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Cognitive flexibility refers to various processes which enable behaviors to be modified on the basis of a change in the con-

tingencies between stimuli or responses and their associated outcomes. Reversal learning is a form of cognitive flexibility

which measures the ability to adjust responding based on a switch in the stimulus–outcome contingencies of, typically

two, perceptually distinct stimuli. Reversal tasks have provided valuable insight into the neural basis of cognitive flexibility,

implicating brain regions including the lateral orbitofrontal cortex (lOFC) and dorsomedial prefrontal cortex (dmPFC).

However, with two-stimulus reversal, it is difficult to determine whether response errors are due excessive perseveration,

deficient learning, or other problems with updating. To address this limitation, we developed a mouse three-choice

touchscreen-based visual reversal task, in which the contingencies of two stimuli were switched on reversal but a third, simul-

taneously presented, stimulus was never reinforced. We found that, in male C57BL/6J mice, responding at the previously

rewarded stimulus predominated over the newly and never-reinforced stimuli during early reversal. Next, we showed that

acute pharmacological inhibition of lOFC, but not dmPFC, impaired early reversal performance, relative to noninactivated

controls. Interestingly, however, lOFC inactivation deficits were characterized by increased choice of the never-reinforced

stimulus and a decrease in (perseverative-like) responding at the previously rewarded stimulus. These effects are inconsis-

tent with the historical notion of lOFC mediating response inhibition and closer to recent views of the lOFC’s role in re-

sponse/outcome tracking. Overall, these findings provide initial support the utility of this novel paradigm for studying

cognitive flexibility and its underlying neural substrates.

[Supplemental material is available for this article.]

Cognitive inflexibility in addictions including alcohol use disor-
ders (AUDs) can prevent effective disengagement from destructive
patterns of drug-seeking (Jentsch and Taylor 1999; Belin et al.
2016). In laboratory settings, measures of cognitive flexibility
such as reversal learning are slowed in AUD patients (Vanes et al.
2014; Le Berre et al. 2017), while rodents chronically exposed to al-
cohol or other drugs of abuse (e.g., cocaine), exhibit abnormalities
in reversal performance and other forms of cognitive flexibility, in-
cluding attentional set-shifting (Schoenbaum et al. 2004; Coleman
et al. 2012; DePoy et al. 2013; Trantham-Davidson et al. 2014; Hu
et al. 2015; Varodayan et al. 2018). In turn, these behavioral distur-
bances have been attributed to drug-induced adaptations in certain
cortical and striatal regions that are known substrates for these cog-
nitive processes (Schoenbaumand Shaham2008;Moorman 2018).

Prior studies in the rodent and nonhuman primate have
shownthatneurons in the lateral orbitofrontal cortex (lOFC)exhib-
it correlatesof successful reversal learning,while experimentally in-
duced disruptions of lOFC function impair reversal (Iversen and
Mishkin 1970; Jones and Mishkin 1972; Dias et al. 1996, 1997;
Rolls 1996; Tremblay et al. 1998; Schoenbaum et al. 2002, 2003;
Chudasama and Robbins 2003; Izquierdo et al. 2004; Walton
et al. 2004, 2010; Kim and Ragozzino 2005; Stalnaker et al. 2006;
Boulougouris et al. 2007; Clarke et al. 2008; Ghods-Sharifi et al.
2008; Brigman et al. 2013; Bissonette et al. 2014; Dalton et al.
2016; Marquardt et al. 2017). However, although lOFC disruptions
reliably disrupt reversal, differing views regardingwhat this reflects
about the function of the region exist. Early hypotheses suggested

the lOFC was important for response inhibition (Jones and
Mishkin 1972), while more recent accounts posit a role in tracking
response and outcome histories to guide decisions, and in using
stimuli-associated specific outcomes to make choices among the
available options (Balleine et al. 2011; Noonan et al. 2012;
Rudebeck and Murray 2014; Costa et al. 2015; Stalnaker et al.
2015; Izquierdo et al. 2016).

