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A self‑consistent probabilistic 
formulation for inference 
of interactions
Jorge Fernandez‑de‑Cossio1*, Jorge Fernandez‑de‑Cossio‑Diaz2 & Yasser Perera‑Negrin3

Large molecular interaction networks are nowadays assembled in biomedical researches along with 
important technological advances. Diverse interaction measures, for which input solely consisting of 
the incidence of causal-factors, with the corresponding outcome of an inquired effect, are formulated 
without an obvious mathematical unity. Consequently, conceptual and practical ambivalences arise. 
We identify here a probabilistic requirement consistent with that input, and find, by the rules of 
probability theory, that it leads to a model multiplicative in the complement of the effect. Important 
practical properties are revealed along these theoretical derivations, that has not been noticed before.

A combination of drugs can produce synergistic effects even when administered separately in time. The first can 
“prepare the field” for the later action of the second, without meeting in a direct physical contact. This meaning 
of interaction has been practical in toxicology for the discovery of dosage combinations that better perform 
on clinical parameters of interest. A similar notion is in usage in epidemiology and in the construction of gene 
interactions networks.

Forefront high-throughput technologies are delivering interaction data relevant for the study of poorly known 
complex systems, like the cell. Factors and effects are often the sole kind of data released in large scale experiments 
by these technologies. For example, synthetic genetic arrays and gene-editing technologies, in both targeted and 
large-scale experiments, allows to knock out or selectively activate/repress target genes along the genome in 
various cell types and organisms, altering cellular process and functions1,2. These factors need not be in direct 
physical contact, while the observable effect, measured in terms of a particular biological outcome, laid far at 
the other end of the triggered process. The mechanisms and process structures operating in the way from factors 
and their effect are not observable at this experimental stage. The tacit assumption is that recurrent patterns of 
factor and effect provide information of the presence of cross-talk structures along the process perturbed by the 
factors (ambient, genes, drugs, …), in their way to the outcome of some measurable parameter (disease, blood 
pressure, live expectancy, cellular growth rate, fitness, transcript expression, or any other biological activity/
phenotype). The above loose meaning of interaction fits to the kind of inference permitted by this kind of data, 
the circumstance that we focus in this manuscript.

The data in these large scale screening provide no cues of when, where and how the intermediate events 
interconnect3. Later enrichments with functional annotations and additional biological knowledge permit the 
systematic elucidation of higher-level principles of the cellular organization and function. The utility of theses 
mapping efforts has been shown across diverse prokaryotes and eukaryotes organisms including mammalian 
and human cells1,4–6. Therefore, inaccuracy at the interaction mapping stage propagates to the subsequence stages 
of enrichment and functional mapping7.

However, at the basic level, the definition of interaction remains conceptually ambivalent. The issue is not new, 
testimonies of everlasting debates can be traced back along more than a century8. Currently, diverse measures 
are advocated in the literature, and the concept of interaction await open for resolution.

On one side, interaction models in epidemiology gravitates around risk, i.e. the probability of a disease (effect) 
given the exposure factors (radiations, smoking, diet, pollution, genes, etc.). Dominant theoretical and methodo-
logical streams advocate developments from causal inference (ex. counterfactuals, potential outcomes, sufficient 
cause), not without controversies among scholars and philosophers9–12. Some epidemiologist proclaim that 
there is no biological rationale for calling interactions to the product terms in a regression model, arguing that 
they can disappear or even change sign by transforming the outcome scale (ex. logarithm)13,14. Others are more 
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confident to cast sufficient-cause interactions method in complementary log regressions framework15. Another 
faction claim for broadening the scope of the casual inference school, and for a more pluralistic approach11,12.

On another side, ad hoc measures are adopted in the construction of large-scale genetic interaction net-
works. Often, regression model are written down directly in terms of the physical parameters measured in the 
experiment (ex. growth rate, fold change, viability, drug inhibition, lethality, etc.), with a hasty explanation for 
the rational of the choice5,16–19. Based on "genetic" grounds20, the double-mutant fitness is expected to be the 
product of the single-mutant fitness, on absence of interaction, but fitness itself exhibit a plurality of meanings, 
or varied in scales. A phenotype can be consistently expressed in terms of any monotonic function (logarithms, 
exponential, etc.) of the “original” phenotypic scale. But the product or the addition in one scale is not the same 
than in another. Evoking a “regression model” or a “multiplicative model” is just not enough. The concerns is 
not new, and the reaction should not be confined to comparisons between mathematically defined measures in 
term of ad hoc criteria of performance3,7,19. Of course, performance is the final goal, yet this path of assessment 
is limited to the already defined competitors, a useful but postmortem dictamen.

Striving to come out from this conceptual quandary in the direction of fundamental development, we under-
take a pragmatic resolution of the concept of interaction that depart from precedent approach. In this endeavour, 
we do not write down in advance a mathematical definition of interaction, but advocate a concept that comply 
with the practical meaning and kind of input data stated above. We identify from a verbally stated definition, 
elementary but general probabilistic requirements for multivalued factors and dichotomous effect scenarios. 
Sticking to the rules of probability theory, we derive a model which is general and simple. Finally, we illustrate 
for a genetic interaction mapping case, how to cast the measured parameters into the language of factor and 
effect, so as to apply the framework just derived. Though we do not pose a causal inference approach, we detour 
briefly into association and causality in connection with our development.

Motivation
Genetic interactions underlie diverse aspects of biology, including the evolution of sex, speciation, and complex 
disease. Simple inbred systems, such as yeast, provide an experimental format for mapping the genetic inter-
actions networks of a cell. Genome-scale interaction studies in isogenic yeast populations, collected growth 
measurements from four possible mutant states for each pair of genes A and B (wild-type ( 00 ), single-mutants 
( 01 and 10 ), and double-mutant ( 11 ). A schematic representation is shown in the upper-right of Fig. 1. Genes 
A and B are regarded to interact when the growth rate �11 of the double mutant is unexpected from the growth 
rates �01 and �10 of the single mutants. This consent is intuitively appealing, but far from guiding to a definite 
physical or biological meaning, merely defers the issue to what can be regarded as a reasonable expectation of 
the effect in the absence of interaction. Indeed, these studies disagree on what they consider for “unexpected”, 
and their derived genetic interaction measures differ7.

Mathematical functions delivering the expectation of the combined factor effect, from the individual fac-
tor’s effect, have been named neutrality function7. So far, the mathematical definition of a neutrality function 
remain open to arbitrariness3,7,21. Mani et al7 examined properties of four reported definitions of interaction 
and show that the choice can dramatically alter the resulting set of genetic interactions with inconsistencies that 
propagates to the functional mapping. For a quick illustration of the magnitude of this impact, we compare two 
measures at the basic interaction networks level, of a more recent and extensive global genetic interaction studies 
in Saccharomyces Cerevisiae1. One of the measures, εM = �11 − �01�10 , use a neutrality function that multiply 
the single-mutants rates1, while the other measure, εA = �11 + 1− �01 − �10 , add the single-mutants rates22.

Figure 1 show the comparison on the Essential x Essential SGA library (See Data Availability). The initial 
high correlation between the most extreme negative interactions (lower-left quadrant of the plot), progressively 
deteriorate, due to a remarkable propensity of the measure εA to score larger positive interactions with respect 
to εM. Overall, the two measures have discrepancies in more than 44% of the pairs reported by one or the other 
measure, i.e. 

(

#missed+ #opposite
)

/
(

#missed+ #opposite+ #interacting
)

 . The superposed histograms in Fig. 1 
show the distribution along the magnitude of interaction computed with both measures. A preponderance of 
genes with positive interaction obtained with εA are notable in the right tail, by thousands, compared to the 
obtained with the measure εM.

The issue is not merely on how large the deviation is, but from what and how we measure the deviation. The 
question of “from what?” is quantitatively answered by choosing a neutrality function. The question of “how we 
measure the deviation?” is another source of plural inspiration. No fundamental agreement in the answers has 
been achieved for neither of these questions. The commonest choices are additivity and multiplicative for the 
neutrality function, and arithmetic difference and the ratio for the deviation. In both cases, one choice can be 
converted to the other by exponentiation or logarithm. But, asking instead, what conversion is appropriate for 
the parameters? introduce no progress at all.

Resolution of the concept of interaction
Definition.  Modeling controversies can become endless not because the mathematics, but because dispu-
tants might not be talking about the same thing. To keep away from such ambiguities, we commence by stating 
explicitly the definition of interaction we advocate.

