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Parameter identification is an important branch of automatic control. Due to its special function, it has been widely used in
various fields, especially the modeling of complex systems or systems whose parameters are not easy to determine. With the
development of control technology, the scale of the control object is getting larger and larger, which makes the calculation amount
of the identification algorithm larger and larger. For the nonlinear system with complex structure, especially the nonlinear system
containing the product of unknown parameters, the number of parameters of the over-parameterized identification method
increases greatly, and the calculation amount of the identification algorithm also increases sharply. Therefore, a parameter
estimation method with a small amount of calculation is explored. The results show that the proposed method can overcome the
phenomenon of “data saturation”, thus improving the parameter identification results.

1. Introduction

The so-called identification is to estimate the mathematical
model of the object by measuring the output response of the
object under the action of human input, or the input and
output data records during normal operation, and adding
necessary data processing and mathematical calculations.
This is because the dynamic characteristics of an object are
considered to be necessarily manifested in its changing input
and output data, and identification is nothing more than
using mathematical methods to extract the mathematical
model of the object from the data sequence. The least squares
method is the most basic and most commonly used method
in system parameter identification because of its simple
algorithm, mature theory and strong generality [1-8].
Parameter identification is to determine a model that is
closest to the external characteristics of the system from a
given model class on the basis of input and output data. If
researchers only pay attention to the external characteristics
of the system and ignore the internal characteristics, the
input and output expression can be used to describe it; if the
internal characteristics of the system are also emphasized,
the state space model can be used to describe it [9-15].

Generally speaking, there are two methods to establish
the mathematical model of the system: excitation analysis
method and system identification method. The former is to
analyze and deduce the model according to the physical and
chemical laws followed by the system; the latter is to obtain
the model from the actual system operation and experi-
mental data processing. As shown in Figure 1, system
identification is the theory and method of calculating the
mathematical model of the system from the input and
output data. In addition, the system identification should
also have three basic elements, namely model class, data and
criteria. According to the model form, the identified system
models can be divided into two categories: parametric
models and non-parametric models. The so-called para-
metric model refers to mathematical models in the form of
differential equations, difference equations, and state
equations; nonparametric models refer to mathematical
models with implicit parameters such as frequency response,
impulse response, and transfer function [16, 17].

Parameter identification has developed rapidly as a basic
subject. So far, various identification methods have been
developed. Recently, many papers have studied the co-
upled identification methods of multivariate systems and
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FI1GURE 1: System Identification.

multivariate-like systems. System identification is essentially
an optimization problem. Now the common identification
method is to transform the identification problem into an
optimization problem by building a parameter model of the
system. In the field of system identification, the theory and
method of linear system identification are becoming more
and more mature, such as least square identification method,
hierarchical identification method, etc. However, in the
actual industrial control process, there is no ideal pure linear
system, it is basically a nonlinear system with complex
structure and noise. Therefore, how to identify the nonlinear
system and then control it more effectively has greater re-
search value. In this paper, based on over-parameterized
models and data filtering techniques, the recursive least
squares identification method for outputting error-like
systems of nonlinear equations is studied. The first element
of identification is data, and data is also the basis of iden-
tification. The identification effect is directly affected by the
data. The theory of data selection is relatively complicated.
This paper does not conduct in-depth analysis and research
on it. Usually, noise signals, including white noise and pink
noise, are used in practice to meet the identification re-
quirements. The identification of linear parameters uses pink
noise signals [18-23].

The second element of identification is the model class,
which mainly includes the least squares class, the gradient
correction method, and the maximum likelihood method.

The third element of identification is the equivalence
criterion, which is an index that describes the degree of
conformity between the identification model and the actual
system. The equivalence criterion is generally used to
evaluate the model’s ability to “describe” the input and
output models, and since the essence of the model is its
predictive ability, the equivalence criterion is also used to
evaluate the model’s predictive ability. There are many
commonly used criteria for the equivalence criterion. In this
paper, the basic cumulative error sum of squares is selected
as the criterion function, and the specific form is shown in
the following analysis. In identification engineering, the
determination of the model is mainly based on experience to
make assumptions about the characteristics of the actual
object, such as whether the model of the object is linear or
nonlinear, whether it is a parametric model or a non-
parametric model [24-28].

