ment	in	the	renal	clearance.	This	creatinine	slope	is	usu-
ally	estimated	 from	a	graph	generated	by	 the	electronic	
health	record,	and	translating	slope	into	kidney	function	

Received:	22	March	2021	 |	 Revised:	15	June	2021	 |	 Accepted:	15	June	2021

DOI:	10.14814/phy2.14957		

O R I G I N A L  A R T I C L E

In creatinine kinetics, the glomerular filtration rate always 
moves the serum creatinine in the opposite direction

Sheldon Chen1  |   Robert Chiaramonte2

This	is	an	open	access	article	under	the	terms	of	the	Creat	ive	Commo	ns	Attri	bution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	provided	
the	original	work	is	properly	cited.
©	2021	The	Authors.	Physiological Reports	published	by	Wiley	Periodicals	LLC	on	behalf	of	The	Physiological	Society	and	the	American	Physiological	Society

1Section	of	Nephrology,	MD	Anderson	
Cancer	Center,	Houston,	TX,	USA
2Internal	Medicine,	The	State	
University	of	New	York	Downstate	
Health	Sciences	University,	Brooklyn,	
NY,	USA

Correspondence
Sheldon	Chen,	MD	Anderson	Cancer	
Center,	1515	Holcombe	Boulevard,	Unit	
1468,	Houston,	TX	77230-	1402,	USA.
Email:	shelchen@yahoo.com

Abstract
Introduction: When	the	serum	[creatinine]	is	changing,	creatinine	kinetics	can	
still	gauge	the	kidney	function,	and	knowing	the	kinetic	glomerular	filtration	rate	
(GFR)	helps	doctors	take	care	of	patients	with	renal	failure.	We	wondered	how	
the	serum	[creatinine]	would	respond	if	the	kinetic	GFR	were	tweaked.	In	every	
scenario,	if	the	kinetic	GFR	decreased,	the	[creatinine]	would	increase,	and	vice	
versa.	This	opposing	relationship	was	hypothesized	to	be	universal.
Methods: Serum	[creatinine]	and	kinetic	GFR,	along	with	other	parameters,	are	
described	by	a	differential	equation.	We	differentiated	[creatinine]	with	respect	
to	kinetic	GFR	to	test	if	the	two	variables	would	change	oppositely	of	each	other,	
throughout	the	gamut	of	all	allowable	clinical	values.	To	remove	the	discontinui-
ties	in	the	derivative,	limits	were	solved.
Results: The	 derivative	 and	 its	 limits	 were	 comprehensively	 analyzed	 and	
proved	to	have	a	sign	that	is	always	negative,	meaning	that	[creatinine]	and	ki-
netic	GFR	must	indeed	move	in	opposite	directions.	The	derivative	is	bigger	in	
absolute	value	at	the	higher	end	of	the	[creatinine]	scale,	where	a	small	drop	in	
the	kinetic	GFR	can	cause	the	[creatinine]	to	shoot	upward,	making	acute	kidney	
injury	similar	to	chronic	kidney	disease	in	that	regard.
Conclusions: All	 else	 being	 equal,	 a	 change	 in	 the	 kinetic	 GFR	 obligates	 the	
[creatinine]	to	change	in	the	opposite	direction.	This	does	not	negate	the	fact	that	
an	 increasing	[creatinine]	can	be	compatible	with	a	rising	kinetic	GFR,	due	to	
differences	in	how	the	time	variable	is	treated.
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is	 a	 decidedly	 qualitative	 art.	 Creatinine	 slope	 analysis	
became	more	quantitative	when	the	science	of	creatinine	
kinetics	 was	 applied,	 a	 technique	 that	 has	 been	 called	
the	kinetic	glomerular	filtration	rate	(GFR)	(Chen,	2013,	
2018a,	2018b;	Chen	&	Chiaramonte,	2019).	Now,	the	cre-
atinine	trajectory	with	all	its	slopes	can	be	decoded	into	a	
kinetic	GFR	format	that	shows	how	the	kidney	function	
is	evolving.	 Insight	 into	 the	underlying	kidney	 function	
by	using	the	kinetic	GFR	has	improved	the	diagnosis	and	
treatment	 of	 patients	 who	 suffer	 from	 an	 acute	 kidney	
injury	(AKI)	(Bairy,	2020;	Bairy	et	al.,	2018;	Dash	et	al.,	
2020;	Dewitte	et	al.,	2015;	Endre	et	al.,	2016;	Khayat	et	al.,	
2019;	 Kwong	 et	 al.,	 2019;	 Latha	 et	 al.,	 2020;	 O'Sullivan	
&	Doyle,	2017;	Pianta	et	al.,	2015;	Yoshida	et	al.,	2019).	
With	creatinine	kinetics	being	modeled	mathematically,	
a	 question	 that	 naturally	 arises	 is	 how	 much	 does	 the	
[creatinine]	 change	 in	 response	 to	 a	 change	 in	 kinetic	
GFR?	The	answer	can	be	found	using	derivatives.

1.1	 |	 Kinetic GFR equation

Changes	 in	 the	 serum	 creatinine	 follow	 passively	 from	
changes	in	the	GFR,	so	like	cause	and	effect,	the	change	in	
GFR	precedes	and	actively	drives	the	change	in	creatinine.	
The	creatinine	serves	mostly	as	a	surrogate	to	calculate	the	
GFR.	The	[creatinine]	is	relatable	to	the	GFR	by	a	differen-
tial	equation	 (Chen,	2018a;	Chen	&	Chiaramonte,	2019).	
The	rate	of	change	in	the	creatinine	amount	is	a	function	
of	the	rate	of	creatinine	coming	in	minus	the	rate	of	creati-
nine	going	out	of	its	volume	of	distribution,	which	is	total	
body	 water	 (TBW)	 (Chow,	 1985;	 Edwards,	 1959;	 Jones	
&	Burnett,	1974;	Pickering	et	al.,	2013).	Most	of	 the	gain	
comes	from	creatinine	being	generated	by	the	muscles,	the	
mass	of	which	remains	more	or	less	the	same	in	the	short	
term,	so	that	the	rate	of	creatinine	addition	is	usually	taken	
to	 be	 a	 constant:	 Gen.	 Most	 of	 the	 creatinine	 loss	 occurs	
via	the	kidneys,	so	that	the	rate	of	creatinine	excretion	is	
GFRK·[Cr]t,	 a	 product	 of	 the	 kinetic	 GFR	 and	 the	 serum	
[creatinine]	at	an	instant	in	time.	On	the	left	side	of	the	dif-
ferential	equation,	the	instantaneous	rate	of	change	in	cre-
atinine	amount	is	 d

dt

(
[Cr]t ⋅ Vt

)
,	where	[Cr]t	 is	the	serum	

[creatinine]	at	a	given	point	in	time,	as	before,	and	Vt	is	the	
volume	of	distribution	at	the	same	point	in	time.	Further,	
Vt	 is	 allowed	 to	 vary	 at	 a	 steady	 rate	 to	 mimic	 the	 clini-
cal	 reality	 that	 patients	 have	 many	 fluid	 inputs	 and	 out-
puts	(I's/O's),	like	intravenous	(IV)	fluids	and	urine	output.	
The	net	balance	of	 the	I's/O's	divided	by	 the	 time	period	
over	which	they	occur	can	be	modeled	as	a	constant	rate	of	
change	in	the	creatinine's	volume	of	distribution:	ΔV

Δt
.	Thus,	

volume	as	a	function	of	time	is	Vt = V0 +
ΔV

Δt
t,	where	V0	is	

the	initial	volume	at	a	time	zero	for	each	clinical	time	inter-
val.	The	full	differential	equation	can	be	written	as:

This	 first-	order	 linear	differential	 equation's	 solution,	
as	previously	published,	is:

where	[Cr]0	is	the	initial	serum	[creatinine]	for	each	clini-
cal	time	interval	(Chen,	2018a;	Chen	&	Chiaramonte,	2019).	
That	is	to	say,	the	serum	[creatinine]	at	a	given	time	is	equal	
to	the	initial	[creatinine]	plus	a	time-	evolved	portion	of	the	
spread	between	the	initial	[creatinine]	and	the	[creatinine]	
reached	at	a	new	steady	state	if	the	kinetic	GFR	and	volume	
change	rate	remained	at	those	levels.