Before jumping to write down a quantitative definition, we aim to answer the pragmatic question: what we 
want from what we have? The inmediate output of the large scale experiment we are focusing, are not going to 
explain by themselves mechanistic bases from the analysis of each factor pair, but are delivering hypotheses from 
loose interactions networks, that can be tested by further stages of functional analysis. Phillips3 quotation: “… 
the mutations must be interacting with one another, at least in the loose sense that they exist within pathways 
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that both influence the same phenotype”, comply with the pragmatic meaning and the factor-effect kind of input 
data we aimed. Slightly re-stated for widening the context, we regard that:

Two factors interact with one another, in the loose sense that they exist within pathways that cross or inter-
connect, altering their individual influence to the same effect.

Figure 2a sketch an unobserved response mechanism (shaded area) perturbed by two observed factors A and 
B leading to an effect E . According to the definition adopted, on absence of interaction the succession of events 
from each factor to the effect follow independent pathways (Fig. 2b). That is, no events triggered by factor A are 
disturbed by events triggered by factor B along the pathways of actions leading to the effect E . A schematic rep-
resentation of interacting factors is shown in Fig. 2c. Any form of crossover or cross-talks between the pathways 
is regarded as interaction.

We will show how the definition, verbally stated above, become quantifiable in terms of probabilities rules.

Figure 1.   Diverging performance of two measures applied to the same interaction data. In the middle plot, 
genetic interaction for each pair of gene is computed with the measures εM = �11 − �01�10 (X axis), and 
εA = �11 + 1− �01 − �10 (Y axis). The color code corresponds to the bar-chart at the upper left. The parallel 
lines indicate the standard deviation limits, 0.083 and 0.092, for εM and εA, respectively. The count of the pairs 
per each category is shown in a logarithm scale in the bar-chart. The scheme at the upper right show a typical 
four genomes set from where interaction data are obtained for a given pair of genes. Gray and black segment of 
the genome denote respectively the wildtype and perturbed variant of the genes A and B. The growth rates of 
the corresponding yeast isogenic cultures, �01 and �10 corresponds to the single mutants, and �11 to the double 
mutant. The histograms at the bottom right show the distribution along the magnitude of interaction computed 
with measures εM (red profile) and εA (blue profile). The inset zooms the tail farther than one standard 
deviation toward the right tail.
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Mathematical formulation.  We are interested in classifying the interaction or non-interaction relation-
ships between two multivalued factors with respect to a distant dichotomous effect. An unstated and unproven 
assumption in previous approaches is that it is possible to infer interaction from factor and effect data alone, 
without considering details of the internal machinery connecting factors and effect. To prove the validity of 
this assumption we introduce, by the symbol Z , all the unobservable associated factors and process acting in 
the background that escape from our present scrutiny. Since Z is not accessible to us from the data at reach, the 
effect E is not fully determined by factors A and B under our control. A probabilistic framework is required to 
account for this uncertainty.

The effect due to the individual exposure to factors A , B and Z can be represented as EA , EB and EZ . In the no 
interaction case (Fig. 2b), the effect due to the individual or combined exposure can be represented by the logical 
expression E = EA ∨ EB ∨ EZ , where ∨ denotes logical OR. The non-occurrence of an effect or the non-exposure 
to a factor, is denoted with an overbar (logical NOT). The effect E is not realized only when no one of EA , EB and 
EZ is realized. In other words, the negation of the effect, E , is logically equivalent to EAEBEZ  , where concatenation 
is used to denotes the logical AND. The other seven combinations (left column of Table 1), are undistinguishably 
from the observable E . Our data is only provided in terms of E or E , without discerning between the possible 
alternative in which E can be realized (left column Table 1). The logical structure EA ∨ EB ∨ EZ of E is used as 
a proxy representing the unobservable mediating mechanism that involve no cross-talks. This proxy is only a 
temporary construct that cancels in our derivations below. The unobservables EA , EB , EZ and background Z do 
not appear in the final equations, remaining only the observables A , B and E.

Rational requirement.  The instances of factor A are denoted by a ∈ A and those of B by b ∈ B . According 
to the definition, the no-interaction scenario, sketched in Fig. 2b, satisfy the following rational requirements: (i) 
the status of factor B carries no relevant information regarding the outcome EA , provided that the status of factor 
A is known; (ii) the status of factor A and the occurrence of effect EA carry no relevant information regarding EB , 
provided that the status of factor B is known; and similarly, (iii) the status of factors A and B , and effects EA and 
EB joined, carry no relevant information regarding EZ Each of the assertions i, ii, and iii has a definite translation 
in the language of probability theory, that corresponds to the following equalities:

Figure 2.   Sketch of the interaction scenarios. A and B are observed factors, Z accounts for unobserved factors 
and process, and E is the effect of interest. (a) Schematic representation of our limited information. The shaded 
area encloses the unobservable mechanism and background agents. Only factors A and B and the effect are 
observable. (b) No-interaction scenario. (c) Interaction scenario (there is a cross-over of the pathways from 
factors leading to the effect). (Draw with PowerPoint23).

Table 1.   Logical structure EA ∨ EB ∨ EZ of E , used as a proxy representing the unobservable mediating 
mechanism that involve no cross-talks. The left column shows the possible combination of realization of the 
effect. The right column shows the single possible combination of no realization of the effect.

E E

EAEBEZ

EAEBEZ

EAEBEZ

EAEBEZ

EAEBEZ

EAEBEZ

EAEBEZ

EAEBEZ
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where (1) stands for every a ∈ A and b ∈ B , and for every combination replacing instances of Efactor at the 
right of the vertical bar by the complement Efactor . For example, in Pr

(

EB|EAab
)

= Pr (EB|b) in ii.
Therefore, the equalities in (1) are quantitative translations of the rational requirements i, ii, and iii, which 

in turn comply with the verbal definition of interaction. Everything that follows are derived from (1) and the 
rules of probability theory.

A necessary condition.  The product rule of probability theory, i.e. Pr
(

xyz
)

= Pr (x)Pr
(

y|x
)

Pr
(

z|xy
)

 , 
and the requirements (1) imply the following factorization:

for all a ∈ A and b ∈ B . Like with (1), equality (2) is also valid for any of the eight combinations in Table 1. 
However, since the data only account for the realization of the observed effect, i.e. E or E , the seven combina-
tions accounting for the observed E are not individually discernable from the observations, while only EAEBEZ  
can be, since it is equal to E . Hence

is the sole necessary condition for non-interacting factors A and B , accessible to us. Here 
Pr

(

E| · · ·
)

= 1− Pr (E| · · ·) , is the probability of the complement of the effect.
The factorization in the right side of (3) is the expected frequency of no-effect in the absent of interaction. 

Requirement (3) restrict the space of probability distributions allowed for the probability of the effect given 
non-interacting factors. Since this is crucial for our subsequent derivations and purposes, we denote this par-
ticular factorization by N

(

E|ab
)

 , and reserve to it the name neutral model. Hence a necessary condition for no 
interactions (3) can be stated by Pr (E|ab) = N (E|ab) , with the understanding that N (E|ab) = 1−N

(

E|ab
)

.
This path of reasoning departs from previous approaches appealing to neutrality functions or casual inference 

arguments. The factorization (3) is a consequence of the rules of probability theory, given that (1) are satisfied. 
Equalities (1), in turn, followed from the verbal definition of interaction. Still, the form of the neutral model 
presented in (3) does not allows practical evaluation, since it is not expressed in terms of observables, so far.

Interaction measure.  We arrived to the neutral model (3) through a path not related to log-linear forms. 
Now we will look for the connections of (3) with logarithm forms. The logarithm of the probability of the com-
plement of the effect, at interaction or no-interaction scenarios, can be expressed in the form

The identity can be conveniently shown by substituting (5), (6) and (7) in (4).

In the particular non-interaction case, the requirement (3) implies that

Hence, absence of interaction implies a log-linear form of the probability distribution in the complement of 
the effect, and δab  = 0 is required for detectable interactions.