Nonlinear characteristics exist widely in industrial
processes, and it is difficult to obtain satisfactory results by
using linearization methods to deal with nonlinear systems.
Therefore, special identification methods must be studied for
the special structure of nonlinear systems. For example,
some literatures have proposed the least squares iteration
method and gradient iteration method, recursive augmented
least squares method and augmented stochastic gradient
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method of Hammer-stein nonlinear ARMAX system and
their convergence. Auxiliary model recursive least squares
method, some people have also studied and proposed the
Hammerstein nonlinear system projection identification
method, stochastic gradient identification method, Newton
recursive identification method, Newton iteration method,
etc. There are also literatures for output nonlinear moving
average systems.

For the parameter identification of the motion system,
the more mainstream identification methods include model
adaptive identification algorithm, least square method, ex-
tended Kalman filter method, genetic algorithm, frequency
sweep test and so on. Among them, the P and Q matrices of
the extended Kalman filter method are difficult to determine,
and are closely related to the system state; the genetic al-
gorithm has high requirements for the initial value of the
parameters to be estimated; the frequency sweep test needs
to use different frequencies to excite the system, and then use
the least squares method to obtain the amplitude-frequency
characteristics and phase-frequency characteristics of the
closed-loop system, and finally use the INVFREQS function
of MTLAB to perform fitting. The accuracy is not high; in
addition, the genetic algorithm and the frequency sweep test
cannot achieve the online real-time estimation of parame-
ters. Therefore, some scholars tried to use some improved
methods to implement their work [29,30]. The results show
that the method can accurately identify the key parameters
of the system model, and the key parameter map can ac-
curately represent the real-time dynamic characteristics of
the vehicle, which lays a good foundation for the parameter
estimation and stability control of vehicles. Besides, in recent
years, with the continuous research on deep learning, many
problems in daily life can be solved by artificial intelligence.
One of the characteristics of deep learning is that pro-
grammers no longer need to continuously write programs to
complete the program as in the past, but only need to build a
neural network in advance, use artificial means to imitate the
thinking of the human brain, and match a sufficient amount
of data to simulate the training machine itself, let the ma-
chine discover and learn the data by itself.

In this paper, for the output nonlinear equation error
system, the least squares identification method based on the
overparameterized model is discussed. In addition, this
paper also uses MATLAB software to verify the superiority
of the least squares method in parameter identification, and
then identifies the parameters of an unknown steering
system, and obtains the equivalent moment of inertia,
equivalent damping coefficient and equivalent stiffness, etc.
Results show that the proposed method can overcome the
phenomenon of “data saturation”, thus improving the pa-
rameter identification results.

2. Nonlinear Systems

The structure of nonlinear system model is various, and
there is no unified mathematical expression. The most
studied are nonlinear systems with simple block structure
properties. The block-structured nonlinear system includes:
1) input nonlinear system (nonlinear block is located before
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linear block: N—L); 2) output nonlinear system (nonlinear
block is located after linear block: L—N); 3) input Output
nonlinear system (two nonlinear blocks sandwich a linear
block: N—L—N); 4) Intermediate nonlinear system (linear
dynamic subsystems at both ends sandwich a static non-
linear link: L—N—L) ;5) Feedback nonlinear system (static
nonlinear link can be in the forward channel or in the
feedback channel) and so on. Here, L stands for linear, and N
stands for nonlinear. Nonlinearity in block-structured
nonlinear systems usually refers to static nonlinearity.

When the input nonlinear block is a static polynomial
nonlinear element and the linear block is a dynamic sub-
system, such a nonlinear system is also called a Hammerstein
system. When the output nonlinear block is a static poly-
nomial nonlinear element and the linear block is a dynamic
subsystem, such a nonlinear system is also called a Wiener
system. The nonlinear block can be a linear combination
with known basis functions and unknown parameters, or it
can be hard nonlinear, such as dead-band nonlinearity,
saturation nonlinearity, relay nonlinearity and so on.