To	show	how	the	[creatinine]	trajectory	is	shaped	by	the	
kinetic	GFR	and	other	variables,	we	can	graph	the	[Cr]t	for	
a	 typical	occurrence	of	AKI.	Let	us	say	that	a	patient	with	
a	baseline	[creatinine]	of	1.0 mg/dL	develops	acute	tubular	
injury,	 and	 his	 GFR	 drops	 to	 10  mL/min	 and	 stays	 there.	
He	receives	copious	amounts	of	 IV	 fluids	 in	an	attempt	 to	
reverse	the	renal	failure,	so	that	the	net	of	the	I's/O's	is	+6 L	
in	24 h,	or	ΔV

Δt
= 0.25 L∕h.	The	creatinine	generation	rate	is	

found	by	multiplying	the	baseline	[creatinine]	by	its	corre-
sponding	 steady-	state	 GFR:	Gen = 1 mg∕dL × 90 mL∕min

.	His	 initial	volume	of	distribution,	V0,	 is	 taken	to	be	TBW	
(Bjornsson,	1979),	and	a	 typical	value	 is	42 L.	The	drop	 in	
GFR	 to	 a	 constant	 (average)	 value	 of	 10  mL/min	 perturbs	
the	steady	state,	so	[creatinine]	will	change.	We	graphed	the	
serum	[creatinine]	(y)	versus	kinetic	GFR	(x)	 to	directly	vi-
sualize	the	relationship	between	the	two.	If	we	imagine	the	
tangent	to	this	curve,	it	appears	that	the	slope	is	consistently	
negative	(Figure	1).	We	hypothesize	that	the	tangential	slope	
of	[creatinine]	versus	kinetic	GFR	will	always	be	negative.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Derivative of [creatinine] with 
respect to kinetic GFR

From	 kinetic	 GFR	 Equation	 (2),	 we	 can	 differentiate	 the	
serum	 [creatinine],	[Cr]t,	 with	 respect	 to	 the	 kinetic	 GFR,	
GFRK,	 to	 find	 the	 instantaneous	 relationship	 between	 the	
two,	assuming	that	all	of	the	other	variables	are	constant.	This	
derivative	

(
�[Cr]t
�GFRK

)
	allows	us	to	calculate	the	slope	of	the	tan-

gent	to	the	curve	of	[Cr]t	versus	GFRK.	In	Equation	(2),	the	

derivative	 of	
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t
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(
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Next,	the	derivative	of	
(

Gen

GFRK +
ΔV
Δt

− [Cr]0

)
	is	

−Gen(
GFRK +

ΔV
Δt

)2.	Putting	it	
all	together	and	using	the	product	rule	on	Equation	(2),	we	
see	that	 �[Cr]t

�GFRK
	is:

2.2	 |	 Limits

The	derivative	in	Equation	(3)	has	three	special	cases	that	
threaten	a	division	by	zero:	(1)	ΔV

Δt
= 0,	(2)	GFRK = −

ΔV

Δt
,		

and	 (3)	GFRK =
ΔV

Δt
= 0,	 which	 itself	 is	 a	 special	 case	 of	

(2).	Each	of	these	cases	can	be	resolved	by	using	limits.	See	
Appendix	for	derivation	details.

Case	1:	ΔV
Δt

= 0.

Of	the	three	cases,	this	is	the	most	important	clinically,	
as	a	stable	volume	is	common	or	at	least	is	assumed	when	
information	on	I's/O's	is	unavailable.

Case	2:	GFRK = −
ΔV

Δt
.

Case	3:	GFRK =
ΔV

Δt
= 0.

3 	 | 	 RESULTS

3.1	 |	 Hypothesis plausibility

To	see	if	our	intuition	is	on	the	right	track	that	 �[Cr]t
�GFRK

	is	al-
ways	negative,	we	graphed	 �[Cr]t

�GFRK
(y)	versus	GFRK(x)	(Figure	

2).	 For	 the	 remaining	 variables,	 we	 kept	 them	 constant	
at	 clinically	 plausible	 values	 and	 tried	 various	 permuta-
tions,	such	as	a	low	V0,	standard	time,	large	ΔV

Δt
	(both	±),		

high	[Cr]0,	 and	 small	Gen,	 to	 see	 if	 we	 could	 turn	 �[Cr]t
�GFRK

	
positive.	No	matter	what	combination	was	tried,	 �[Cr]t

�GFRK
	was	al-

ways	negative,	i.e.,	below	the	x-	axis.

3.2	 |	 Rules for the proof

All	of	the	variables	have	constraints	on	their	values	as	im-
posed	by	clinical	reality.	The	rules	are:

A.	Creatinine	 must	 be	 positive:	 [Cr]t > 0	 and	 [Cr]0 > 0.
B.	Volume	 of	 distribution	 must	 be	 positive:	V0 > 0	 and	
V0 +

ΔV

Δt
t > 0.

C.	Kinetic	GFR	is	traditionally	non-	negative:	GFRK ≥ 0.

(3)
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(6)lim(
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)
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t
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⋅

(
Gen ⋅ t
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.

F I G U R E  1  Visualizing	the	accuracy	of	 �[Cr]t
�GFRK

	as	written	in	Equation	(3).	The	kinetic	GFR	Equation	(2)	is	graphed	as	GFRK	on	the	x
-	axis	and	[Cr]t	on	the	y-	axis.	The	red	curve	slopes	downward	from	left	to	right,	and	all	of	its	tangent	slopes	appear	to	be	negative.	Two	such	
tangent	slopes	at	GFRK = 10	(orange	dot)	and	GFRK = − 90	(green	dot)	were	calculated	by	the	 �[Cr]t

�GFRK
	equation.	The	derivative	slopes	are	

negative,	as	expected,	and	the	calculated	lines	(black	dash	for	GFRK = 10	and	purple	dash	for	GFRK = − 90)	do	appear	to	be	tangents.
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D.	The	creatinine	generation	rate	must	be	positive:	Gen > 0.
E.	Volume	change	rate	can	be	positive	or	negative,	but	it	

cannot	be	so	negative	in	magnitude	that	a	patient	would	
lose	all	of	the	volume	of	distribution	in	an	allotted	time	(
ΔV

Δt
> −

V0
t

)
.	 In	 theory,	 a	 positive	 volume	 change	 rate	

has	no	upper	limit	on	magnitude	
(
ΔV

Δt
< +∞

)
.

3.3	 |	 Proof of the hypothesis

The	derivative,	rearranged	to	emphasize	the	leading	nega-
tive	sign,	is	hypothesized	to	always	be	negative	for	clini-
cally	 realistic	 values,	 that	 is,	 the	 expression	 in	 the	 curly	
brace	must	be	positive.

The	general	strategy	will	be	a	proof	by	contradiction.	
We	test	whether	the	expression	within	the	curly	brace	can	
be	negative	and	prove	that	it	cannot,	in	all	six	of	the	sce-
narios	that	are	possible.	Thus,	the	partial	derivative	 �[Cr]t

�GFRK
	

is	always	negative	(except	when	it	is	zero	at	t = 0,	which	
is	a	trivial	case).	Due	to	its	length,	the	complete	proof	is	
presented	in	the	Appendix.

3.4	 |	 Where is the derivative bigger?

An	observation	familiar	to	nephrologists	is	that	a	small	
change	 at	 the	 low	 end	 of	 the	 [creatinine]	 scale	 repre-
sents	a	big	change	in	GFR,	whereas	a	big	change	at	the	
high	 end	 of	 the	 [creatinine]	 scale	 represents	 a	 small	
change	in	GFR.	A	typical	anecdote	is	that	an	increase	in	
the	[creatinine]	from	1.0	to	2.0 mg/dL	is	akin	to	a	50%	
decrease	in	the	GFR.	But	the	same	absolute	increase	in	
the	 [creatinine]	 from	 9.0	 to	 10.0  mg/dL	 is	 only	 a	 10%	

drop	in	the	GFR.	The	statements	assume	that	each	[cre-
atinine]	was	more	or	less	in	a	steady	state,	which	mod-
els	a	slowly	progressive	chronic	kidney	disease	(CKD).	
In	 CKD,	 the	 creatinine	 excretion	 rate	 is	 nearly	 equal		
to	 but	 is	 slightly	 less	 than	 the	 creatinine	 production	
rate,	 which	 is	 why	 the	 serum	 [creatinine]	 slowly	 in-
creases	over	time.	Since	the	creatinine	production	rate	
is	 relatively	 constant	 if	 the	 patient's	 muscle	 mass	 re-
mains	 stable,	 then	 the	 clearance	 expression	

Creatinine

excretion rate
⏞⏞⏞

UCr×V
PCr

⏟⏟⏟

Plasma

creatinine

	 	

is	more	or	less	a	constant	divided	by	a	[creatinine]	that	
varies,	i.e.,	a	reciprocal	function.	On	a	graph	of	[Cr]	ver-
sus	GFR	in	CKD,	at	the	low	end	of	the	[Cr]	scale,	a	big	
loss	of	GFR	(x-	axis)	 is	needed	to	raise	the	[Cr]	 (y-	axis)	

even	a	tiny	bit.	That	makes	the	
tiny

⏞⏞⏞

Δ [Cr]
ΔGFR
⏟⏟⏟

big

	slope	small,	and	

negative,	demonstrated	in	Figure	3.	But	at	the	high	end	
of	the	[Cr]	scale,	just	a	tiny	loss	of	GFR	leverages	a	big	

rise	 in	 [Cr],	 making	
big

⏞⏞⏞

Δ [Cr]
ΔGFR
⏟⏟⏟

tiny

	 large	 and,	 again,	 negative	

(Figure	3).	Thus,	a	reciprocal	function's	very	nature	ex-
plains	the	anecdote	observed	in	CKD.