Interaction hypothesis.  Fixing δxy = 0 in (4) implies the log-linearity of N
(

E|xy
)

 , that is:

If δab > 0 there is positive interaction, since the probability of the effect of the combined factors, Pr (E|ab) , 
is greater than the expected,N (E|ab) , as can be corroborated from (4) and (9). If δab < 0 there is negative 

(1)
(i) Pr (EA|ab) = Pr (EA|a)

(ii) Pr (EB|EAab) = Pr (EB|b)

(iii) Pr (EZ |EAEBab) = Pr (EZ)

(2)Pr (EAEBEZ |ab) = Pr (EA|a)Pr (EB|b)Pr (EZ)

(3)Pr
(

E|ab
)

= Pr
(

EA|a
)

Pr
(

EB|b
)

Pr
(

EZ
)

, ∀a ∈ A, b ∈ B

(4)log
{

Pr
(

E|xy
)}

= µ+ αx + βy − δxy , ∀x ∈ A, y ∈ B

(5)µ = log Pr
(

E|ab
)

(6)αx = log
Pr

(

E|xb
)

Pr
(

E|ab
) ,βy = log

Pr
(

E|ay
)

Pr
(

E|ab
)

(7)δxy = αx + βy − log
Pr

(

E|xy
)

Pr
(

E|ab
)

(8)

µ = log Pr
(

EA|a
)

+ log Pr
(

EB|b
)

+ log Pr
(

EZ
)

αx = log Pr
(

EA|x
)

− log Pr
(

EA|a
)

βy = log Pr
(

EB|y
)

− log Pr
(

EB|b
)

δxy = 0

(9)N
(

E|xy
)

= 1− exp
(

µ+ αx + βy
)

, ∀x ∈ A, y ∈ B
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interaction, since Pr (E|ab) < N(E|ab) . Hence, any monotonous function of δab can be used as a measure of 
interaction. We can compare the null hypothesis δab = 0 versus the interaction hypothesis H1:

Notice that requirement (3) entails practical limitations since it is expressed in terms of non-observables 
EA , EB and EZ . The measure of interaction δab , however, can be fully expressed in terms of observables from (6) 
and (7) by

where a, a ∈ A and b, b ∈ B . The null hypothesis δab = 0 turned to be the model multiplicative in the com-
plement of the effect, which is equivalent to the Finney’s independent action model q11q00 = q01q10 , where 
qxy = Pr

(

E|xy
)

 , and x, y ∈ {0, 1}24,25. Lee15 provided instructions to perform such a regression using existing 
statistical software.

Neutral model.  Faithful to the rules of probability theory, we derive now an equivalent expression of (3) in 
terms of observables only. Multiplying both sides of (3) by Pr (b|a) , summing over b ∈ B , and doing the same but 
with Pr (a|b) over a ∈ A , yields

where Pr
(

EB|a
)

=
∑

b∈B

Pr
(

EB|b
)

Pr (b|a) and Pr
(

EA|b
)

=
∑

a∈A
Pr

(

EA|a
)

Pr (a|b) , as warranted by the require-

ments (1) (see also Supplementary Eq. 1). From (12) the factorization (3) can be written

Expanding the product of summations in the denominator and using (3) yields

Substituting (14) in the denominator of (13) demonstrate that the neutral model N
(

E|ab
)

 satisfy:

As noted from (3) and its derived (11), (15), the neutral model, does not relate physical magnitudes directly, 
but only through the probabilities of the effect. The form of the model is valid independently of how the factors 
and effect can be defined in the application domain. Hence, the neutral model “knows” how to measure inter-
actions before casting the physical magnitudes into factors and effects concepts. On the contrary, a neutrality 
function predicts the expected effect directly in terms of physical magnitudes, for example fitness, growth rate, 
etc. Hence, the form of the neutrality function depends on the application domain, and as so, it has no universal 
or unifying validity, and are chosen by ad hock intuitive criteria. We will return later to the neutral model and 
the application-specific castings.

Theoretical implications
Log linearity of the neutral model.  We already shown, Eqs. (4)–(8), that absence of interaction implies 
a log-linear form of the probability distribution in the complement of the effect. We will demonstrate now the 
converse, that a log-linear function in the complement of the effect is a neutral model. It is not obvious, from the 
weird looking expression at the right side, that a log-linear form satisfies the equality (15). We then assert that 
Pr

(

E|xy
)

= exp
(

µ+ αx + βy
)

 , and after proper substitutions and arrangements in the right side, it becomes 
equal to Pr

(

E|xy
)

 , the left side.
The numerator in the right side of (15) becomes

(10)H0 : δab = 0,H1 : δab �= 0

(11)δab = log
Pr

(

E|ab
)

Pr
(

E|ab
)

Pr
(

E|ab
)

Pr
(

E|ab
)

(12)
Pr

(

E|a
)

= Pr
(

EA|a
)

Pr
(

EB|a
)

Pr
(

EZ
)

Pr
(

E|b
)

= Pr
(

EA|b
)

Pr
(

EB|b
)

Pr
(

EZ
)

(13)N
(

E|ab
)

=
Pr

(

E|a
)

Pr
(

E|b
)

Pr
(

EA|b
)

Pr
(

EB|a
)

Pr
(

EZ
)

(14)

Pr
�

EA|b
�

Pr
�

EB|a
�

Pr
�

EZ
�

= Pr
�

EZ
�

�

�

x∈A

Pr
�

EA|x
�

Pr (x|b)

�







�

y∈B

Pr
�

EB|y
�

Pr
�

y|a
�







=
�

x∈A,y∈B

Pr
�

EA|x
�

Pr
�

EB|y
�

Pr
�

EZ
�

Pr (x|b)Pr
�

y|a
�

=
�

x∈A,y∈B

Pr
�

E|xy
�

Pr (x|b)Pr
�

y|a
�

(15)N
(

E|ab
)

=
Pr

(

E|a
)

Pr
(

E|b
)

∑

x∈A,y∈B Pr
(

E|xy
)

Pr (x|b)Pr
(

y|a
) , a ∈ A, b ∈ B
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The denominator in (15) becomes

The summation terms cancel in the numerator and denominator of (15), yielding exp (µ+ αa + βb) , that 
is, Pr

(

E|ab
)

= N
(

E|ab
)

.
Therefore, a log-linear function in terms of x ∈ A , and y ∈ B is a neutral model in the complement of the 

effect.

Relation to other conventional models.  We show first how the conventional additive and multiplica-
tive models in epidemiology can be related to the model multiplicative in the complement of the effect. Later we 
will see how to derive the additive model as an approximation.

Equating to (1) the exponential of δab in (11) , multiplying by the denominator, and expanding the products 
of 1− Pr (E|·) yields:

Rearranging equality (16) yields:

where Rij = Pr
(

E|ij
)

 is the usual notation in epidemiology for risk, the probability of disease ( E ), by exposure 
to factors i ∈ {a, a} and j ∈

{

b, b
}

 . Hence, the requirement δab = 0 of no interaction is satisfied when the above 
equality holds. The conventional additive law accounts for equating the left side to cero, and the conventional 
multiplicative law accounts for equating the right side to cero. When both laws are equal to zero, equality (17) 
holds, and the three models -additive, multiplicative, and multiplicative in the complement of the effects- agree 
to discard interaction (true negative). When only one of the sides is equal to cero, the corresponding law discard 
a true interaction (false negative). When both sides are different from cero but equal, both laws are delivering 
false interactions (false positive). When both sides are different from cero and equality (17) does not holds, the 
three laws are delivering true interactions (true positive). This show that the multiplicative rule is the bias-size 
for correction of the additive rule, and vice versa.

Assuming that Pr (E|·) are small in (16), the cross products can be neglected. Dividing both sides by Pr
(

E|ab
)

 
yields the additive model26:

Thus, the model multiplicative in the complement of the effect justifies the additive model as an approxima-
tion valid for low risk regimes, as has been previously settled27.

Multiplicative or additive models, advocated for long in the epidemiology literature, can be useful approxima-
tions in some domains, which might explain why they remain pervasive in the interaction field.

Cross‑product terms and interaction.  We demonstrated that the cross-product term δxy of the log-lin-
ear form of the probability on the complement of the effect convey an interaction meaning. Can we say the same 
for the probability on the effect? Nothing in mathematic forbid us to write the logarithm of Pr

(

E|xy
)

 in the form

and follows the analog of Eqs. (4)–(7), with E instead of E . We can even calculate the cross-product term δ′xy by 
the analog of Eq. (11), evaluated in E . However, there is nothing analog to (8) supporting that δ′xy = 0 is a neces-
sary condition derived from the definition of interaction advocated in this manuscript. The result in (8) follows 
from the factorization (3), which is valid only on the complement of the effect, E , but not on E , as was previously 
shown from (1) and Table 1. The opposite necessarily constitutes a departure from the rules of probability theory.

A real-life scenario of an evident interaction case, where δxy  = 0 and δ′xy �= 0 , is approached in Supplementary 
Discussion. A simulation demonstrating that the “interaction” terms δxy and δ′xy differ in general are shown in 
Supplementary Fig. S1.