In addition to the prominent role ascribed to the lOFC, the
medial prefrontal cortex (mPFC), as well as a number of other brain
regions such as the dorsal striatum, have been shown to subserve
reversal (Palencia and Ragozzino 2004, 2006; Ragozzino and Choi
2004; Tzavos et al. 2004; Brown et al. 2010; Graybeal et al. 2011;
Amodeo et al. 2017; Grospe et al. 2018). For example, lOFC lesions
in rats produced a perseverative-like reversal deficit (increased early
reversal responding at the previously rewarded stimulus [Sprior]),
whereasmPFC lesions appeared to impair learning of the new stim-
ulus–reward contingency (more late-reversal responding at the
Sprior) (Chudasama and Robbins 2003). However, other studies
found that while mPFC lesions or inactivations disrupted atten-
tional shifts, there were null, and even facilitatory, effects on rever-
sal (Dias et al. 1996; Birrell and Brown 2000; McAlonan and Brown
2003; Ragozzino et al. 2003; Brigman and Rothblat 2007; Bisso-
nette et al. 2008, 2013; Floresco et al. 2008; Dalton et al. 2016).

Some of the inconsistencies and interpretative issues evident
in the literaturemight stem in part from limitations inherent to the
most typically used reversal paradigms. In such preparations, sub-
jects learn the outcome contingencies of two stimuli, which are
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then switched on reversal. Because both stimuli have well-
established antecedent reward versus nonreward associations at re-
versal, it is difficult to disambiguate perseverative responding from
impaired learning about the new contingencies or other problems,
such as deficient on-task response/outcome tracking. This method
also lacks the possibility to evaluate the presence of irrelevant/dis-
tracting stimuli that are known to potently influence human
decision-making in a manner related to OFC and mPFC recruit-
ment (Chau et al. 2014).

One approach to circumventing some of these problems is to
expand the range of choices available on reversal by adding a third
(or more) stimulus that is never rewarded (Bussey et al. 1997;
Ragozzino et al. 2003; Kim and Ragozzino 2005; Lee et al. 2007;
Ragozzino and Rozman 2007; Rudebeck et al. 2008; Seu et al.
2009;Walton et al. 2010; D’Cruz et al. 2011; Kosaki andWatanabe
2012; Noonan et al. 2012, 2017; Riceberg and Shapiro 2012). Yet
despite rapid advances in the availability of powerful genetic tools
to monitor and manipulate neural substrates of higher-order be-
haviors in mice, there is currently a lack of multistimulus reversal
paradigms to test cognitive flexibility in this species.

The goal of the present study was to first develop a novel,
three-choice, version of a previously described mouse visual dis-
crimination and reversal touchscreen paradigm (Izquierdo et al.
2006; Mar et al. 2013), and then to evaluate the effects on early re-
versal performance after inactivating the lOFC and dorsomedial
prefrontal cortex (dmPFC). We began by assessing a cohort of
male C57BL/6Jmice (a commonly used inbred strain) using amod-
ified version of the Bussey–Saksida Touch Screen System (Graybeal
et al. 2014) with three response windows on a touchscreen panel,
within each of whichwas presented a single two-dimensional visu-
al stimulus (Fig. 1A; see Supplemental Material for full experimen-
tal procedures).

To characterize the task, mice were first pretrained to reliably
make a single touch at one responsewindow to obtain a food-pellet
reward (∼10 sessions). During discrimination sessions, three novel
stimuli were simultaneously presented on each trial, with res-
ponses at one stimulus (S+, “bars” or “dots” counterbalanced across
mice) producing reward at a continuous rate of reinforcement, fol-
lowed by another trial inwhich the stimuli were presented in a ran-
domly selected spatial configuration (Fig. 1B). Responses at either
of the other two stimuli (S1−, S2−) produced no reward and a
15-sec timeout period (signaled by extinguishing the house lights),
followed by a correction trial in which the stimuli were presented
in the same spatial configuration. Correction trials were repeated
until a correct response was made. Testing proceeded on daily ses-
sions comprising either 36 (for task characterization) or 30 (for in-
activation) trials (excluding correction trials) until a criterion of
>75% correct performance on two consecutive sessions was at-
tained (=11.9 ±1.4 sessions).

Reversal began on the next session after discrimination crite-
rionwas achieved. Here, the same three stimuli were presented, but
the previously rewarded stimulus was now unrewarded (S+ now
Sprior), while one of the previously unrewarded stimuli (“moon”
for all mice) was now rewarded (S1− now Snew) and the other stim-
ulus remained unrewarded (S2− now Snever) (Fig. 1B). The proce-
dure was otherwise the same as for discrimination (including use
of correction trials). Testing proceeded until a >75% correct perfor-
mance on two consecutive sessions criterion was met (=11.2 ±1.2
sessions). For each mouse, sessions to discrimination criterion
and, separately, reversal criterion were tallied and subdivided
into early, mid, and late phases (Bergstrom et al. 2018). Of the total
responses made during each phase, the percentage of responses at
each of the three stimuli was calculated. In addition, to evaluate
themicrostructure of responding at each phase, the average length
of unbroken strings of responding at the same stimulus was also
analyzed for each phase (Brigman et al. 2013).