Do	the	slope	lessons	of	CKD	carry	over	into	AKI?	That	
is,	does	the	AKI	analog	of	Δ[Cr]

ΔGFR
,	i.e.,	 �[Cr]t

�GFRK
,	follow	the	same	

pattern	as	before:	low	[Cr]0	⇒	smaller	 �[Cr]t
�GFRK

	and	high	[Cr]0	

⇒	larger	 �[Cr]t
�GFRK

	(in	magnitude)?	Try	a	low	initial	[Cr]	like	
1.0 mg/dL.	In	steady	state,	that	may	correspond	to	a	GFR	
of	 90  mL/min	 if	 the	 creatinine	 generation	 rate	 were	
90  mg/dL·mL/min.	 Let	 the	 kinetic	 GFR	 change	 from	
90 mL/min	and	graph	its	effect	on	the	[Cr]t,	using	Equation	
(2).	For	the	other	parameters	of	AKI,	we	kept	t = 24 h	and	
V0 = 42 L	and	ΔV

Δt
= 0.25 L∕h.	As	seen	in	Figure	4,	the	tan-

gent	to	the	curve	at	GFRK = 90 mL∕min	has	a	 �[Cr]t
�GFRK

	slope	
that	 is	 shallow	 ( − 0.009722536 mg∕dL per mL∕min).	
Now,	try	a	high	initial	[Cr]	like	9.0 mg/dL,	which	in	steady	
state	would	correspond	to	a	GFR	of	10 mL/min.	If	we	kept	
all	 other	 parameters	 the	 same,	 the	 tangent	 to	 this	 other	

�[Cr]t
�GFRK

= −

⎧
⎪⎪⎨⎪⎪⎩

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0+
ΔV

Δt
t

�
⋅

�
Gen

GFRK +
ΔV

Δt

−[Cr]0

�

+

⎡⎢⎢⎢⎢⎣
1−

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎥⎦
⋅

Gen�
GFRK +

ΔV

Δt

�2

⎫⎪⎪⎬⎪⎪⎭

.

F I G U R E  2  The	partial	derivative	 �[Cr]t
�GFRK

	in	Equation	(3)	is	graphed	against	GFRK	as	the	independent	variable.	The	red	curve	retains	the	
miscellaneous	clinical	values	as	chosen	in	Figure	1.	All	of	its	y-	values	

(
�[Cr]t
�GFRK

)
	are	negative,	consistent	with	the	hypothesis	that	changes	

in	[creatinine]	and	kinetic	GFR	always	move	in	opposite	directions	if	all	of	the	other	variables	are	kept	constant.	The	blue	curve	uses	a	
more	extreme	but	still	allowable	set	of	clinical	values	like	[Cr]0 = 9.0 mg∕dL,	V0 = 30 L,	ΔV

Δt
= − 0.25 L∕h,	Gen = 40 mg/dL ⋅mL/min,	while	

keeping	t = 24 h.	Even	so,	the	blue	curve's	y-	values	
(

�[Cr]t
�GFRK

)
	are	persistently	negative.
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curve	 at	 GFRK = 10 mL∕min	 has	 a	 �[Cr]t
�GFRK

	 slope	 that	 is	
steeper	 ( − 0.217521268 mg∕dL per mL∕min)	 (Figure	 4).	
This	suggests	that	AKI	recapitulates	the	behavior	of	CKD	
in	terms	of	Δ[Cr]

ΔGFR
,	albeit	in	a	blunted	way.

4 	 | 	 DISCUSSION

4.1	 |	 Clinical significance

The	 consistently	 negative	 value	 for	 �[Cr]t
�GFRK

	 in	 the	 real	
world	means	 that	changes	 in	kinetic	GFR	must	always	
move	in	the	opposite	direction	of	changes	in	the	serum	
[creatinine].	If	the	GFR	goes	up	(even	in	the	slightest),	
then	more	creatinine	is	excreted	in	that	instant,	and	the	
[creatinine]	must	go	down.	Conversely,	if	the	GFR	goes	
down	(even	in	 the	slightest),	 then	 less	creatinine	 is	ex-
creted	in	that	 instant,	and	the	[creatinine]	must	go	up.	
Our	 proof	 of	 these	 assertions	 would	 affirm	 what	 most	
physicians	 intuitively	 sense	 about	 the	 relationship	 of	

GFR	to	the	[creatinine].	Of	course,	this	assumes	that	all	
of	the	other	variables	of	creatinine	kinetics	like	time	and	
volume	status	remain	constant,	as	is	done	when	taking	a	
partial	derivative.	All	else	being	equal,	a	doctor	can	con-
fidently	know	that	the	GFR	can	never	change	the	[creati-
nine]	in	a	parallel	way.	If	at	the	24-	h	mark	the	[creatinine]	
were	hypothetically	greater	 than	the	actual—	a	positive	
Δ [Cr]—	,	then	the	GFR	would	have	to	be	lower—	a	nega-
tive	ΔGFRK.

4.2	 |	 Conundrum

One	 important	 lesson	 from	 applying	 the	 kinetic	 GFR	 to	
patient	care	was	that	an	increasing	[creatinine]	does	not	
always	imply	a	decreasing	GFR.	Most	of	the	time	though,	
the	 two	 move	 in	 opposite	 directions,	 and	 this	 mental	
shortcut	 is	used	daily	on	the	wards.	However,	 there	 is	a	
gray	 zone	 where	 some	 instances	 of	 a	 rising	 [creatinine]	
actually	indicate	an	improving	GFR.	Let	us	say	during	an	

F I G U R E  3  Analogous	to	 �[Cr]t
�GFRK

,	the	Δ[Cr]
ΔGFR

	slopes	in	chronic	kidney	disease	are	also	negative.	In	CKD,	the	[creatinine]	(y-	axis)	is	simply	
the	Gen(in this case 90 mg/dL ⋅mL/min)	divided	by	the	GFR	(x-	axis),	a	reciprocal	function	as	shown	by	the	red	curve.	At	the	low	end	of	the	
[creatinine]	scale,	e.g.,	green	dot	([Cr] = 1 mg∕dL),	the	Δ[Cr]

ΔGFR
	slope	is	small	in	magnitude	(−1/90,	green	dash	line	is	tangent).	At	the	high	end	

of	the	[creatinine]	scale,	e.g.,	blue	dot	([Cr] = 9 mg∕dL),	the	Δ[Cr]
ΔGFR

	slope	is	much	larger	in	magnitude	(−0.9,	blue	dash	line	is	tangent).

F I G U R E  4  To	see	if	acute	kidney	injury	might	follow	a	similar	pattern	as	chronic	kidney	disease,	we	visualized	the	steepness	of	the	 �[Cr]t
�GFRK

	
slope	when	the	starting	[creatinine],	[Cr]0,	is	low	versus	high.	When	the	kinetic	GFR	Equation	(2)	is	graphed	as	GFRK	on	the	x-	axis	and	[Cr]t	
on	the	y-	axis,	the	blue	curve	shows	the	relationship	when	[Cr]0 = 1.0	and	the	red	curve	shows	the	relationship	when	[Cr]0 = 9.0.	For	a	fair	
comparison,	the	miscellaneous	clinical	values	are	kept	the	same	between	the	two	curves.	At	the	low	end	of	the	[creatinine]	scale,	the	tangent	
at	[Cr]t = 0.96 mg∕dL	(blue	dot)	has	a	slope	of	− 0.0097 mg∕dL per mL∕min	(green	dash	line).	At	the	high	end	of	the	[creatinine]	scale,	the	
tangent	at	[Cr]t = 8.03 mg∕dL	(red	dot)	has	a	slope	of	− 0.2175 mg∕dL per mL∕min	(black	dash	line).	Qualitatively,	the	pattern	appears	to	be	
that	a	low	[creatinine]	gives	a	smaller	 �[Cr]t

�GFRK
	and	that	a	high	[creatinine]	gives	a	larger	 �[Cr]t

�GFRK
,	with	all	derivative	signs	being	negative.
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episode	of	AKI	that	a	low	GFR	rises	slightly.	That	would	
increase	the	creatinine	excretion,	but	if	that	excretion	re-
mained	less	than	the	creatinine	production,	then	the	net	
positive	balance	would	obligate	the	serum	[creatinine]	to	
rise	still.	It	 is	not	until	the	GFR	increases	by	a	sufficient	
amount	to	make	the	creatinine	excretion	equal	to	the	cre-
atinine	production	that	the	serum	[creatinine]	finally	sta-
bilizes.	Thus,	there	is	a	transient	period	in	renal	recovery	
when	the	GFR	is	increasing	and	the	[creatinine]	is	too.	But	
did	we	not	just	prove	that	GFR	cannot	move	in	the	same	
direction	as	 [creatinine]?	The	conundrum	is	resolved	by	
realizing	that	time	is	different	in	the	two	scenarios.	When	
GFR	and	[creatinine]	are	both	increasing,	they	are	doing	
so	relative	to	time.	For	example,	the	[creatinine]	may	have	
risen	 from	1.0	 initially	 to	1.9	and	 then	 to	2.0 mg/dL	(↑ )
,	 but	 the	 latter	 two	 values	 occurred	 at	 the	 24-		 and	 48-	h	
marks.	 Concordantly,	 the	 kinetic	 GFR	 may	 have	 been	
calculated	to	climb	from	40	to	44 mL/min	(↑ ),	but	these	
are	also	at	the	24-		and	48-	h	marks.	In	contrast,	the	deriva-
tive	 �[Cr]t

�GFRK
	assumes	that	time	is	a	constant.	It	forces	us	to	

compare	GFR	and	[creatinine]	to	themselves,	but	both	at	
the	24-	h	mark,	for	example.	With	that	time	constancy,	if	
[creatinine]	were	to	increase	marginally,	then	GFR	would	
have	to	decrease	marginally.	Furthermore,	we	could	quan-
tify	that	change	by	calculating	 �[Cr]t

�GFRK
's	value.	Allowing	the	

[creatinine],	kinetic	GFR,	and	time	to	all	vary	simultane-
ously	is	beyond	the	scope	of	this	work.