Let now see how disappointing is the strong condition δxy = δ′xy = 0 . Equality (17) is satisfied since δxy = 0 . 
The right side of (17) become cero, since δ′xy = 0 . The only way that the left side equal cero is with α′

x = 0 or 
β ′
y = 0 . But both imply that the probability of the effect depends on a single factor, a trivial case of no-interaction, 

that can be anticipated even without caring on conceptual issues.
Therefore, the cross-product term δ′xy in the logarithm of the probability of the effect, (19), is not a consistent 

measure of interaction. According to this, the model of interaction multiplicative in the effect necessarily departs 
from the definition of interaction and the rules of probabilities theory, and is not generally valid.

Pr
(

E|a
)

=
∑

y∈B

Pr
(

E|ay
)

Pr
(

y|a
)

= exp (µ+ αa)
∑

y∈B

exp
(

βy
)

Pr
(

y|a
)

Pr
(

E|b
)

=
∑

x∈A

Pr
(

E|xb
)

Pr (x|b) = exp (µ+ βb)
∑

x∈A

exp (αx)Pr (x|b)

∑

x∈A,y∈B

exp
(

µ+ αx + βy
)

Pr (x|b)Pr
(

y|a
)

= exp (µ)
∑

x∈A

exp (αx)Pr (x|b)
∑

y∈B

exp
(

βy
)

Pr
(

y|a
)

(16)Pr (E|ab)+ Pr
(

E|ab
)

− Pr (E|ab)Pr
(

E|ab
)

= Pr (E|ab)+ Pr
(

E|ab
)

− Pr (E|ab)Pr
(

E|ab
)

(17)
(

Rab + Rab
)

−
(
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)

= RabRab − RabRab

(18)
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Rab
=

Rab

Rab
+

Rab
Rab
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{
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(
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y − δ′xy , ∀x ∈ A, y ∈ B,
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Gene-interaction studies wrote down different “interaction” functions in terms of fitness1,7,22. Indeed, many of 
such functions can be defined. But as shown by Eqs. (4)–(7), every real value function (  = 0 ) for binary-valued x, 
y can be expressed in the log-form µ+ αx+ βy+ δxy . Those functions for which the cross-product term equal 
cero ( δ = 0 ) are log-linear, but the fitness-values space nullifying δ depends on the function chosen. Shall we 
call “interaction” to the cross-product term δ of any such arbitrarily chosen function? Certainly not, otherwise 
we cannot avoid inconsistent and contradicting calls for interaction.

In general, just because the log of a mathematical function f
(

x, y
)

 can be represented in the form 
µ+ αx+ βy+ δxy , does not entail us to blindly attach a real-world interaction meaning to the term δ . It 
depends on what function we are talking about, and the reality we are modelling. Unfortunately, this subtle 
confusion pervades the subject for long.

Therefore, a criterium connected to reality precede the question of whether the cross-product term represent 
interaction; otherwise, the call for interactions remain ill posed. We got a criterium leading to (3), plainly raised 
from our definition of interaction, by asking and understanding on what model we are entailed to represent 
that reality. On doing so, we demonstrated that the probability on the complement of the effect, Pr(E|xy) , can 
instantiate the function f

(

x, y
)

 , and then, that the cross-product term of the log-form of this function can be 
interpreted as an interaction term.

Mechanistic details.  The notation EA , EB , EZ and Z summarize the unobserved mechanistic structure in 
the logical framework allowed by our observations. All these structures cancel in the derivation (3)–(15) of the 
neutral model. Therefore, departure from δab = 0 ensures that there is no possible separation of the pathways 
leading to effect E that can be independently associated to the factors A and B , and requirement (3) cannot hold 
for any resolution of the effect E into a disjunction EA ∨ EB ∨ EZ . Fortunately, because of this, searching for a 
particular splitting EA , EB and EZ of the effect E satisfying (3), that might not even exist, is not required for the 
diagnosis of interaction, provided δab  = 0 . In other words, knowledge of the “mechanistic” structure of the 
events between the factors and the effects are not required to test for interaction. This was so far a tacit assump-
tion, now demonstrated as valid.

This is of crucial importance in practice. For example, in the large scale interaction studies performed to build 
interconnected maps of simpler organisms1, millions of gene pairs are tested but only a small fraction interacts. 
This already daunting task would be impossible if the molecular mechanisms mediating each possible pair were 
required a priori to select the “appropriate” null model to detect interaction. Instead, the presence of interactions 
can be diagnosed by (10). Subsequent experiments to discern interaction mechanisms (when, where and how) 
can be specifically targeted toward the promising interacting pairs, without wasting efforts in the rejected pairs.

Genetics interactions into the framework
Casting genetic interactions.  We derived a neutral model in terms of general abstract concepts of factors 
and effect, without explicit reference to physical parameters. In this sense, it is a unifying theoretical framework. 
But, to make practical application of this framework, it is required to land the model into actual data scenarios. 
The model obtained here from basic principles, though accepted in toxicology, is ignored or undervalued by the 
dominant genetic networks literature1,7,14,28. This can be in part because to cast the physical parameters (growth 
rate) into the probability framework of factor and effect concepts is not straightforward. The example in the 
domain of genetic interaction introduced in Motivation serve the purpose to illustrate how this translation 
can be performed. After casting the model into this domain, we demonstrate that one of the measures we were 
comparing, additive on fitness εA, can be derived from the model multiplicative in the complement of the effect.

Several genome-scale interaction studies have been conducted in yeast (Saccharomyces Cerevisiae). Even when 
addressing the same interaction question, and advocate the same null multiplicative model f11f00 = f01f10 on 
fitness f  , their definitions of fitness differ, and so are their predictions7. The sub-indices correspond to wild-type 
( 00 ), single-mutants ( 01 and 10 ), and double-mutant ( 11 ). For example:

Jasnos et al.22 assayed growth curves of the resulting progeny of 639 randomly crossed pairs of isogenic 
individuals with deletions performing slow growth rates in one of 758 genes. These authors defined fitness f  by 
the factor e� , of a population growing continuously at a rate � , and chose the null model as the log-fitness scale 
ε = (�00 + �11)− (�01 + �10) , which become additive on rates.

Onge et al.20 studied the interaction of 650 double-deletion strains, corresponding to pairings of 26 non-
essential genes that confer resistance to the DNA-damaging agent methanesulfonate (MMS). These authors 
defined fitness of each deletion strain directly by its duplication rate � , relative to that of wild type, i.e. f = � . 
The null model takes the form ε = �11 − �01�10 , where �00 = 1.

Costanzo et al.1 wired the most extensive global genetic interaction network in Saccharomyces Cerevisiae, 
with over 23 million double mutants involving 5 416 different genes, including the first large-scale interaction 
network comprising ~ 120 000 pairs of essential genes. This hallmark works revealed the first comprehensive 
global functional genetic landscape. These authors defined fitness proportional to colony growth rate relative to 
that of wild type, i.e. f ∝ � . Like Onge et. al., the null model takes the form ε = �11 − �01�10.

Can the measures used in these studies be casted in terms of the model derived here? To address this inter-
rogation in a unified manner, the experimental problem originally contextualized in terms of genes and fitness, 
need to be reformulated here in terms of factors and effect.

Let � denotes the average rate of cell duplication per unit of time. The probability for a strain xy that cell 
duplicates at least once in a lapse of time t  (i.e. E ≡ n > 0 ) can be modeled according to29 by

(20)Pr
(

E|xy
)

= 1− e−�xy t
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In this case x and y might denote gene variants at two loci A and B , respectively. We choose, without losing 
generality, the duplication average time of wild-type strain as the unit of time, i.e. �00 = 1 . The measure for genetic 
interaction by substituting (20) in (11) yields

By posing the genetic interaction problem in terms of probabilities of factors and effect, the equality (21) 
show that the multiplicative model in the complement of the effect imply additivity of duplication rates. This is 
the measure used by Jasnos et al.22 denoted εA in Motivation, now supported from basic principles. As matter 
of fact, these authors provided a brief but appealing justification of their choice.

Gene‑hubs hunting.  We take a glance on the functional mapping implications, to settle some ground on 
the application arena. It is not our purpose to dwell deeper on functional mapping, having others devised and 
championed. Further, diverse methods have been developed for discovering and visualization of functional and 
organizational features of the cell. Though ingenious and successful in their purpose, they are ad hoc devices in 
a large part, that preclude their use as standard-gold for performance assessment of others methods. We have no 
answer to … which one to choose for benchmark? In Motivation we illustrated the diverging performance of εM 
and εA in mapping interaction networks, just by counting interactions and no-interactions, which is a factual 
fair comparison, without the introduction of third-party intricated post-processing bias. Similarly, here we use 
the counting factual method to assess some basic elements of functional implication. We compare the number 
of interactors per genes, and look for biological meanings for the genes exhibiting distinct connection patterns 
regarding the measures.