Results showed that choice of the S+/Sprior stimulus increased
significantly from early to late discrimination and remained high
at early reversal before decreasing across subsequent reversal train-
ing (Fig. 1D; e.g., behavioral raster plots, see Fig. 1C). Conversely,
selection of the S1−/Snew decreased from early to late discrimina-
tion and progressively increased over reversal, while S2−/Snever

choice was low by late discrimination and spiked during mid-
reversal—apparently reflecting sampling of both previously
unrewarded options at this mid-stage (Fig. 1E,F). The patterns evi-
dent in overall percent responding were substantiated by the
trial-by-trial analysis showing that strings of consecutive S+/Sprior

responses increased over discrimination and decreased over rever-
sal. Strings of S1−/Snew responses, in contrast, were low by late dis-
crimination before increasing across reversal, whereas S2−/Snever

strings were also reduced by late discrimination and remained
flat across reversal (Fig. 1G–I). The number of Sprior (r=+0.72, P<
0.003) and Snever (r=+0.55, P<0.044), but not Snew (r= +0.39),
responses made at early reversal positively correlated with Snew

choice at late reversal—suggesting that greater negative feedback
early in the task led to superior performance later (Supplemental
Fig. S1A–C). Lastly, choice latencies for all three stimuli quickened
across the phases of discrimination and again at reversal
(Supplemental Fig. S2).

These initial data establish the feasibility of assessing multi-
choice reversal in mice using a touchscreen-based procedure.
They also demonstrate this paradigm’s value in dissociating pat-
terns of errors that are perseverative in nature (Sprior > Snew) from
those reflecting random responding or exploration of the alterna-
tive stimulus options (Sprior = Snew). On the basis of these findings,
we next evaluated the consequences of pharmacologically inacti-
vating either the lOFC or dmPFC during early reversal, given the
known contributions of these regions to cognitive flexibility (Fig.
2A). Following pretraining, male C57BL/6J mice were implanted
with indwelling guide cannula into the lOFC (Fig. 2B) or dmPFC
(Fig. 2E) and trained to the discrimination criterion in 12–15 ses-
sions. To inhibit neuronal activity during early reversal, the
GABA receptor agonist, muscimol (MUS), or saline (SAL) vehicle
was bilaterally infused into the lOFC or dmPFC prior to each of
the first two reversal sessions (capturing early reversal).

lOFC inactivation produced significant alterations in the pat-
ternof respondingduring early reversal, aswell as a reduction in the
number of trials performed overall, relative to saline-infused con-
trols (SAL=72.2 ±4.9, MUS=33.4 ±8.2; t(16) = 4.03, P<0.0010).
Specifically,micewith the lOFC inactivatedmade significantly few-
er responses at the Sprior than controls but showed a significant in-
crease in choices at the Snever, as a percentage of total trials
completed. Selectionof the Snewoptionwas equivalently lowacross
the inactivated and saline groups (Fig. 2C).Microstructural analysis
of trial-by-trial responding revealed that lOFC-inactivated mice
made significantly shorter strings of consecutive of Sprior responses,
with a corresponding increase in Snever strings (and no change in
Snew strings) (Fig. 2D). Lastly, the latency to choose the Sprior, but
not Snew or Snever stimulus, was longer after lOFC inactivation
(Supplemental Fig. S2). The fact that choice latency was selectively
higher for the Sprior stimulus after lOFC inactivation argues against
the kind of general loss of response vigor that has been reported in
rats studies (StOnge and Floresco 2010; Dalton et al. 2016). It could
instead reflect deliberation or hesitancy at the Sprior option. Why
thiswould be greater after lOFC inactivation is unclear; one intrigu-
ing possibility is that this renders animals more sensitive to the
Sprior’s strong violation of outcome expectancies.