4.3	 |	 What if Gen is changing?

Differential	Equation	(1)	is	set	up	to	assume	that	the	creati-
nine	generation	rate,	Gen,	is	constant.	That	may	be	true	for	
the	most	part,	but	Gen	could	be	decreased	during	a	critical	
illness	such	as	sepsis	(Doi	et	al.,	2009;	Prowle	et	al.,	2014).	
More	than	an	academic	exercise,	this	finding	has	important	
clinical	ramifications.	If	less	creatinine	is	being	produced,	
then	a	[creatinine]	trajectory	may	not	rise	as	quickly,	and	
that	will	mute	the	apparent	severity	of	the	GFR	loss	during	
AKI,	for	example.	Or,	it	could	make	the	[creatinine]	trajec-
tory	fall	more	quickly	during	a	renal	recovery,	making	the	
GFR	gain	seem	more	robust	than	it	really	is.	Accounting	
for	a	changing	Gen	can	potentially	 improve	the	accuracy	
of	 the	 kinetic	 GFR	 calculations.	 Unfortunately,	 it	 is	 not	
known	how	Gen	evolves	over	time	in	most	of	our	critically	
ill	patients.	We	can	measure	it	to	be	decreased,	but	was	the	
evolution	a	sudden	drop,	a	gradual	and	linear	drop,	a	logis-
tic	model	drop,	etc.?	Until	patient	data	are	gathered,	it	may	
be	acceptable	to	treat	a	changing	Gen	as	a	sudden	drop	to	a	
new	value	that	remains	stably	low	throughout	the	critical	
illness.	 If	 the	 acute	 drop	 is	 completed	 within	 24  h,	 then	
the	 kinetic	 GFR	 calculations	 are	 easy	 to	 adapt.	 Just	 use	
the	reduced	Gen,	whatever	 it	 is	estimated	 (or,	better	yet,	

measured)	to	be,	in	the	kinetic	spreadsheet	at	the	onset	of	
and	for	the	duration	of	the	critical	illness.	That	said,	a	Gen	
drop	 that	 is	 linear,	 like	how	volume	change	 is	modeled,	
can	be	 incorporated	 into	our	differential	Equation	 (1)	 to	
yield	a	closed-	form	solution.	However,	its	utility	is	limited	
to	one	or	two	rounds	of	calculation,	since	Gen	cannot	de-
scend	into	negative	values.

4.4	 |	 Conclusion

Doctors	need	to	estimate	the	kidney	function	in	the	non-	
steady	state	 to	care	 for	 their	patients	who	develop	acute	
renal	failure.	The	GFR	affects	most	facets	of	diagnosis	and	
therapy,	and	the	most	cost-	effective	way	to	estimate	GFR	
at	the	bedside	is	to	use	the	kinetic	GFR	equation	(Endre	
et	al.,	2016;	Khayat	et	al.,	2019).	Its	math	contains	a	lot	of	
relationships	that	are	waiting	to	be	discovered.	How	the	
GFR	influences	the	serum	[creatinine]	is	important	to	in-
vestigate,	and	we	can	now	prove	what	doctors	intuitively	
think.	If	the	GFR	were	to	decrease	further,	then	the	[cre-
atinine]	would	have	to	go	up	even	more,	and	vice	versa.	In	
other	words,	their	changes	always	move	in	opposite	direc-
tions,	as	signified	by	the	perpetual	negative	sign	of	 �[Cr]t

�GFRK
.	

This	does	not	contradict	the	paradoxical	observations	that	
an	increase	in	serum	[creatinine]	can	be	compatible	with	
a	gain	of	kinetic	GFR	or	that	a	decrease	in	[creatinine]	can	
be	compatible	with	a	 loss	of	kinetic	GFR,	because	 these	
changes	are	evolving	over	time.	In	contrast,	time	is	fixed	
in	the	taking	of	the	partial	derivative.

4.5	 |	 Future work

Solving	 this	 derivative	 was	 just	 the	 beginning.	 We	 have	
since	 differentiated	 [creatinine]	 with	 respect	 to	 each	 of	
the	 other	 variables,	 and	 all	 of	 the	 other	 derivative	 pairs	
have	 been	 found	 via	 implicit	 differentiation.	 Likely,	 the	
most	interesting	derivative	is	�[Cr]t

� ΔV
Δt

.	If	ΔV
Δt

	is	negative,	the	loss	
in	volume	 concentrates	 the	 [creatinine]	 so	 that	Δ [Cr]	 is	
expected	to	be	positive.	Alternatively,	if	ΔV

Δt
	is	positive,	the	

gain	in	volume	dilutes	the	[creatinine]	so	that	Δ [Cr]	is	felt	
to	be	negative.	Do	these	thought	experiments	prove	that	
yet	another	derivative	 is	always	negative?	The	answer	 is	
no,	and	the	potentially	positive	partial	derivative	of	[Cr]t	
with	respect	to	ΔV

Δt
	is	(see	Appendix):
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APPENDIX 

LIMITS
From	the	kinetic	GFR	equation	(Equation	(2)	in	the	main	text),	the	derivative	of	the	serum	[creatinine]	

(
[Cr]t

)
	with	re-

spect	to	kinetic	GFR	
(
GFRK

)
	is:

The	following	three	cases	of	a	division	by	zero	represent	removable	discontinuities	that	can	be	resolved	by	using	limits.

Case	1:	ΔV
Δt

= 0.
We	will	solve	the	limit	piecewise,	proceeding	through	the	various	components	of	 �[Cr]t

�GFRK
.

To	begin	with,	the	exponential	can	be	resolved	as:

The	dominant	term	in	the	Taylor	series	for	ln
(
1 +

−
ΔV
Δt
t

V0+
ΔV
Δt
t

)
	is	

−
ΔV
Δt
t

V0+
ΔV
Δt
t
+⋯.	Substitute	this	in:

Now,	let	ΔV
Δt

	go	to	zero,	and	the	limit	is	seen	to	be:

�[Cr]t
�GFRK

= −

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0+
ΔV

Δt
t

�
⋅

�
Gen

GFRK +
ΔV

Δt

−[Cr]0

�

+

⎡⎢⎢⎢⎢⎣
1−

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎥⎦
⋅

−Gen�
GFRK +

ΔV

Δt

�2

lim
ΔV
Δt

→0

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

= exp

[(
1 +

GFRK
ΔV

Δt

)
⋅ ln

(
V0

V0 +
ΔV

Δt
t

)]
= exp

[(
1 +

GFRK
ΔV

Δt

)
⋅ ln

(
1 +

−
ΔV

Δt
t

V0 +
ΔV

Δt
t

)]

exp

[(
1+

GFRK
ΔV

Δt

)
⋅

(
−

ΔV

Δt
t

V0+
ΔV

Δt
t
+⋯

)]
=exp

[(
−

ΔV

Δt
t

V0+
ΔV

Δt
t
−
GFRK
ΔV

Δt

⋅

ΔV

Δt
t

V0+
ΔV

Δt
t
+⋯

)]

=exp

(
−

ΔV

Δt
t

V0+
ΔV

Δt
t
−
GFRK ⋅ t

V0+
ΔV

Δt
t
+⋯

)

lim
ΔV
Δt

→0

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

= exp

(
−
GFRK ⋅ t

V0

)
= e

−GFRK ⋅ t

V0

https://doi.org/10.1007/s10157-012-0602-x
https://doi.org/10.1007/s10157-012-0602-x
https://doi.org/10.1111/nep.13396
https://doi.org/10.1111/nep.13396
https://doi.org/10.14814/phy2.14957
https://doi.org/10.14814/phy2.14957
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Another	part	of	the	derivative	affected	by	ΔV
Δt

= 0	is	 1
ΔV
Δt

⋅ ln

(
V0

V0+
ΔV
Δt
t

)
.	Again,	using	the	dominant	term	in	the	Taylor	

series	for	
ln

(
V0

V0+
ΔV
Δt
t

)
,	the	limit	becomes:

The	rest	of	the	derivative	in	the	limit	as	ΔV
Δt

	approaches	zero	is	straightforward:

Case	2:	GFRK = −
ΔV

Δt
.

Although	it	is	unlikely	that	the	GFRK	will	equal	the	negative	of	the	volume	change	rate,	the	limit	is	interesting	to	solve.	
Letting	GFRK	approach	− ΔV

Δt
	is	equivalent	to	stating	that	GFRK = −

ΔV

Δt
+ h,	and	letting	h	approach	zero.	This	substitu-

tion	transforms	 �[Cr]t
�GFRK

	into:

We	will	solve	the	limit	piecewise.	First,	find	the	Taylor	expansion	of	the	e0-	like	expression:

Substitute	in	the	e0-	like	Taylor	expansion,	and	the	first	half	of	the	limit	becomes:

lim
ΔV
Δt

→0

1
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
= lim

ΔV
Δt

→0

1
ΔV

Δt

⋅

(
−

ΔV

Δt
t

V0 +
ΔV

Δt
t
+⋯

)
= −

t

V0

(1)lim
ΔV
Δt

→0

�[Cr]t
�GFRK

= e
−GFRK ⋅ t

V0 ⋅

t

V0
⋅

(
Gen

GFRK
− [Cr]0

)
−

(
1 − e

−GFRK ⋅ t

V0

)
⋅

Gen(
GFRK

)2 .