Cellular process in an organism can accounts for the integrated and concerted activity of specific “gene 
constellations, forming a complex hierarchical web of molecular interactions. It is a well-known fact that most 
genes interact with a limited number of other genes, whereas only a smaller set of genes interacts with many 
other genes (network hubs)30. Perturbations of genes-hubs are expected to have a major fitness impact, i.e. more 
essential31–33. These genes play prominent roles in the characteristics and development of diseases34.We will 
explore how the gene degrees (# of interactors) are distributed by the two measures, and the correspondence 
with biological evidence.

In Fig. 1 above, the measures agree on about 60% of the detected interactions in the Essential x Essential 
library1. However, a preponderance of genes with larger positive interaction is apparent. The histograms in Fig. 1 
show that the preponderance in the order of thousands for εA > 1.5 s.d. Now, we explore how the two measures 
distribute gene degrees (# of interactors) per average interactions score of the corresponding gene interactors 
(Fig. 3b). There is no large divergence between both measures for the negative interactions. However, toward 
the positive scores, the εA measure (blue dots) predominate with larger degrees, in particular for values greater 
than one and two standard deviations (right of the vertical blue line).

Genes with ten or more interactors, obtained at least by any of the measures εM or εA, are plotted in Fig. 3a. 
The genes are ordered in the X-axis by the number of interactors shared by both measures. At each gene position, 
three dots (red, blue and green) are located by the Y-axis according to the number of interactors obtained by εM, 
εA, and the number of common interactors they predict (shared), respectively. As can be appreciated from this 
plot, the genes not only show similar number of interactors (red and blue dots), but they share the identity of 
most of the interactors (green), otherwise the green dots have had appeared separated down from the red and 
blue dots. However, again, a preponderance of blue dots above the red dots is pretty apparent in Fig. 3a, indicat-
ing that the measure εA report more interactors per genes than εM.

With these preliminary evidences, we find relevant for the comparison of gene degrees, to be more restricting 
in regarding interactions when the magnitude of the measure is larger than two standard deviations of the values 
obtained for the complete library (i.e. ε > 2 s.d.). This restriction is more conservative in assuming approximately 
that less than 5% of the pairs interact (with one standard deviation the number rise to about 33%). Then we 
apply a deliberate but simple criterium to select candidate gene-hubs obtained from one measure and missed 
by the other. It is a fair symmetric criterium, based on simple counting. We look for genes that according to one 
measure has less than 10% of the number of interactions captured by the other measure. The candidate hubs so 
captured from the Essential x Essential library are listed in Table 2.

The measure εM does not deliver genes satisfying this tenfold criterium, neither even a twofold one. Supple-
mentary Table S1 list the set of genes with a weaker 1.5-fold criterium. Even in this set of genes scantily favoring 
εM, the measure εA predicted more than 57% of the interactors predicted by εM (last two columns of Table S1). 
The magnitudes of the interactions of the genes in Table S1, obtained by both measures, are contrasted in Sup-
plementary Figure S2a. A linear correspondence is pretty apparent. The network of these eight hubs are created 
according to both measures in Supplementary Figure S2b-c.

Notably in contrast, 13 genes satisfied the tenfold criterium in favor of εA. Further, the measure εM predicted 
for these genes less than 3% of the interactors predicted by εA. The magnitudes of the interactions of the candidate 
hubs of Table 2, obtained by both measures, are contrasted in Fig. 3c. The great majority of εA-interactions are 
positive, which seem to cover a “blind zone” of εM-measure.

Candidate hubs biology.  The interaction networks in-between candidate hubs and interactors, obtained 
by εM and εA, are show in Fig. 3d–e. The interaction network obtained by εM (Fig. 3d) is pretty sparse. Six of 
the 13 candidate hubs have no interactors, and the remaining seven display from one to four interactors. In clear 
contrast, the interaction network obtained by εA is strikingly much denser (Fig. 3e). This contrast is not corre-
sponded the other way around, even by the weaker 1.5 criterium (genes which according to εM have more than 
1.5 times interactors than εA) (Figure S2b-c), despite favoring εM (tenfold for εA vs. 1.5-fold for εM).

(21)δab = (1+ �ab)−
(

�ab + �ab

)
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The 13 candidate hubs, exclusively surfaced by εA, have a significant number of experimentally interactions 
verified in the Saccharomyces Genome Database (SGD) (http://www.yeast​genom​e.org/). For instance, SGD listed 
more than 100 physical and genetic interactions (GI) for genes mpp10 (GI = 23), tif35 (GI = 44), noc4 (GI = 28), 
and rrp7 (GI = 41), (Supplementary Table S2), whereas εM found no genetic interactions with these genes. A ribo-
some biogenesis factor, bms1, is another salient hub annotated in SGD with more that 400 interactors (GI = 360). 
This hub is poorly corresponded by εM with barely 3 interactors, while εA detected 50, including the 3 ones of 
εM. Furthermore, the Temperature Sensitive (TS) alleles of these 13 hubs significantly decrease yeast growth 
fitness (i.e. between 0.2037 and 0.4778) as expected for a highly interconnected hub protein31,32.

The 13 candidate hubs comprise diverse molecular functions and cellular components (Supplementary 
Table S2). For instance, tif35 and tim17 are essential components of molecular complexes partaking protein 
translation and mitochondrial import channel structure35,36. Erg12 is an essential gene coding for a Mevalonate 
kinase which is involved in the biosynthesis of isoprenoids and sterols37. Vrg4 is a GDP-mannose transmembrane 
transport in Golgi38, and pop6 is a subunit of RNase MRP complex which cleaves pre-rRNA3 and telomerase39. 
The GTPase Bms1 and the mpp10 complex are positioned in the core of the SSU processome. Mpp10 is a com-
ponent of the small subunit (SSU) processome, required along with imp4 for early co-transcriptional events in 
ribosome biogenesis40. The SSU processome is completed by a centrally placed Rcl1-Bms1 heterodimer and an 
outer shell of ribosome assembly factors40. GTPase bms1 and the endonuclease rcl partake in ribosomal small 
subunit biogenesis and rRNA processing41, as well as the DEAD-box RNA helicase rok142.

Figure 3.   Distribution of # of interactors per genes in the Essential × Essential library. (a) At each gene, three 
dots (red, blue and green) are located according to the number of interactors obtained by εM, εA and by both, 
respectively. (b) Number of interactors (Y axis) vs. the average interaction score per genes (X axis). Red dots are 
computed with εM and blue dots with εA. The red and blue vertical lines are the two standard deviation limits, 
respectively. (c) Comparison of the interactions scores εM and εA for candidate hubs of Table 2. (d) and (e) 
Interaction network of the candidates’ hubs of Table 2, including the connections between the interactors. The 
hubs are located in the middle ring with larger dots. The interactors that are not connected to more than one 
hub are in the outer ring. The rest of interactors are in the inner ring. The hub-connections has the same color of 
the corresponding hubs. The other connections are in light gray. (d) Interaction network as computed by εM. (e) 
Interaction network as computed by εA. The dot colors are consistently used in (c–e).

http://www.yeastgenome.org/


11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21435  | https://doi.org/10.1038/s41598-020-78496-8

www.nature.com/scientificreports/

Overall, ribosomal biogenesis and rRNA associated processes prevail, with 9 of 13 GO-Slim43 annotations 
referring such terms. In this line, candidate hubs trm112, noc4 and rrp7 are involved in ribosome biogenesis and 
export, and located in the nuclear compartment of the cell44–46. These genes displayed expression correlation with 
a set of 20 genes enriched for the GO_BP ribosome biogenesis (SPELL analysis ACS > 5.3, p-value = 7.31e-23)47. 
Finally, six of the εA surfaced hubs (i.e. mpp10, noc4, bms1, rcl1, imp4, and rrp7) have been recently identified 
as structural key components of the same nucleolar superstructure, the S. cerevisiae SSU processome48.

Altogether, the candidate hubs surfaced by εA are convincingly supported as actual hubs on yeast biology. 
Therefore, the fact that a widely used measure like εM could underscores their interactions indicate there is 
still room for improvements on how we detect and quantify genetic interactions, specially in the framework of 
high-throughput data. Noteworthy, that most of the surfaced hubs are involved in ribosomal biogenesis further 
suggests that not only the overall number of scored genetic interactions may differ when using one or the other 
interaction measure; rather, that the study of a particular biological processes through the lens of genetic interac-
tions might be significantly biased, just because the scored method used. The magnitude and direction of such 
bias, their distribution across fitness values, as well as the type of genetic interaction (suppression/masking), are 
worth of further research.