These data demonstrate that early reversal performance in
this three-choice task was disrupted by lOFC inactivation.
However, the pattern of effects does not fit with the historically fa-
vored notion that the lOFC mediates response inhibition—which
would be expected to produce an increase, not a decrease, in
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perseverative-like responding at the Sprior. Rather, these data are
more readily explained by more recent views that the lOFC inte-
grates a record of choices and their respective outcomes to guide
the optimal response based on the calculated value of relative op-
tions available (Noonan et al. 2012; Rudebeck and Murray 2014;

Stalnaker et al. 2015; Izquierdo et al. 2016). For example, multi-
choice reversal studies in nonhuman primates find that, without
the normal contribution of the lOFC (or mPFC), animals do not
perseveratemore, but insteadmore frequently shift between choic-
es (Walton et al. 2010; Noonan et al. 2012, 2017; Chau et al. 2014).
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Figure 1. Performance in a novel three-choice visual discrimination and reversal touchscreen paradigm. (A) A mouse-eye (upper) and overhead (lower)
view of the apparatus. (B) Visual stimuli used for discrimination and reversal (note, the designation of bars and dots as the S+ on discrimination, and the
corresponding Sprior designation on reversal, was counterbalanced across mice and did not affect performance). (C) Behavioral raster from single training
sessions of a representative mouse at each relevant training phase. Blue lines represent choice of the S+ or Sprior during discrimination (left) or reversal (right)
sessions. Red lines represent choice of the S1− (discrimination sessions, left) or Snew (reversal sessions, right), while green lines represent the S2− (discrim-
ination sessions, left) or Snever (reversal sessions, right). The maximum session length was 3600 sec (1 h). Note the shift from random stimulus selection, to
efficient discrimination displayed across discrimination, and then the marked degree of perseveration in early reversal, followed by characteristic sampling
and then reversal during the middle and late reversal phases, respectively. (D) The percentage of S+/Sprior responses increased across discrimination and
remained high at early reversal before decreasing across subsequent reversal training (task ×phase interaction: F(2,26) = 217.9, P<0.0001; effect of
task: F(1,13) = 0.68, P=0.4245; effect of phase: F(2,26) = 9.51, P=0.0008, followed by individual comparisons via Tukey’s post-hoc tests). (E) The per-
centage of S1−/Snew responses decreased from early to late discrimination and progressively increased over reversal (task × phase interaction: F(2,26) =
239.1, P<0.0001; effect of task: F(1,13) = 34.32, P<0.0001; effect of phase: F(2,26) = 24.25, P<0.0001, followedby Tukey’s post-hoc tests). (F ) Thepercentage
of S2−/Snever choicewas lowby latediscriminationanddidnot changeduring reversal (task × phase interaction: F(2,26) = 4.01,P=0.0302; effectof task: F(1,13) =
43.44, P<0.0001; effect of phase: F(2,26) = 22.52, P<0.0001, followedbyTukey’s post-hoc tests). (G) Strings of consecutive S+/Sprior responses increasedover
discriminationanddecreasedover reversal (task × phase interaction: F(2,26) = 5.50,P<0.0102; effect of task: F(1,13) = 26.26,P=0.0002; effect of phase: F(2,26) =
19.86, P<0.0001, followed by Tukey’s post-hoc tests). (H) Strings of S1−/Snew responses were decreased by late discrimination before increasing
across reversal (task × phase interaction: F(2,26) = 91.38, P<0.0001; effect of task: F(1,13) = 34.57, P<0.0001; effect of phase: F(2,26) = 25.87, P<0.0001, fol-
lowed by Tukey’s post-hoc tests). (I) S2−/Snever strings were reduced at late discrimination and stayed flat across reversal (task × phase interaction: F(2,26) =
2.39, P=0.1116; effect of task: F(1,13) = 14.92, P=0.0020; effect of phase: F(2,26) = 10.03, P<0.0006, followed by Tukey’s post-hoc tests). n=14. Data are
means ± SEM. (*) P<0.05.
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This effect has been explained by an inability to integrate re-
cent and historical choice-outcomes—which are mixed and con-
flicting during reversal—to support decisions, leading to the
misattribution of positive outcomes to the unrewarded stimuli
(“deficient credit assignment”). While a deficiency of this kind
could conceivably contribute to the reversal abnormalities ob-
served in the current study, it cannot adequately account for the
specific pattern we see. In particular, if mice had difficulty with
credit assignment per se, then we would expect to see an increase
in responding at the Snew, as well as the Snever, because credit misat-
tributed to the latterwould derive frommore frequent choice of the
former. To decipher the nature of the effects we do see, it could be
informative to inactivate the lOFC at the mid-reversal stage,
when Snew responding is higher than at early reversal, and ask
whetherSnever responding is still excessivelyhighafter inactivation.