�[Cr]t
�GFRK

= −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

−
ΔV
Δt

+ h

ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
⋅

�
Gen

h
− [Cr]0

�
+

⎡
⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

−
ΔV
Δt

+ h

ΔV
Δt

� ⎤
⎥⎥⎥⎥⎦
⋅

− Gen

h2

lim
h→0

�[Cr]t
�GFRK

= −

�
V0

V0 +
ΔV

Δt
t

�
�

h
ΔV
Δt

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

e0 - like

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
⋅

�
Gen

h
− [Cr]0

�
+

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −

�
V0

V0 +
ΔV

Δt
t

�
�

h
ΔV
Δt

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

e0 - like

⎤
⎥⎥⎥⎥⎥⎥⎦

⋅

− Gen

h2

lim
h→0

(
V0

V0 +
ΔV

Δt
t

)
(

h
ΔV
Δt

)

= exp

[
h
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)]
= 1 +

h
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
+

h2

ΔV
Δt

2 ⋅ ln
2

(
V0

V0+
ΔV
Δt
t

)

2 !
+⋯

−

⎡⎢⎢⎣
1 +

h
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
+

h2

2 ⋅ ΔV

Δt

2
⋅ ln2

�
V0

V0 +
ΔV

Δt
t

�
+⋯

⎤⎥⎥⎦
⋅

1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
⋅

�
Gen

h
− [Cr]0

�

−

⎡⎢⎢⎣
1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
+

h

ΔV

Δt

2
⋅ ln2

�
V0

V0 +
ΔV

Δt
t

�
+

h2

2 ⋅ ΔV

Δt

3
⋅ ln3

�
V0

V0 +
ΔV

Δt
t

�
+⋯

⎤⎥⎥⎦
⋅

�
Gen

h
− [Cr]0

�

⎡⎢⎢⎢⎢⎢⎣

−
Gen

h ⋅ ΔV
Δt

⋅ ln

�
V0

V0+
ΔV

Δt
t

�
−
Gen

ΔV

Δt

2
⋅ ln2

�
V0

V0+
ΔV

Δt
t

�
−
h ⋅Gen

2 ⋅ ΔV
Δt

3
⋅ ln3

�
V0

V0+
ΔV

Δt
t

�

+
1
ΔV

Δt

⋅ ln

�
V0

V0+
ΔV

Δt
t

�
⋅ [Cr]0+

h

ΔV

Δt

2
⋅ ln2

�
V0

V0+
ΔV

Δt
t

�
⋅ [Cr]0+

h2

2 ⋅ ΔV
Δt

3
⋅ ln3

�
V0

V0+
ΔV

Δt
t

�
⋅ [Cr]0+⋯

⎤⎥⎥⎥⎥⎥⎦
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Substitute	in	the	e0-	like	Taylor	expansion,	and	the	second	half	of	the	limit	becomes:

Add	the	two	halves	of	the	limit	together,	and	the	problematic	division	by	h→ 0	is	subtracted	out:

Now,	let	h	go	to	zero,	and	the	limit	is	seen	to	be:

Case	3:	GFRK =
ΔV

Δt
= 0.

In	the	even	more	unlikely	event	that	the	kinetic	GFR	and	the	volume	change	rate	are	both	zero,	the	dual	limit	ap-
proaching	zero	can	be	solved	by	at	least	two	ways:

(1).	Equation	(1)	was	the	limit	of	 �[Cr]t
�GFRK

	as	ΔV
Δt

→ 0.	Now,	take	the	limit	as	GFRK → 0:

The	Taylor	expansion	of	the	e0-	like	term	e
−GFRK ⋅ t

V0 	is	1 + −GFRK ⋅ t

V0
+

(
−GFRK ⋅ t

V0

)2

2 !
+⋯	Substitute	in:

⎡
⎢⎢⎣
1 −

⎛
⎜⎜⎝
1 +

h
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
+

h2

2 ⋅ ΔV

Δt

2
⋅ ln2

�
V0

V0 +
ΔV

Δt
t

�
+

h3

6 ⋅ ΔV

Δt

3
⋅ ln3

�
V0

V0 +
ΔV

Δt
t

�
+⋯

⎞
⎟⎟⎠

⎤
⎥⎥⎦
⋅

− Gen

h2

⎡⎢⎢⎣
−

h
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
−

h2

2 ⋅ ΔV

Δt

2
⋅ ln2

�
V0

V0 +
ΔV

Δt
t

�
−

h3

6 ⋅ ΔV

Δt

3
⋅ ln3

�
V0

V0 +
ΔV

Δt
t

�
+⋯

⎤⎥⎥⎦
⋅

− Gen

h2

Gen

h ⋅ ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
+

Gen

2 ⋅ ΔV

Δt

2
⋅ ln2

(
V0

V0 +
ΔV

Δt
t

)
+
h ⋅ Gen

6 ⋅ ΔV

Δt

3
⋅ ln3

(
V0

V0 +
ΔV

Δt
t

)
+⋯

⎡⎢⎢⎢⎢⎢⎣

−
Gen

2 ⋅ ΔV
Δt

2
⋅ ln2

�
V0

V0+
ΔV

Δt
t

�
−
h ⋅Gen

3 ⋅ ΔV
Δt

3
⋅ ln3

�
V0

V0+
ΔV

Δt
t

�

+
1
ΔV

Δt

⋅ ln

�
V0

V0+
ΔV

Δt
t

�
⋅ [Cr]0+

h

ΔV

Δt

2
⋅ ln2

�
V0

V0+
ΔV

Δt
t

�
⋅ [Cr]0+

h2

2 ⋅ ΔV
Δt

3
⋅ ln3

�
V0

V0+
ΔV

Δt
t

�
⋅ [Cr]0+⋯

⎤⎥⎥⎥⎥⎥⎦

−
Gen

2 ⋅ ΔV

Δt

2
⋅ ln2

(
V0

V0 +
ΔV

Δt
t

)
+

1
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅ [Cr]0

(2)lim
GFRK → −

ΔV
Δt

�[Cr]t
�GFRK

= −
1
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

[
Gen

2 ⋅ ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
− [Cr]0

]
.

lim
ΔV
Δt

→0

�[Cr]t
�GFRK

= e
−GFRK ⋅ t

V0

⏟⏞⏟⏞⏟

e0 - like

⋅

t

V0
⋅

�
Gen

GFRK
− [Cr]0

�
−

⎛
⎜⎜⎜⎝
1 − e

−GFRK ⋅ t

V0

⏟⏞⏟⏞⏟

e0 - like

⎞⎟⎟⎟⎠
⋅

Gen�
GFRK

�2

lim(
ΔV
Δt
,GFRK

)
→ (0,0)

�[Cr]t
�GFRK

=

[
1 −

GFRK ⋅ t

V0
+⋯

]
⋅

t

V0
⋅

(
Gen

GFRK
− [Cr]0

)
⋯

⋯ −

(
1 −

[
1 −

GFRK ⋅ t

V0
+

(
GFRK

)2
⋅ t2

2 ⋅
(
V0

)2 +⋯

])
⋅

Gen(
GFRK

)2
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The	problematic	division	by	GFRK → 0	is	subtracted	out:

Now,	let	GFRK	go	to	zero,	and	the	limit	is	seen	to	be:

(2).	The	same	limit	as	above	would	be	found	if	Equation	(2)	had	let	ΔV
Δt

	approach	zero:

Substitute	in	the	Taylor	expansion	of	ln
(

V0

V0+
ΔV
Δt
t

)
	as	ΔV

Δt
→ 0:

Now,	let	ΔV
Δt

	go	to	zero,	and	the	limit	is	seen	to	be:

The	dual	limits	in	Equations	(3)	and	(4)	are	mathematically	equivalent,	which	also	validates	the	precursor	limits	in	Equation	
(1):	stable	volume	

(
ΔV

Δt
= 0

)
	and	Equation	(2):	GFRK = −

ΔV

Δt
.