Remarks on causality
On causal interactions.  A central tenets of system biology is that properties of complex systems, not 
predicted from the individual components, can be essential for understanding the function of the system as a 
whole3. The fact that for example, in a given genetic network background, a phenotype strongly depends on the 
combination of gene variants at two or more loci, suggests that this dependency would be causally and mecha-
nistically implicated, and hence informative of the functional relationship between genes, and the genetic order-
ing of regulatory pathways. Therefore, a causal analysis require a holistic approach, that situate the interacting 
factors in its network background. Previous to this stage, the interaction network should be already wired, even 
in the loose sense permitted by the data. The model we derived provide the inference permitted by the data, of 
the interactions wiring such networks, without departing from the rules of probability theory.

The kind of interaction data we are focusing does not permit to ask whether two factors interact mechanisti-
cally, in the sense of a collection of causal mechanisms, that require component causes to operates49. The high 
throughput screens that produce these data, deliver information of loose interactions networks, that constitute 
source of simple hypotheses that should be tested by further systematic analysis of mechanistic and functional 
relevance, complemented with additional knowledge annotated in databases and in the literature.

Because of the very reasons just posed, it is worth to explicit out that what we have been calling “interaction” 
all around, is not necessarily a causal interaction. Further, we will see analytically why, by testing the interaction 
of two fully correlated factors, and of substituting one of the factors by a fully correlated partner (see in Correla-
tion and causality and Association and Causality). Notwithstanding, an argument in favor of our model in that 
respect, is the cancellation of spurious correlations coming from the population structure (see in Propagated 
susceptibility). Besides being relevant, this cancellation was not previously demonstrated in the derivation of 
other interactions models, as far as we know.

Mechanistic interactions.  Indices have been proposed for mechanistic interaction tests, for two binary 
factors and dichotomous effect, under some moderate assumptions. The peril ratio index of synergy based on 
multiplicativity’ (PRISM), recently proposed50, has the same form of the multiplicative in the complement of the 
effect model (11). This index invokes the no redundancy assumption51, asserting that for every subject in the 
population, there can be at most one arrival event of the unknown components in a sufficiently short time inter-

Table 2.   List of genes that according to one measure has less than 10% of the number of interactions only 
captured by the other measure. The interactions scores were computed from the Essential x Essential library 
with the measures εM = �11 − �01�10 and εA = �11 + 1− �01 − �10.

Candidate hubs # of interactors ( εM) # of interactors ( εA) # of common interactors

mpp10 0 72 0

trm112 0 71 0

erg12 4 65 1

tif35 0 64 0

noc4 0 57 0

rok1 0 55 0

bms1 3 50 3

vrg4 2 47 2

rcl1 2 45 1

tim17 1 43 0

imp4 3 38 2

rrp7 0 37 0

pop6 1 23 1
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val. The correspondence of this index with the sufficient-component cause model (causal-pie model) has been 
demonstrated by Lee15, under the assumptions that the exposure status is time-invariant, the follow-up is fully 
complete, and there is no confounding, selection bias, or measurement error in the study. Rothman’s model52 of 
sufficient and component causes, often described by pie-charts, is one of the most discussed causal models in 
epidemiology, aiming the elucidation of the possible mechanisms through which multiple exposures interact in 
causing an outcome. Lee15 show that in the complementary log regression, the coefficient of the cross-product 
term can be used to test for sufficient-cause mechanistic interactions, the same δ in (11). According to Lee15, 
the model multiplicative in the complement of the effect can also be used to mechanistic interaction inference, 
provided suitable causal assumptions are realized.

Propagated susceptibility.  A factor A can’t be associated to a disease EB if Pr (EB|a) = Pr (EB) for a ∈ A . 
However, a factor without causal connection to an effect can appear spuriously associated to the effect if it is cor-
related to a causal factor. Suppose Pr (EB|b) is the risk of a mutation b of a gene B casually associated to cancer 
EB . Let A be a gene not causally associated to that cancer, such that Pr (EB|ab) = Pr (EB|b) for every allele a ∈ A . 
If some selective phenomenon unrelated to the disease introduces structure in the prior distribution of genes, 
such that Pr (ab)  = Pr (a)Pr (b) , we have

which imply that Pr (EB|a) �= Pr (EB) , “associating” gene A to the effect EB , even when the molecular machinery 
involved in the disease is not perturbed by this gene. The right side of (22) can be interpreted as the expected 
risk accounted from the variants of causal factor B in the proportions they co-occur with the innocuous variant 
a of factor A.

Such spurious association arises for example when a “non-causal” locus is in the close proximity (linkage 
disequilibrium53) to a locus causally connected to a given disease, mimicking the frequencies and correlations 
of the nearby causal locus and their phenotypes.

The prior structure Pr (ab) of the population spuriously “propagates” the susceptibility of factor B to factor 
A , explaining why genes are often erroneously associated to diseases. According to (12), the terms Pr

(

E|a
)

 and 
Pr

(

E|b
)

 introduce spurious susceptibilities Pr
(

EB|a
)

 and Pr
(

EA|b
)

 in the numerator of (15). These fake associa-
tions cancel with the denominator, according to (13), and the neutral model ends up depending only on the true 
susceptibility carriers Pr

(

EA|a
)

 and Pr
(

EB|b
)

 , see Eqs. (12)–(14).

Correlation and causality.  Suppose that factor A is fully correlated with a factor C in the sense that for 
each instance a ∈ A , there is a single instance c ∈ C such that

Hence, exposition to a ∈ A implies exposition to the predetermined partner c ∈ C , and vice versa. All the 
Eqs. (3)–(10) satisfied in terms of a ∈ A are equally satisfied by replacing a by the partner c ∈ C . In particular, 
Pr (E|a) = Pr (E|c) and Pr (E|ab) = Pr (E|cb) , hence, A and C are associated to E with the same strength. Notice 
that these relations involving E happens to be always the case, even when the effect E is not involved in (23). 
Indeed, these equalities arise whether A or C share or not the same mechanisms. For example, factor C might 
be causally involved in the activation of some mechanism in a molecular pathway toward the effect, but A is not 
involved in any pathways perturbing E . However, when a is present, the actual activator c is present because of 
(23), and the pathway is activated not because the former, but because the later. Hence, the actual “causal” factor 
associated to an effect cannot be asserted or recognized by frequencies observation alone. In every case, another 
factor like (23), fully correlated to the factor we are observing can be, unknowingly, the actual cause.

Further, whenever (23) is satisfied, exposition to factors A is by all regards, logically equivalent to exposi-
tion to C , even when they could be physically or biologically different. Not only Pr (E|ab) = Pr (E|cb) , but also 
Pr (b|c) = Pr (b|a) for any other factor B , since

Therefore, all the Eqs. (1)–(13), satisfied in terms of a ∈ A , are equally satisfied by replacing a by the partner 
c ∈ C.

We finish this epigraph by assessing the neutral model with two fully correlated factors. Regarding our 
requirements for interactions, a partner-pair ac , of factors A and C jointly distributed as in (23) satisfy

and then

Hence, the necessary condition for no interaction Pr (E|ac) = N (E|ac) is satisfied, which does not permit 
accepting neither rejecting the hypothesis of interaction. So, the full correlation case doesn’t provide evidence for 

(22)Pr (EB|a) =
∑

b∈B

Pr (EB|b)Pr (b|a), ∀a ∈ A

(23)Pr (a|c) = Pr (c|a) = 1, Pr
(

ac∗
)

= Pr
(

a∗c
)

= 0, a∗ �= a, c∗ �= c
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)
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(
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interaction, even when the built-in cleaner removed the propagated susceptibility due to full correlation between 
factors A and C defined by (23). Allowance to partner diversity is required to be able to detect interaction. In 
other words, it is required to compare the join effect of one instance of a factor with different instances of the 
other factor. For example, to gather information on inhibition or enhancement, at least the effect of the pairs ac 
and ac∗ are required. Thus, interventions that breakup this prior correlation are required, otherwise no data size 
will provide information for interaction between fully correlated factors.

Association and causality.  The full-correlation regime (23) is an extreme circumstance used to magnify 
the issue, but it is a realizable one. Consider for example the case of two genes A and C in a recently in-breeding 
population with alleles variant a, a′ and c, c′ respectively. Suppose that gene C is an oncogene with a malign 
mutant variant c′ involved in a cancer disease E , gene A is involved in other pathways unrelated to this disease, 
and A and C are not sharing any regulation mechanisms. Suppose genes A and C are strongly linked in the same 
chromosome, such that from the four possible haplotypes, only ac and a′c′ are circulating in the population. 
Gene A can be an optimal marker for the disease, but for example, inducing mutation in variant a , or knocking 
down/out the gene, will only cause perturbations not related to the disease. On the other hand, interventions in 
the gene C will modify the oncogenic effect of the malign variant allele c′ . No causal model can differentiate gene 
A from C , from the incident of factors and effect alone, by the very reason that A mimics every counting statistics 
of C , and we don’t have further assumptions and information at this stage. The association scenario is sketched 
in Fig. 4a,b, where U enforced the correlation between genes A and C, and the sole information available to us 
at this stage is enclosed in the rectangles.