The current data also bear comparison with prior rodent stud-
ies of lOFC inactivation in reversal tasks that vary in stimulus num-
ber (two or more), stimulus type (visual, olfactory, or spatial) and/
or reinforcement schedule (deterministic or probabilistic). In rats,
lOFC inactivationhas been found to impair performance of a prob-
abilistic spatial reversal, without affecting performance on a deter-
ministic version (Dalton et al. 2016). Conversely, rat or mouse
lOFC inactivation or NMDA receptor antagonism was reported to
increase putative perseverative-like errors in two-choice odor
(Kim and Ragozzino 2005) and visual touchscreen (Chudasama
and Robbins 2003; Brigman et al. 2013) reversals, but cause a gen-

eral increase in perseverative, regressive and irrelevant errors in a
four-choice odor reversal (Kim and Ragozzino 2005; Ragozzino
2007). One preliminary conclusion to draw from these studies is
that the manner in which lOFC disruptions behaviorally manifest
critically depends on the range of options available and their rela-
tive reinforcement histories.

There are also some noteworthy differences between the cur-
rent visual reversal task and prior studies that use olfactory, tactile
and visual stimuli, often in compound. In the touchscreen proce-
dure, mice perform many more trials to reach discrimination and
reversal criteria than rats typically do in, for example, digging tasks
(i.e., hundreds versus tens). As such, all the stimuli are highly famil-
iar by reversal in our task, whereas rats are sometimes introduced to
novel stimuli across serial discriminations and reversals. These dif-
fering levels of stimulus-familiarity could have important conse-
quences for how reversals are performed and recruit the lOFC.
Indeed, Tait and Brown (2007) found that juxtaposing two reversal
stimuli based on their familiarity and relative reinforcement histo-
riesmarkedly affected the nature of lOFC loss-of-function effects in
a rat digging task. lOFC-lesioned rats displayed poor learning and
increased omissions (“refusals to dig”) when required to select
the previously unrewarded stimulus over a novel option, but actu-
ally had superior learning when rewarded for choosing a novel
stimulus over the previously reward option (Tait and Brown
2007). One interesting avenue for future studies will be dissecting
the influence of these parameters. As a behavioral platform, the

A

B

D G

C E F

Figure 2. Inactivation of the lOFC, but not dmPFC, disrupts early three-choice reversal performance. (A) Experimental timeline for pretraining, discrim-
ination testing, and early reversal inactivation. (B) Ventral extent of the infusion located in lOFC. (C) Inactivation of lOFC resulted in a decrease in the per-
centage of trials ending in Sprior choices (left panel; corrected t(16) = 3.09, P<0.0210), without affecting the percentage of Snew trials (middle panel;
corrected t(16) = 0.80, P>0.05). In contrast, the percentage of trials ending in Snever choices were increased following lOFC inactivation (right panel; cor-
rected t(16) = 2.56, P<0.0412). (D) lOFC inactivation decreased the average length of strings of Sprior (left panel; t(16) = 2.72, P=0.0151) without affecting
strings of Snew responses (middle panel; t(16) = 0.24, P=0.8157). The length of strings of Snever responses tended to be increased by lOFC inactivation (right
panel; t(16) = 2.12, P=0.0502). (E) Ventral extent of the infusion located in dmPFC. (F,G) Inactivation of the dmPFC did not significantly affect any measure
(all t-values < 1.5, all P-values > 0.15). n =9–10 per group. Data are means ± SEM. (*) P<0.05.
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touchscreen provides a tractable means to do so, given that the
number, familiarity, and reinforcement histories of the choice-
options can be varied, and their influence examined across single
as well as potentially serial reversals.

In contrast to the marked effects of lOFC inactivation, inacti-
vating the dmPFC was without any discernible effect (Fig. 2E–G).
Prior reports of dmPFC inactivation effects on reversal tasks (in-
cluding multichoice) in rats have been mixed, with examples of
improvement, impairment and, as in the current case, no change
in performance (cf. Becker et al. 1981; Bussey et al. 1997; Ragozzino
et al. 2003; Boulougouris et al. 2007; Ragozzino and Rozman 2007;
Floresco et al. 2008; Dalton et al. 2016). Again, this might reflect
important variants in task parameters. Tasks that require cross-
modal cognitive flexibility and resolution of rule-conflict appear
to be particularly sensitive to mPFC disruption (Ragozzino et al.
2003; Floresco et al. 2008; Bissonette and Roesch 2017). For exam-
ple, rats with dmPFC lesions exhibited deficits in a Y-maze reversal
after previously learning a strategy shift; an effect attributed to a
deficit in maintaining performance under conditions of conflict-
ing strategies (Oualian and Gisquet-Verrier 2010).