A	fourth	case	of	division	by	zero,	V0 +
ΔV

Δt
t = 0,	has	a	limit	that	is	undefined,	which	is	just	as	well	since	patients	cannot	

have	a	zero	volume.

lim(
ΔV
Δt
,GFRK

)
→ (0,0)

�[Cr]t
�GFRK

=

[
t ⋅ Gen

V0 ⋅ GFRK
−

t

V0
⋅ [Cr]0 −

t2 ⋅ Gen(
V0

)2 +
GFRK ⋅ t2

(
V0

)2 ⋅ [Cr]0 +⋯

]
⋯

⋯ −

(
GFRK ⋅ t

V0
−

(
GFRK

)2
⋅ t2

2 ⋅
(
V0

)2 +⋯

)
⋅

Gen(
GFRK

)2

lim(
ΔV
Δt
,GFRK

)
→ (0,0)

�[Cr]t
�GFRK

=
t ⋅ Gen

V0 ⋅ GFRK
−

t

V0
⋅ [Cr]0 −

Gen ⋅ t2(
V0

)2 +
GFRK ⋅ t2

(
V0

)2 ⋅ [Cr]0 −
t ⋅ Gen

V0 ⋅ GFRK
+

Gen ⋅ t2

2 ⋅
(
V0

)2 +⋯

lim(
ΔV
Δt
,GFRK

)
→ (0,0)

�[Cr]t
�GFRK

= −
t

V0
⋅ [Cr]0 −

Gen ⋅ t2

2 ⋅
(
V0

)2 +
GFRK ⋅ t2

(
V0

)2 ⋅ [Cr]0 +⋯

(3)lim(
ΔV
Δt
,GFRK

)
→ (0,0)

�[Cr]t
�GFRK

= −
t

V0
⋅ [Cr]0 −

Gen ⋅ t2

2 ⋅
(
V0

)2 .

lim
GFRK → −

ΔV
Δt

�[Cr]t
�GFRK

= −
1
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

[
Gen

2 ⋅ ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
− [Cr]0

]

lim(
GFRK ,

ΔV
Δt

)
→ (0,0)

�[Cr]t
�GFRK

= −
1
ΔV

Δt

⋅

−
ΔV

Δt
t

V0 +
ΔV

Δt
t
⋅

[
Gen

2 ⋅ ΔV

Δt

⋅

−
ΔV

Δt
t

V0 +
ΔV

Δt
t
− [Cr]0

]

lim�
GFRK ,

ΔV
Δt

�
→ (0,0)

�[Cr]t
�GFRK

=
t

V0 +
ΔV

Δt
t
⋅

⎡⎢⎢⎢⎣
−

Gen ⋅ t

2 ⋅
�
V0 +

ΔV

Δt
t
� − [Cr]0

⎤⎥⎥⎥⎦

(4)lim(
GFRK ,

ΔV
Δt

)
→ (0,0)

�[Cr]t
�GFRK

= −
t

V0
⋅

(
Gen ⋅ t

2 ⋅ V0
+ [Cr]0

)
.
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Proof  that �[Cr]t
�GFRK

 is  always negative

The	derivative,	rearranged	to	emphasize	the	leading	negative	sign,	is	hypothesized	to	always	be	negative	for	clinically	
realistic	values,	i.e.,	the	expression	in	the	curly	brace	must	be	positive.

The	general	strategy	will	be	a	proof	by	contradiction.	We	test	whether	the	expression	within	the	curly	brace	can	be	
negative	and	prove	that	it	cannot,	in	all	six	of	the	scenarios	that	are	possible.

The	curly	brace's	sum	breaks	up	into	two	groups:

GROUP 1:

The	ratio	of	initial-	to-	final	volume	
V0

V0+
ΔV
Δt
t	must	be	positive,	and	a	positive	number	raised	to	any	real	exponent	is	also	

positive.
In	

1
ΔV
Δt

⋅ ln

(
V0

V0+
ΔV
Δt
t

)
,	 a	negative	ΔV

Δt
	makes	 the	 fraction	

V0

V0+
ΔV
Δt
t
> 1

,	which	makes	 its	 logarithm	positive.	Here,	 the	product	
1
ΔV
Δt

⋅ ln

(
V0

V0+
ΔV
Δt
t

)
	is	negative.	On	the	other	hand,	a	positive	ΔV

Δt
	makes	the	fraction	 V0

V0+
ΔV
Δt
t
< 1,	which	makes	its	logarithm	nega-

tive.	Either	way,	the	product	 1
ΔV
Δt

⋅ ln

(
V0

V0+
ΔV
Δt
t

)
	is	negative.	(A	zero	ΔV

Δt
	is	handled	separately.)

The	 Gen

GFRK +
ΔV
Δt

− [Cr]0	represents	the	spread	between	the	initial	[creatinine]	and	the	eventual	steady-	state	[creatinine].	If	
the	[creatinine]	is	rising,	the	spread	is	positive.	If	the	[creatinine]	is	falling,	the	spread	is	negative.	Since	 Gen

GFRK +
ΔV
Δt

− [Cr]0	
can	take	on	either	sign,	it	determines	the	overall	sign	of	the	three-	term	product	in	Group	1.

GROUP	2 :

In	 Gen(
GFRK +

ΔV
Δt

)2,	Gen	is	positive,	and	the	square	
(
GFRK +

ΔV

Δt

)2
	is	positive	in	the	real	numbers.

In	
1 −

(
V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

,	a	positive	ΔV
Δt

	makes	0 < V0

V0+
ΔV
Δt
t
< 1	and	the	exponent	1 + GFRK

ΔV
Δt

> 0.	A	base	between	zero	and	one	

raised	to	a	positive	exponent	has	a	range	between	zero	and	one	as	well.	Subsequently,	
1 −

(
V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

	is	positive.

However,	a	negative	ΔV
Δt

	makes	 V0

V0+
ΔV
Δt
t
> 1,	and	raising	this	to	any	positive	or	negative	exponent	1 + GFRK

ΔV
Δt

	makes	it	posi-

tive	and	potentially	greater	than	one.	Subsequently,	1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

	can	be	either	positive	or	negative,	thus	de-

termining	the	overall	sign	of	Group	2.

�[Cr]t
�GFRK

= −

⎧
⎪⎪⎨⎪⎪⎩

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
⋅

�
Gen

GFRK +
ΔV

Δt

− [Cr]0

�
+

⎡⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎥⎦
⋅

Gen�
GFRK +

ΔV

Δt

�2

⎫
⎪⎪⎬⎪⎪⎭

(5)

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
always positive

⋅

1
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
always negative

⋅

(
Gen

GFRK +
ΔV

Δt

− [Cr]0

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
can be ± ; determines sign

.

(6)

Gen�
GFRK +

ΔV

Δt

�2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

always positive

⋅

⎡
⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤
⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
can be ± ; determines sign

.
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Broadly,	there	are	3	ways	to	falsify	the	hypothesis	by	having	a	curly	brace	value	that	is	negative.	Referring	to	expression	
(5)—	Group	1—	and	expression	(6)—	Group	2,	the	ways	are:

1.	Positive	or	zero	 Gen

GFRK +
ΔV
Δt

− [Cr]0	in	Group	1	and	Negative	1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

	in	Group	2.

2.	Positive	 Gen

GFRK +
ΔV
Δt

− [Cr]0	and	Positive	1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

	and	|Group1| > |Group2|
�����������������������������

3rd condition

.

3.	Negative	 Gen

GFRK +
ΔV
Δt

− [Cr]0	and	Negative	1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

	and	|Group1| < |Group2|
�����������������������������

3rd condition

.

Test	Each	Falsifying	Way:
1.	If	 Gen

GFRK +
ΔV
Δt

− [Cr]0 ≥ 0,	then	− GFRK < ΔV

Δt
≤ − GFRK +

Gen

[Cr]0
.	(Note:	ΔV

Δt
= 0	is	covered	separately.)

Substitute	these	ΔV
Δt

’s	into	the	exponent	1 + GFRK
ΔV
Δt

	to	get	the	two	bounds:	zero	on	one	end	and	
Gen
[Cr]0
ΔV
Δt

,	after	simplifying	and	

back-	substituting,	on	the	other	end.

Analyze	the	more	interesting	bound	on	the	exponent:	1 −
(

V0

V0+
ΔV
Δt
t

)
( Gen

[Cr]0
ΔV
Δt

)

:

i.	If	ΔV
Δt

	is	negative,	then	
1 −

�
V0

V0 +
ΔV

Δt
t

�

���������������
>1

⎛
⎜⎜⎝

Gen

[Cr]0

ΔV

Δt

⎞
⎟⎟⎠

���
Negative

	and	the	whole	expression	is	positive,	specifically	that	0 < 1 −

(
V0

V0+
ΔV
Δt
t

)
( Gen

[Cr]0
ΔV
Δt

)

< 1.

ii.	If	ΔV
Δt

	is	positive,	then	
1 −

�
V0

V0 +
ΔV

Δt
t

�

���������������
<1

⎛
⎜⎜⎝

Gen

[Cr]0

ΔV

Δt

⎞
⎟⎟⎠

���
Positive

	and	the	whole	expression	is	positive,	specifically	that	0 < 1 −

(
V0

V0+
ΔV
Δt
t

)
( Gen

[Cr]0
ΔV
Δt

)

< 1	

again.

In	both	cases,	the	1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

	was	positive,	but	it	needed	to	be	negative.	Therefore,	Way	#1	does	not	falsify	

the	hypothesis.

2.	As	learned	in	1,	if	 Gen

GFRK +
ΔV
Δt

− [Cr]0 > 0,	then	1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

	has	to	be	positive.	Together,	they	satisfy	two	

out	of	the	three	conditions	in	2.	The	3rd	condition,	then,	is	key.
Requiring	|Group 1| > |Group 2|	is	equivalent	to	asking	if

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0+
ΔV

Δt
t

�
⋅

�
Gen

GFRK +
ΔV

Δt

−[Cr]0

�

�����������������������������������������������������������������������������������������������������������������������
Group 1 negative

+
Gen�

GFRK +
ΔV

Δt

�2 ⋅

⎡⎢⎢⎢⎢⎣
1−

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎥⎦
���������������������������������������������������������������������������

Group 2 positive

<0
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Given	that	 Gen

GFRK +
ΔV
Δt

> [Cr]0,	let	 Gen

GFRK +
ΔV
Δt

= a[Cr]0.	Then	a > 1.