Now suppose the causal gene C require a defect in a tumor suppressor gene B , so as to jointly produce a 
definite oncogenic effect. Some mechanism U  hidden to us (Fig. 5), constricts the exposition to the variants of 
factors A and C according to the correlation in (23), but only C is a causative factor. The scenario is depicted in 
Fig. 5, where the sole information available to us is enclosed in the rectangles. The resolution of the hypothesis of 
interaction between factors C and B , (Fig. 5a), can not be distinguished from the resolution of the hypothesis of 
interaction between factors A and B , (Fig. 5b). No model for interaction can differentiate gene A from C regard-
ing their interaction with B , from the incident of factors and effect alone, by the very reason that A mimics every 
counting statistics of C , and we don’t have further information at this stage.

Simply, when a causal or mechanistic hypothesis is not there, and if we don’t put it in, no amount of sample 
data increase will provide it54. However, large-scale experiments nowadays are examples of mass-discoveries 
without a priori possession of such causal hypothesis at this preliminary stage of network wiring. It works because 
the association-to-A hypothesis (Fig. 5a) can take us closer to the causative factor C, since we can go further for 
knowledge related to A to rise alternatives hypotheses. We can find some annotated experiment where A has 
been activated as consequence of some perturbation or mechanism U, and find in another report some associa-
tion of C to U, and so on, so as to gather alternative hypothesis, the actual one among them. However, all these 

Figure 4.   Assessing association of non-causative factor A and causative factor C with the effect E. Unknown 
mechanism U force the correlation between A and C. (a) Spurious association of factors A to the effect E, where 
factors C is not observed. (b) Causative association of factors C to the effect E, where factors A is not observed. 
(Draw with PowerPoint23).
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researches are posterior to the initial wiring stage, where our information is limited to what is enclosed in the 
rectangles, but with the potential to drive our future attention through association, to relevant few hypotheses 
among the combinatorial multitude of irrelevant possibilities.

Further experimental designs of interventions and/or alternative sources of information are required to 
inquire about the causal natures of phenomena. Synthetic genetic arrays1, and the various technologies of genome 
wide editing, can provide such interventions for gathering relevant information, and, delivering and testing causal 
hypotheses. These technologies have revolutionized biomedical research with promising impact in the clinic. 
However, their extensive use has revealed much unpredictability. The variability in genome editing outcomes 
remain a challenge, and both on-target efficiency and off target effects are the major concern55,56. These large-
scale editing tools can produce unpredicted correlation, that can resemble scenarios like the one in (Fig. 5). For 
example, in RNA-guided DNA targeting platform (CRISPR-Cas), sequence similarities with less than perfect 
identity with the target (A), is the potential for off-target (C) DNA binding, that could permanently disrupt nor-
mal gene function and lead to unpredictable effects, incorrectly attributed to the target (A). But again, knowingly, 
the very nature of the off-target effect, give some cues (sequence similarities) on where to look, when a tentative 
target (A) turned out strongly associated.

But there is another side of the story, inherent to modelling, that should be differentiated from the correlated 
situation of Figs. 4 and 5. A model-biased association can be so misleading, that no mathematics, sample size, 
or previous annotated knowledge, will be able to overcome. A mistaken association due to model bias, does not 
lead nor connect to any biological o physical meaning, and any further attempt to deliver meaningful hypotheses 
from the “finding”, will be a waste.

Conclusions
A measure of interaction was derived solely from a practical definition asserting that two factors interact when 
the events they trigger cross or interconnect somewhere in the pathways toward the inquired effect. This measure 
for multivalued factors and dichotomous effect leads to Finney’s independent action principle as a necessary 
condition for no interaction. This model obtained from basic principles, though accepted in toxicology, is ignored 
or undervalued by the dominant epidemiological and genetic networks literature. However, the application in 
epidemiology is straightforward in term of risk, while it needs to be casted into the parameter space of the appli-
cation domain in other fields. We showed how to cast the model multiplicative in the complement of the effect 
into the domain of current genome-wide technologies for genetic interaction. The additive measure in growth 
rates derived from the model has been assessed with real data from large scale fitness experiments on yeast, and 
the results were supported by biological evidence validated in the literature and from systematically annotated 
databases. The theoretical properties revealed for the first time in our derivations, asseverate the advantages of 
this measure not proved in other alternatives. Further, the unity of arguments elaborated here illustrates how 
dissimilar interaction contexts can be accommodated into a common framework. We hope this unified view 
contributes towards relaxing the vivid controversy and coexistence of different models of interaction that plague 
the literature.

Data availability
We downloaded the normalized interaction data files SGA_ExE from http://thece​llmap​.org/costa​nzo20​16/1. 
The normalization removed systematic biases in colony size arising from experimental factors, and a model of 
fitness and genetic interactions for each double mutant were fit to the normalized colony sizes1. For our purpose, 

Figure 5.   Interaction data of binary factors dichotomous effect E. Unknown mechanism U force the correlation 
between A and C. Factors B and C are jointly causative, while A is not causative. (a) Assessing the interaction of 
factors A and B, where factors C is not observed. (b) Assessing the interaction of factors A and C, where factors 
A is not observed. (Draw with PowerPoint23).

http://thecellmap.org/costanzo2016/
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entries with NaN in any of the numerical fields or with negative fitness values were ignored. The columns named 
“Query single mutant fitness (SMF)”, “Array SMF”, and “Double mutant fitness” are here denoted �01 , �10 and 
�11 respectively. The entries were filtered for the analysis by the criterium p-values < 0.05 (column p-value). No 
datasets were generated during the current study.

Received: 20 February 2020; Accepted: 26 November 2020

References
	 1.	 Costanzo, M. et al. A global interaction network maps a wiring diagram of cellular function. Science 353, 6306 (2016).
	 2.	 Hanna, R. E. & Doench, J. G. Design and analysis of CRISPR–Cas experiments. Nat. Biotechnol. 38, 813–823 (2020).
	 3.	 Phillips, P. C. Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 

9, 855–867 (2008).
	 4.	 Horlbeck, M. A. Mapping the genetic landscape of human cells. Cell 174, 953–967 (2018).
	 5.	 Rauscher, B. et al. Toward an integrated map of genetic interactions in cancer cells. Mol. Syst. Biol. 14, 7656 (2018).
	 6.	 Gier, R. A. et al. High-performance CRISPR-Cas12a genome editing for combinatorial genetic screening. Nat. Commun. 11, 1–9 

(2020).
	 7.	 Mani, R., Onge, R. P. S., Iv, J. L. H., Giaever, G. & Roth, F. P. Defining genetic interaction. PNAS 105, 3461–3466 (2008).
	 8.	 Phillips, P. C. The language of gene interaction. Genetics 149, 1167–1171 (1998).
	 9.	 Daniel, R. M., De Stavola, B. L. & Vansteelandt, S. Commentary: the formal approach to quantitative causal inference in epidemiol-

ogy: misguided or misrepresented ?. Int. J. Epidemiol. 45, 1817–1819 (2016).
	10.	 Dawid, A. P. Causal inference without counterfactuals. J. Am. Stat. Assoc. 95, 407–424 (2000).
	11.	 Krieger, N. & Smith, G. D. The tale wagged by the DAG: broadening the scope of causal inference and explanation for epidemiol-

ogy. Int. J. Epidemiol. 45, 1787–1808. https​://doi.org/10.1093/ije/dyw11​4 (2016).
	12.	 Vandenbroucke, J. P., Broadbent, A. & Pearce, N. Causality and causal inference in epidemiology: the need for a pluralistic approach. 

Int. J. Epidemiol. 45, 1776–1786. https​://doi.org/10.1093/ije/dyv34​1 (2016).
	13.	 Greenland, S. Interactions in epidemiology: relevance, identification, and estimation. Epidemiology 20, 14–17 (2009).
	14.	 Vanderweele, T. J. Explanation in Causal Inference Methods for Mediation and Interaction Vol. 729 (Oxford University Press, Oxford, 

2015).
	15.	 Lin, J.-H. & Lee, W.-C. Complementary log regression for sufficient-cause modeling of epidemiologic data. Sci. Rep. 6, 39023 

(2016).
	16.	 Baryshnikova, A., Costanzo, M., Myers, C. L., Andrews, B. & Boone, C. Genetic interaction networks: toward an understanding 

of heritability. Annu. Rev. Genom. Hum. Genet. 14, 1–23 (2013).
	17.	 Bloom, J. S. et al. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast. Nat. Commun. 