The above is to define the input nonlinear system and the
output nonlinear system from the composition relationship
between the linear block and the nonlinear block. In fact, the
input nonlinear system can also be defined from the linear
and nonlinear expression relationship between the input
variable and the output variable in the model. and the output
nonlinear system. According to this rule, the input nonlinear
system is defined as the system output y(t) is a nonlinear
function of the system input u(t-i), and is a linear function of
the past output y(t-i), such as the typical Hammerstein
nonlinearity system. The corresponding output nonlinear
system is defined as its output y(t) is a nonlinear function of
the system’s past output y(t-i) and a linear function of the
input u(t-i), such as the nonlinear system in the literature.
The input-output nonlinear system is defined as its output
y(t) is not only a nonlinear function of the system input u(t-
i), but also a nonlinear function of the past output y(t - i),
such as the nonlinear system in the literature. The input
nonlinear system includes the input nonlinear equation
error system and the input nonlinear output error system.
The output nonlinear system includes the output nonlinear
equation error class system and the output nonlinear output
error class system.

For the identification of nonlinear systems, the most
common method for identifying nonlinear systems is the
identification method of least squares algorithm. In the
nonlinear system identification method, the input of the
system is represented by a Laguerre function, the system is
represented by a Hermite polynomial, and the output is
represented by a Laguerre-Hermite series expansion con-
taining a large number of unknown coefficients. This
method has a strong theoretical meaning, but the amount of
calculation is very large, which is not conducive to practical
applications. In addition, there are many nonlinear system
models involved in research, such as bilinear system model,
Hammerstein model, Wiener model, nonlinear time series
model and so on. For each special model, scholars all over
the world have done a lot of research and proposed many
identification calculations. The estimation consistency of

these algorithms is also discussed. With the increasing de-
mand of nonlinear model identification, research on non-
linear system identification problem is also more and more
in-depth. Various models of nonlinear systems have been
discussed by many scholars [31-35].

From the study of linear model identification to the
study of nonlinear model identification, the solution method
has been improved. However, because the nonlinear system
itself contains a lot of uncertainty, it is difficult to deduce the
identification method suitable for various nonlinear systems,
so the nonlinear system identification has not yet formed a
complete scientific system. In recent years, many types of
identification methods have appeared, such as least squares
identification method, model reference adaptation, multi-
information identification method, neural network identi-
fication, iterative identification method, etc., which have
opened up new ways and new ideas [36-39].

Least squares method: The advantages of this algorithm
are simple and less computational, so it is well used in the
identification of parameters in many control systems. The
least squares method needs to linearize the model of the
controlled object, so it is usually assumed that the speed
change rate of the motor during the identification process is
zero. Some literatures have proposed a motor parameter
identification method based on the nonlinear least squares
method to solve the problems of poor convergence and slow
dynamic response of the parameter identification of the
controlled object. This method does not require many
simplified assumptions for the control algorithm. The
premise is that as long as the system works under sufficient
excitation conditions, the motor parameters can be updated
at any time.

Model reference self-adaptation: This algorithm has been
around for a short time, but the principle is simple, easy to
implement and other advantages make it a wide range of
applications. Its basic principle is to construct a reference
model and an adjustable model. By judging whether the
output errors of the two models reach the ideal value, if the
conditions are met, the parameters of the adjustable model
are considered to be consistent with the parameters of the
reference model, and vice versa, the two parameters are not
equal, then the identification process ends.

Neural network identification: This method is because
the artificial neural network is similar to simulating human
thinking. It abstracts and simplifies the obtained informa-
tion and stores it, and then processes it to establish a relevant
mathematical model, so that it has the ability to identify
nonlinear systems. The advantages of this identification
method are high precision and fast dynamic response. After
the model is determined, the parameters of the model can be
determined according to a certain identification algorithm
according to the input and output data of the object.

3. Least Squares Parameter Estimation
and Identification

The concept of parameter identification is derived from
system identification, and the system is usually described by
a model, and modeling is a necessary step before the



identification of the system. Different types of models have
their own characteristics, and the model-based identification
algorithms are also very different, but they all have a basic
attribute, that is, they are closely related to the input and
output data of the system, and can reflect the working
mechanism of the system.

The so-called model is to reduce the essential infor-
mation of the system into a useful description form, which is
used to represent the internal change law of the system, and
is a powerful tool for analyzing the system and predicting the
output. There are many different standards for classification
models. According to the linearization of the model, they
can be divided into linear models and nonlinear models.
According to the degree of change of the models, they can be
divided into dynamic models and static models.