Also,	since	 Gen

GFRK +
ΔV
Δt

	is	greater	than	a	positive	value	of	[Cr]0,	then	GFRK +
ΔV

Δt
> 0.

In	Group	2,	 Gen(
GFRK +

ΔV
Δt

)2 =
Gen

GFRK +
ΔV

Δt
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=a[Cr]0

⋅

1

GFRK +
ΔV
Δt

=
a[Cr]0

GFRK +
ΔV
Δt

.	Substitute	these	in:

Let	
(
1 +

GFRK
ΔV
Δt

)
⋅ ln

(
V0

V0+
ΔV
Δt
t

)
= − x.	 Because	GFRK +

ΔV

Δt
> 0,	 we	 restrict	 ΔV

Δt
> − GFRK.	 If	 ΔV

Δt
	 is	 negative,	 then	

GFRK
ΔV
Δt

< − 1	 and	1 + GFRK
ΔV
Δt

	 is	 negative.	 If	 ΔV
Δt

	 is	 positive,	 then	1 + GFRK
ΔV
Δt

	 is	 positive.	 Whichever	 sign	1 + GFRK
ΔV
Δt

	 has,	 the	

ln

(
V0

V0+
ΔV
Δt
t

)
	must	take	on	the	opposite	sign,	making	

(
1 +

GFRK
ΔV

Δt

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Neg/Pos

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Pos/Neg

	negative	either	way,	so	x	has	to	be	

positive	(x > 0).

(Note:	ΔV
Δt

= − GFRK	and	ΔV
Δt

= GFRK = 0	are	covered	separately.)
Substitute	in:	e−x ⋅ − x ⋅ a−1

a
+ 1 − e−x < 0.

Multiply	both	sides	by	ex:	− x ⋅ a−1
a

+ ex − 1 < 0.
Let	 f (x) = ex − a−1

a
⋅ x − 1.	Is	this	function	always	negative	when	x > 0

Differentiate	the	function:	 f � (x) = ex − a−1

a
.

Because	x > 0,	then	ex > 1.	In	contrast,	because	a > 1,	then	0 < a−1

a
< 1.

The	subtraction	yields	an	 f � (x)	that	is	positive,	meaning	that	 f (x)	is	increasing	on	x > 0.
As	x	approaches	zero	from	the	right,	 f (x)	must	have	a	minimum	of	 lim

x→0+
ex − a−1

a
⋅ x − 1 = 0.

Thus,	 f (x)	is	always	positive,	but	that	contradicts	 f (x) = ex − a−1

a
⋅ x − 1	needing	to	be	negative,	so	Way	#2	does	not	

falsify	the	hypothesis.

3.	If	 Gen

GFRK +
ΔV
Δt

− [Cr]0 < 0,	then	ΔV
Δt

< − GFRK
�����
− or 0

	OR	− GFRK +
Gen

[Cr]0
���

+

< ΔV

Δt
.

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
⋅

�
a[Cr]0 − [Cr]0

�
+

a[Cr]0

GFRK +
ΔV

Δt

⋅

⎡
⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤
⎥⎥⎥⎥⎦
< 0

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
⋅ (a − 1) +

a

GFRK +
ΔV

Δt
�������������

Positive

⋅

⎡
⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤
⎥⎥⎥⎥⎦
< 0

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

⋅

GFRK +
ΔV

Δt

ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

a − 1

a
+ 1 −

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

< 0

e

(
1+

GFRK
ΔV
Δt

)
⋅ ln

(
V0

V0 +
ΔV
Δt

t

)

⋅

(
1 +

GFRK
ΔV

Δt

)
⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

a − 1

a
+ 1 − e

(
1+

GFRK
ΔV
Δt

)
⋅ ln

(
V0

V0 +
ΔV
Δt

t

)

< 0
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i.	If	ΔV
Δt

< − GFRK,	then	1 −

(
V0

V0 +
ΔV

Δt
t

)

���������������
>1

(
1 +

GFRK
ΔV

Δt

)

���������������
Positive 	is	negative,	as	required	in	3.	OR:

ii.	If	− GFRK +
Gen

[Cr]0
< ΔV

Δt
< 0,	then	1 −

(
V0

V0 +
ΔV

Δt
t

)

���������������
>1

(
1 +

GFRK
ΔV

Δt

)

���������������
Negative 	is	positive.

(Note:	ΔV
Δt

= 0	is	covered	separately.)

iii.	If	0 ≤ − GFRK +
Gen

[Cr]0
< ΔV

Δt
,	then	1 −

(
V0

V0 +
ΔV

Δt
t

)

���������������
<1

(
1 +

GFRK
ΔV

Δt

)

���������������
Positive 	is	positive.

The	 latter	 two	 cases	 violate	 the	 2nd	 condition	 that	1 −
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

	 be	 negative,	 so	 only	 the	 first	 case	 of	
ΔV

Δt
< − GFRK	needs	to	be	considered.

Once	again,	the	3rd	condition	is	key,	but	this	time	|Group 1| < |Group 2|.
Requiring	|Group 1| < |Group 2|	is	equivalent	to	asking	if

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0+
ΔV

Δt
t

�
⋅

�
Gen

GFRK +
ΔV

Δt

−[Cr]0

�

�����������������������������������������������������������������������������������������������������������������������
Group 1 positive

+
Gen�

GFRK +
ΔV

Δt

�2 ⋅

⎡⎢⎢⎢⎢⎣
1−

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎥⎦
���������������������������������������������������������������������������

Group 2 negative

<0

So	if	 Gen

GFRK +
ΔV
Δt

< [Cr]0,	let	 Gen

GFRK +
ΔV
Δt

= b[Cr]0.	Then	b < 1.

Additionally,	because	of	ΔV
Δt

< − GFRK	above,	 Gen

GFRK +
ΔV
Δt

	must	be	negative.	So,	really,	b < 0.

In	Group	2,	 Gen(
GFRK +

ΔV
Δt

)2 =
Gen

GFRK +
ΔV

Δt
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=b[Cr]0

⋅

1

GFRK +
ΔV
Δt

=
b[Cr]0

GFRK +
ΔV
Δt

.	Substitute	these	in:

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
⋅

�
b[Cr]0 − [Cr]0

�
+

b[Cr]0

GFRK +
ΔV

Δt

⋅

⎡
⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤
⎥⎥⎥⎥⎦
< 0
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Let	
(
1 +

GFRK
ΔV
Δt

)
⋅ ln

(
V0

V0+
ΔV
Δt
t

)
= x.	Here,	ΔV

Δt
< − GFRK,	which	makes	

(
1 +

GFRK
ΔV

Δt

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Positive

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Positive

	always	posi-

tive,	so	x > 0.

Substitute	in:ex ⋅ x ⋅ b−1
b

+ 1 − ex < 0.
Multiply	both	sides	by	e−x:	x ⋅ b−1

b
+ e−x − 1 < 0.

Let	 f (x) = b−1

b
⋅ x + e−x − 1.	Is	this	function	always	negative	when	x > 0

Differentiate	the	function:	 f � (x) = b−1

b
− e−x.

Because	b < 0,	then	b−1
b

> 1.	In	contrast,	because	x > 0,	then	0 < e−x < 1.
The	subtraction	yields	an	 f � (x)	that	is	positive,	meaning	that	 f (x)	is	increasing	on	x > 0.
As	x	approaches	zero	from	the	right,	 f (x)	must	have	a	minimum	of	 lim

x→0+

b−1

b
⋅ x + e−x − 1 = 0.

Thus,	 f (x)	is	always	positive,	but	that	contradicts	 f (x) = b−1

b
⋅ x + e−x − 1	needing	to	be	negative,	so	Way	#3	does	not	

falsify	the	hypothesis.
Limit	cases:
4.	If	ΔV

Δt
= 0,	then	the	limit	solution	is	given	by	Equation	(1),	shown	below:

Disregarding	the	trivial	case	of	t = 0	that	makes	 �[Cr]t
�GFRK

= 0,	term	by	term,	the	signs	have	to	be

(Note:	ΔV
Δt

= GFRK = 0	is	analyzed	later.)
i.	If	 Gen

GFRK
− [Cr]0 ≤ 0,	then	the	derivative	limit	is	negative,	which	supports	the	hypothesis.

ii.	 If	 Gen

GFRK
− [Cr]0 > 0,	 then	 the	 derivative	 limit	 is	 potentially	 positive.	 Clinically,	 is	 it	 possible	 that	

e
−GFRK ⋅ t

V0 ⋅

t

V0
⋅

(
Gen

GFRK
− [Cr]0

)
−

(
1 − e

−GFRK ⋅ t

V0

)
⋅

Gen

(GFRK )
2 > 0

Since	 Gen
GFRK

> [Cr]0,	let	 Gen
GFRK

= c[Cr]0.	Then	c > 1.