6, 1–6 (2015).
	18.	 Jiang, P. et al. Genome-scale signatures of gene interaction from compound screens predict clinical efficacy of targeted cancer 

therapies. Cell Syst. 6, 343-354.e5 (2018).
	19.	 Zamanighomi, M. GEMINI: avariational Bayesian approach to identify genetic interactions from combinatorial CRISPR screens. 

Genome Biol. 20, 137 (2019).
	20.	 Onge, R. P. S. et al. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat. Genet. 

39, 199–206 (2007).
	21.	 Berenbaum, M. C. The expected effect of a combination of agents: the general solution. J. Theor. Biol. 114, 413–431 (1985).
	22.	 Jasnos, L. & Korona, R. Epistatic buffering of fitness loss in yeast double deletion strains. Nat. Genet. 39, 550–554 (2007).
	23.	 Microsoft PowerPoint. (Microsoft Corporation, 2019).
	24.	 Finney, D. J. Probit Analysis, Vol. 334. (Cambridge University Press, Cambridge, 1952).
	25.	 Weinberg, C. R. Applicability of the simple independent action model to epidemilogic studies involving two factors and a dichoto-

mous outcome. Am. J. Epidemiol. 123, 162–173 (1986).
	26.	 Rothman, K. J. The estimation of synergy or antagonism. Am. J. Epidemiol. 103, 506–511 (1976).
	27.	 Weinberg, C. R. Interaction and exposure modification: are we asking the right questions ?. Am. J. Epidemiol. 175, 602–605 (2012).
	28.	 Rothman, K. J., Greenland, S. & Lash, T. L. Modern Epidemilogy. 1581 (2008).
	29.	 Smith, J. & Martin, L. Do Cells Cycle ?. PNAS 70, 1263–1267 (1973).
	30.	 Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 

(2004).
	31.	 Jeong, H., Mason, S. P., Barabási, A.-L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41 (2001).
	32.	 He, X. & Zhang, J. Why do hubs tend to be essential in protein networks. PLoS Genet. 2, 88 (2006).
	33.	 Helsen, J., Frickel, J., Jelier, R. & Verstrepen, K. J. Network hubs affect evolvability. PLoS Biol. 17, 1–5 (2019).
	34.	 Mi, Z., Guo, B., Yin, Z., Li, J. & Zheng, Z. Disease classification via gene network integrating modules and pathways. R. Soc. Open 

Sci. 6, 1–23 (2019).
	35.	 Hanachi, P., Hershey, J. W. B. & Vornlocher, H. Characterization of the p33 subunit of eukaryotic translation initiation factor-3 

from Saccharomyces cerevisiae. J. Biol. Chem. 274, 8546–8553 (1999).
	36.	 Martinez-caballero, S., Grigoriev, S. M., Herrmann, J. M., Campo, L. & Kinnally, K. W. Tim17p regulates the twin pore structure 

and voltage gating of the mitochondrial protein import complex TIM23. J. Biol. Chem. 282, 3584–3593 (2007).
	37.	 Oulmouden, A. & Karst, F. Nucleotide sequence of the ERG12 gene of Saccharomyces cerevisiae encoding mevalonate kinase. 

Curr. Genet. 19, 9–14 (1991).
	38.	 Abe, M., Hashimoto, H. & Yoda, K. Molecular characterization of Vig4/Vrg4 GDP-mannose transporter of the yeast Saccharomyces 

cerevisiae. FEBS Lett. 458, 309–312 (1999).
	39.	 Chamberlain, J. R., Lee, Y., Lane, W. S. & Engelke, D. R. Purification and characterization of the nuclear RNase P holoenzyme 

complex reveals extensive subunit overlap with RNase MRP. Genes Dev. 12, 1678–1690 (1998).
	40.	 Chaker-Margot, M., Barandun, J., Hunziker, M. & Klinge, S. Architecture of the yeast small subunit processome. Sciene 355, 

eaal1880 (2017).
	41.	 Karbstein, K., Jonas, S. & Doudna, J. A. An essential GTPase promotes assembly of preribosomal RNA processing complexes. Mol. 

Cell 23, 633–643 (2005).
	42.	 Martin, R. et al. A pre-ribosomal RNA interaction network involving snoRNAs and the Rok1 helicases. RNA 20, 1173–1182 (2014).
	43.	 Harris, M. A., Clark, J., Ireland, A., Lomax, J. & Ashburner, M. The gene ontology (GO) database and informatics resource. Nucleic 

Acids Res. 32, D258–D261 (2004).
	44.	 Baudin-Baillieu, A., Tollervey, D., Cullin, C. & Lacroute, F. Functional analysis of Rrp7p, an essential yeast protein involved in 

Pre-rRNA processing and ribosome assembly. Mol. Cell. Biol. 17, 5023–5032 (1997).
	45.	 Milkereit, P. et al. Maturation and intranuclear transport of pre-ribosomes requires Noc proteins. Cell 105, 499–509 (2001).

https://doi.org/10.1093/ije/dyw114
https://doi.org/10.1093/ije/dyv341


16

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21435  | https://doi.org/10.1038/s41598-020-78496-8

www.nature.com/scientificreports/

	46.	 Purushothaman, S. K., Bujnicki, J. M., Grosjean, H. & Lapeyre, B. Trm11p and Trm112p are both required for the formation of 
2-methylguanosine at position 10 in yeast tRNA. Mol. Cell. Biol. 25, 4359–4370 (2005).

	47.	 Hibbs, M. A. et al. Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioin-
formatics 23, 2692–2699 (2007).

	48.	 Barandun, J. et al. The complete structure of the small-subunit processome. Nat. Struct. Mol. Biol. 24, 944–953 (2017).
	49.	 Lin, J.-H. & Lee, W.-C. Testing for mechanistic interactions in long-term follow-up studies. PLoS ONE 10, e0121638 (2015).
	50.	 Lee, W.-C. Assessing causal mechanistic interactions: a peril ratio index of synergy based on multiplicativity. PLoS ONE 8, e67424 

(2013).
	51.	 Lee, W.-C. Testing synergisms in a no-redundancy sufficient-cause rate model. Epidemiology 24, 174–175 (2013).
	52.	 Rothman, K. J. Causes. Am. J. Epidemiol. 141 (1976).
	53.	 Goode, E. L. Linkage Disequilibrium. In Encyclopedia of Cancer (ed. Schwab, M.) (Springer, Berlin, 2011). https​://doi.

org/10.1007/978-3-642-16483​-5
	54.	 Pearl, J. Bayesianism and causality, or, why I am only a half-bayesian. Tech. Rep. 24, 19–36 (2001).
	55.	 Kempton, H. R. & Qi, L. S. When genome editing go off-target. Science 364, 234–236 (2019).
	56.	 Adames, N. R., Gallegos, J. E. & Peccoud, J. Yeast genetic interaction screens in the age of CRISPR/Cas. Curr. Genet. 65, 307–327 

(2019).

Author contributions
J.F.C. and J.F.C.D. Conceived and formulated the interaction problem into a probabilistic framework, made the 
mathematical derivations, and casted gene-fitness interactions into the probabilistic framework. J.F.C. Drafted 
the paper. Y.P.N. Propose the study case data, instantiate the biological questions and interpretation. All authors 
participated in the interpretation of the formulas, in the analyses of genetic interaction data and results, conceived 
plots and figures and revised the paper. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https​://doi.org/10.1038/s4159​8-020-78496​-8.

Correspondence and requests for materials should be addressed to J.F.-d.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1007/978-3-642-16483-5
https://doi.org/10.1007/978-3-642-16483-5
https://doi.org/10.1038/s41598-020-78496-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A self-consistent probabilistic formulation for inference of interactions
	Motivation
	Resolution of the concept of interaction
	Definition. 
	Mathematical formulation. 
	Rational requirement. 
	A necessary condition. 
	Interaction measure. 
	Interaction hypothesis. 
	Neutral model. 

	Theoretical implications
	Log linearity of the neutral model. 
	Relation to other conventional models. 
	Cross-product terms and interaction. 
	Mechanistic details. 

	Genetics interactions into the framework
	Casting genetic interactions. 
	Gene-hubs hunting. 
	Candidate hubs biology. 

	Remarks on causality
	On causal interactions. 
	Mechanistic interactions. 
	Propagated susceptibility. 
	Correlation and causality. 
	Association and causality. 

	Conclusions
	References