There are three main ways to model a system, namely
“white box”, “black box” and “gray box”, which are classified
according to how much is known about how the system
works. The “white box” modeling considers the working
principle of the system in depth. The “black box” modeling
treats the system to be identified as a black box, ignores the
working principle of the system, adopts the method of vi-
olent solution, and uses the identification method based on
the Vblterra coeflicient. The model is somewhere in between.
The modeling method used in this paper belongs to the
“white box” modeling, and then focuses on the “white box”
modeling. “white-box” modeling, also known as mechanistic
modeling, is a theory-based approach to modeling.

The working principle of the system is used to establish a
model of the system, which can generally only be used for
systems with a clear working mechanism. In addition,
“white-box” modeling often requires a reasonable simpli-
fication of the system under study, such as ignoring noise,
analyzing variables as constants, etc. Otherwise, the problem
is too complicated, which will greatly increase the difficulty
of identification, and the mechanism of the system must be
deterministic and derivable.

For the parameter model identification structure, the
task of system identification is parameter estimation, that is,
using input and output data to estimate these parameters
and establish a mathematical model of the system. The most
commonly used methods in parameter estimation are the
least squares method, the error prediction estimation
method, the auxiliary variable method, and the neural
network method.

Because the least squares method is easy to understand
and master, the identification algorithm based on the prin-
ciple of the least squares method is relatively simple in
implementation, and does not require knowledge of math-
ematical statistics, making the least squares method widely
used in the field of system identification, but it also has certain
When the system noise is colored noise, the least squares
method cannot give unbiased consistent estimates. In this
paper, the motion control system model is used for parameter
identification. Set up a “black box” structure of a SISO (single
input/single output) process, as shown in Figure 2:

The so-called least-squares recursive algorithm is that
when identifying the system parameters, every time a new
observation data is obtained, on the basis of the previous
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FIGURE 2: Single input/single output.

estimation, the newly introduced observation data is used to
continuously revise the results of the previous estimation.
Thus, new parameter estimates are obtained recursively.

Compared with the least squares one-time completion
algorithm, it can not only reduce the amount of calculation
and storage, but also realize online real-time identification.
However, it has three defects: (1) When the model noise is
colored noise, the least squares parameter estimation is not
unbiased and consistent; The estimated value and accuracy
of the unknown parameters cannot reach the expected re-
sults, and even make the identification results worse; 3. The
least squares parameter estimation cannot track the changes
of time-varying parameters, that is, it is not suitable for the
parameter identification of time-varying processes. In order
to overcome the phenomenon of data saturation and weaken
the influence of old observation data on the estimation of
unknown parameters, two improved algorithms of least
squares are used, namely fading memory and limited
memory least squares recursive algorithm.

The basic idea of the fading memory recursive least
squares method is to give different weights to the sampled
data, that is, to add a forgetting factor to the old data to
reduce the amount of information provided by the old data
and increase the amount of information of the new data. This
not only considers the role of historical data, but also focuses
on new information for parameter estimation.

For the conventional least squares method, as the gain
matrix K(k) is close to zero, the parameter estimates change
very little, indicating that the algorithm basically loses the
correction ability, and the recursive calculation will not
further improve the identification accuracy. However, for
the fading memory least squares method, the parameter
estimates are always fluctuating, indicating that the infor-
mation provided by the new data is still working.

The transfer function of the system is:

-1 -2 -n
bz +b,z “+..+b,z

G(z) = = — — (1)
l1+a,z +a,z " +..+a,z
Then
y(k) ==Y aylk-i)+ ) bu(k-i) (2)
i=1 i=1

Among them, y is the kth true value of the system output,
and u is the kth input value of the system. The predicted
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value is shown in figure 3. The proposed method exhibits a
better performance. As can be seen, the flotation is lower
while it still keeps the value as the original one.