Further,	 Gen

(GFRK )
2 =

Gen

GFRK
⏟⏟⏟
= c[Cr]0

⋅

1

GFRK
=

c[Cr]0
GFRK

.	Substitute	these	in:

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
⋅ (b − 1) +

b

GFRK +
ΔV

Δt
�������������

Positive

⋅

⎡
⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤
⎥⎥⎥⎥⎦
< 0

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

⋅

GFRK +
ΔV

Δt

ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

b − 1

b
+ 1 −

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

< 0

e

(
1+

GFRK
ΔV
Δt

)
⋅ ln

(
V0

V0 +
ΔV
Δt

t

)

⋅

(
1 +

GFRK
ΔV

Δt

)
⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

b − 1

b
+ 1 − e

(
1+

GFRK
ΔV
Δt

)
⋅ ln

(
V0

V0 +
ΔV
Δt

t

)

< 0

lim
ΔV
Δt

→0

�[Cr]t
�GFRK

= e
−GFRK ⋅ t

V0 ⋅

t

V0
⋅

(
Gen

GFRK
− [Cr]0

)
−

(
1 − e

−GFRK ⋅ t

V0

)
⋅

Gen(
GFRK

)2

lim
ΔV
Δt

→0

�[Cr]t
�GFRK

= e
−GFRK ⋅ t

V0

⏟⏞⏟⏞⏟
Positive

⋅

t

V0
⏟⏟⏟

+

⋅

(
Gen

GFRK
− [Cr]0

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
can be ± or 0

−

(
1 − e

−GFRK ⋅ t

V0

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Positive

⋅

Gen(
GFRK

)2
⏟⏞⏞⏞⏟⏞⏞⏞⏟
Positive
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Let	GFRK ⋅ t

V0
= x.	By	inspection,	x > 0	(not	considering	GFRK = 0	yet	or	t = 0	at	all).

Substitute	in:

Multiply	both	sides	by	ex:	x ⋅ c−1
c

− ex + 1 > 0.
Let	 f (x) = c−1

c
⋅ x − ex + 1.	Is	this	function	always	positive	when	x > 0

Differentiate	the	function:	 f � (x) = c−1

c
− ex.

Because	c > 1,	then	0 < c−1

c
< 1.	In	contrast,	because	x > 0,	then	ex > 1.

The	subtraction	yields	an	 f � (x)	that	is	negative,	meaning	that	 f (x)	is	decreasing	on	x > 0.
As	x	approaches	zero	from	the	right,	 f (x)	must	have	a	maximum	of	 lim

x→0+

c−1

c
⋅ x − ex + 1 = 0.

Thus,	 f (x)	is	always	negative,	but	that	contradicts	 f (x) = c−1

c
⋅ x − ex + 1	needing	to	be	positive,	so	the	overall	deriva-

tive's	limit	as	ΔV
Δt

→ 0	must	be	negative.
5.	If	GFRK = −

ΔV

Δt
,	then	the	limit	solution	is	given	by	Equation	(2),	shown	below:

Clinically,	GFRK	is	positive,	forcing	ΔV
Δt

	to	be	negative.	(Note:	GFRK =
ΔV

Δt
= 0	is	analyzed	next.)	Then,	term	by	term,	

the	signs	have	to	be:

−
1
ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Negative

⋅

⎡
⎢⎢⎢⎢⎢⎢⎣

Gen

2 ⋅ ΔV

Δt

⋅ ln

�
V0

V0 +
ΔV

Δt
t

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Negative

− [Cr]0
⏟⏟⏟
Positive

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The	negative	sign	out	in	front	makes	the	entire	derivative	limit	negative,	which	supports	the	hypothesis	that	 �[Cr]t
�GFRK

	is	

always	negative	(disregarding	the	trivial	case	of	t = 0).

6.	If	GFRK =
ΔV

Δt
= 0,	then	the	limit	solution	is	given	by	Equation	(4),	shown	below:

e
−GFRK ⋅ t

V0 ⋅

t

V0
⋅

(
c[Cr]0 − [Cr]0

)
−

(
1 − e

−GFRK ⋅ t

V0

)
⋅

c[Cr]0
GFRK

> 0

e
−GFRK ⋅ t

V0 ⋅

t

V0
⋅ (c − 1) −

(
1 − e

−GFRK ⋅ t

V0

)
⋅

c

GFRK
���
Positive

> 0

e
−GFRK ⋅ t

V0 ⋅

GFRK ⋅ t

V0
⋅

c − 1

c
− 1 + e

−GFRK ⋅ t

V0 > 0

e−x ⋅ x ⋅
c − 1

c
− 1 + e−x > 0

lim
GFRK → −

ΔV
Δt

�[Cr]t
�GFRK

= −
1
ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
⋅

[
Gen

2 ⋅ ΔV

Δt

⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
− [Cr]0

]

lim(
GFRK ,

ΔV
Δt

)
→ (0,0)

�[Cr]t
�GFRK

= −
t

V0
⋅

(
Gen ⋅ t

2 ⋅ V0
+ [Cr]0

)
.
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Disregarding	the	trivial	case	of	t = 0,	term	by	term,	the	signs	have	to	be	− t

V0
⏟⏟⏟

+

⋅

⎛
⎜⎜⎜⎜⎝

Gen ⋅ t

2 ⋅ V0
⏟⏟⏟
Positive

+ [Cr]0
⏟⏟⏟
Positive

⎞
⎟⎟⎟⎟⎠
.

The	negative	sign	out	in	front	makes	the	entire	derivative	limit	negative,	which	supports	the	hypothesis	that	 �[Cr]t
�GFRK

	is	

always	negative.

Conclusion:	All	six	ways	that	the	partial	derivative	could	be	positive	were	falsified.	Therefore,	the	derivative	 �[Cr]t
�GFRK

	is	

always	negative	(except	when	it	is	zero	at	t = 0).
Lastly,	the	partial	derivative	of	[Cr]t	with	respect	to	ΔV

Δt
	is	derived	as	follows:

In	 Equation	 (2)	 of	 the	 main	 text,	 the	 derivative	 of	

⎡⎢⎢⎢⎣
1 −

�
V0

V0+
ΔV
Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎦
	 with	 respect	 to	 ΔV

Δt
	 is	

0 −

⎡
⎢⎢⎢⎣

�
V0

V0+
ΔV
Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤
⎥⎥⎥⎦

�

.

To	calculate	the	derivative	of	the	exponential,	let	y =
(

V0

V0+
ΔV
Δt
t

)
(
1+

GFRK
ΔV
Δt

)

	and	use	logarithms.

Differentiate	with	the	product	rule:

Thus,

lny = ln

(
V0

V0 +
ΔV

Δt
t

)
(
1+

GFRK
ΔV
Δt

)

=

(
1 +

GFRK
ΔV

Δt

)
⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
.

1

y
y� = −

GFRK(
ΔV

Δt

)2 ⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
+

(
1 +

GFRK
ΔV

Δt

)
⋅

V0 +
ΔV

Δt
t

V0
⋅

− V0 ⋅ t(
V0 +

ΔV

Δt
t
)2 .

1

y
y� = −

GFRK(
ΔV

Δt

)2 ⋅ ln

(
V0

V0 +
ΔV

Δt
t

)
−

(
1 +

GFRK
ΔV

Δt

)
⋅

t

V0 +
ΔV

Δt
t
.

y� = −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

⎡
⎢⎢⎢⎣

GFRK�
ΔV

Δt

�2 ⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
+

�
1 +

GFRK
ΔV

Δt

�
⋅

t

V0 +
ΔV

Δt
t

⎤
⎥⎥⎥⎦
.

⎡⎢⎢⎢⎢⎣
1 −

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎥⎦

�

=

�
V0

V0 +
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

⎡⎢⎢⎢⎣

GFRK�
ΔV

Δt

�2 ⋅ ln

�
V0

V0 +
ΔV

Δt
t

�
+

�
1 +

GFRK
ΔV

Δt

�
⋅

t

V0 +
ΔV

Δt
t

⎤⎥⎥⎥⎦
.
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Next,	find	the	derivative	of	
(

Gen

GFRK +
ΔV
Δt

− [Cr]0

)
	with	respect	to	ΔV

Δt
:

Using	the	two	intermediate	derivatives	for	the	product	rule	applied	to	Equation	(2)	of	the	main	text,	we	find	that	�[Cr]t
� ΔV

Δt

	

is:

(
Gen

GFRK +
ΔV

Δt

− [Cr]0

)�

= −
Gen(

GFRK +
ΔV

Δt

)2 .

�[Cr]t

�ΔV

Δt

=

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

�

⋅

⎡⎢⎢⎢⎣

GFRK�
ΔV

Δt

�2 ⋅ ln

�
V0

V0+
ΔV

Δt
t

�
+

�
1+

GFRK
ΔV

Δt

�
⋅

t

V0+
ΔV

Δt
t

⎤⎥⎥⎥⎦

×

�
Gen

GFRK +
ΔV

Δt

−[Cr]0

�
+

⎡⎢⎢⎢⎢⎣
1−

�
V0

V0+
ΔV

Δt
t

�
�
1+

GFRK
ΔV
Δt

� ⎤⎥⎥⎥⎥⎦
⋅

−Gen�
GFRK +

ΔV

Δt

�2 .