Following early reversal inactivation in the current study,
mice were trained to reversal criterion (without further infusions).
Groups took an equivalent number of sessions to reach reversal cri-
terion (lOFC: SAL=15.0± 2.8, MUS=13.7 ±1.1; mPFC: SAL=10.3
±0.9, MUS=10.3 ±1.4), indicating that the initial manipulation
left no residual effects on performance when the cortical regions
were back “online.” The lOFC or dmPFC was then inactivated
during a single post-criterion session to test for effects on the

expression of the nowwell-learned stimulus–reward contingencies
(Fig. 3A), but neither inactivation significantly affected overall
percent stimulus-choice (Fig. 3B,D). lOFC, but not dmPFC, inacti-
vation did produce a modest increase in the length of Sprior strings,
while decreasing consecutive selections of the Snew option (Fig. 3C,
E) and increasing the number of trials performed overall (SAL=
35.0 ±1.2, lOFC=45.1± 4.2; t(16) = 2.27, P<0.0378). Also, and in
contrast to the selective increase in Snew choice latency after early
reversal lOFC inactivation, inactivation at late reversal increased
latencies generally (Supplemental Fig. S3).

The slight shift in favor of the Sprior after late reversal lOFC
inactivation could reflect partial reversion to the discrimination as-
sociations (Delamater 2007) which, as noted above, could be ex-
pressed by other brain regions. However, the fact that correct
choice was reduced and both error types were increased (not just
the Sprior) suggests a problem with maintaining the stimulus–
reward/nonreward associations formed during reversal. This is
somewhat surprising considering that lOFC is typically implicated
when behaviors are being adjusted (as in early reversal), rather
thanafter adjustmentshavebeenmade (as in late reversal) (Boulou-
gouris et al. 2007). However, the lOFCwas also found to support es-
tablished reversal performance on a probabilistically reinforced
reversal task conducted in rats (Dalton et al. 2016). It may be that
the multichoice and probabilistic reversals are especially taxing
on the lOFC’s capacity for predicting and tracking stimulus–out-
come associations, such that the region retains a hand inmaintain-
ing performance even after behavior has successfully adjusted to
the new stimulus–reward contingencies. To address this question
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Figure 3. Effects of lOFC and dmPFC inactivation on late three-choice reversal performance. (A) Experimental timeline for post-reversal criterion inac-
tivation. (B) lOFC inactivation did not significantly affect the percentage of Sprior (left panel; corrected t(16) = 2.03, P=0.1160), S

new (middle panel; corrected
t(16) = 2.39, P=0.0856), or S

never (right panel; corrected t(16) = 1.99, P=0.1160) choices. (C) The average length of Sprior strings was increased by lOFC
inactivation (left panel; t(16) = 2.61, P=0.0190), while the average Snew string length was diminished by lOFC inactivation (middle panel; t(16) = 2.45, P=
0.0261). In contrast, Snever string length was not altered by lOFC inactivation (right panel; t(14) = 0.98, P=0.3450). (D,E) Inactivation of the dmPFC at
late reversal did not significantly affect any measure (all t-values <1.5, all P-values > 0.15). n =9–10 per group. Data are means ± SEM. (*) P<0.05.
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going forward, itwould be valuable to chronicallymeasure (e.g., via
neuronal recordings or imaging) the sustained engagement of the
lOFC across reversal learning in the three-choice task.

In conclusion, the current three-choice touchscreen task rep-
resents novel paradigm for assessing murine reversal learning and
cognitive flexibility that may be useful for translational research
given its overt similarity to cognitive testing procedures used in
higher species, including humans (Mar et al. 2013; Akaishi et al.
2016; Izquierdo et al. 2016; Noonan et al. 2017). Further speaking
to this potential, we show that the reversal task is highly sensitive
to disruption of the lOFC, a brain region subserving the modifica-
tion of choices to accommodate new outcome contingencies, and
implicated in narrowed, intransigent patterns of behavior charac-
teristic of AUDs and other addictions.
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