If considering that the identified system or observation
information contains noise, the final output is:

z(k)=-Y ayy(k-i)+ Y bu(k—i)+v(k) (3)
i=1 i=1

Where, z is the kth observation of the system output, v is the
random noise with mean 0. If defined:
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TABLE 1: Estimated relative errors

20 o

: Item al a2 a3 b0
real -2.1667 1.7778 0.5556 0.0055
: prediction -2.1681 1.7799 0.5553 0.0057
error 0.065 0.12 0.054 3.64
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where, 8 is the parameter to be estimated. that the sum of squares of the (.ilfference between the z of
So, z can be expressed as: each measurement and the estimate of the measurement
’ ’ determined by the estimate is the smallest, that is:
z(k) = h(k)0 + v (k) (6) _ T ~
] =(2,-H,0) (2, - H,0) = min (10)
Let
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Then
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Then,

H H,0=H.Z, (12)

Although the least squares estimation cannot satisfy
every equation in the measurement equation and make each
equation have deviations, it minimizes the squared sum of
the deviations of all equations, takes into account the ap-
proximation of all equations, and minimizes the overall
error. This is beneficial to suppress measurement errors.
Figure 4 shows the radar value. Mathematical models are the
basis for studying the laws of motion of all things, and
parameter identification is the theory and method for
studying the establishment of mathematical models of
systems.

4. Simulation Analysis

If the structure of the established system mathematical
model is selected correctly, the accuracy of the model pa-
rameter identification will directly depend on the system
input signal. Therefore, selecting a reasonable input signal is
one of the key factors to ensure that the ideal identification
result can be obtained. Theoretical analysis shows that
selecting white noise as the input signal for identification can
obtain better identification results, but this is almost difficult
to achieve in engineering, because actual industrial equip-
ment cannot act according to the changing law of white
noise. Replace the white noise signal with an inverse
M-sequence that approximates white noise. The x, y vari-
ation is shown in figure 5.



Spectral analysis shows that the M-sequence usually
contains a DC component, which may cause a “net per-
turbation” in the identification system, which is usually
undesirable. The inverse M-sequence can overcome this
shortcoming and is a more ideal pseudo-random code se-
quence than the M-sequence. Let M(k) be an M sequence
with a period of N p bits and an element value of 0 or 1, and
S(k) a square wave sequence with a period of 2 bits and an
element value of 0 or 1 in turn. Perform bitwise XOR op-
eration, and the obtained composite sequence is an inverse
M sequence with a period of bit and an element value of 0 or
1. The predicted data is shown in Figure 6.

Replace the logical value “0” or “1” of the above inverse
M-sequence with -1 or 1 respectively, and the mean value of
the inverse M-sequence is O at this time. Although the in-
verse M-sequence is the result of a simple combination of the
M-sequence and the square wave sequence, its properties are
superior to the M-sequence, making it more widely used in
the field of identification. The normalized frequency is
shown in figure 7.

It can be seen from Table 1 that the estimated relative
errors of the first three parameters are all within 0.2%, while
the last parameter can be accurately estimated to the
thousandths by the recursive least squares method due to its
very small value. Also controlled within 4%. And with the
continuous increase of the data taken, the results of the
system identification will also improve. This is an advantage
of the recursive least squares method, which can improve the
previously identified results according to the continuously
updated data, so that the identified results are closer to the
true value.

In this simulation, 10 000 sets of data are collected, as
shown in Table 1, and the change curve of each parameter
identification can be observed, where a 1 is the estimated
curve of -39/18, a 2 is the estimated curve of 16/19, and a 3 is
-5/ 9 is the estimated curve, b 0 is the estimated curve of 1/
180, and k is the simulation step size. The prediction is
shown in figure 8.

To sum up, it can be concluded that the recursive least
squares method can accurately identify the parameters, and
the identification results are ideal. The evaluated value is
shown in figure 9.

5. Conclusion

Parameter identification is an important branch of auto-
matic control. Due to its special function, it has been widely
used in various fields, especially the modeling of complex
systems or systems whose parameters are not easy to de-
termine. With the development of control technology, the
scale of the control object is getting larger and larger, which
makes the calculation amount of the identification algorithm
larger and larger. For the nonlinear system with complex
structure, especially the nonlinear system containing the
product of unknown parameters, the number of parameters
of the over-parameterized identification method increases
greatly, and the calculation amount of the identification
algorithm also increases sharply. Therefore, a parameter
estimation method with a small amount of calculation is
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explored. For the output nonlinear equation error system,
the least squares identification method based on the over-
parameterized model is discussed. And proposed a least
squares identification method based on model decomposi-
tion and a least squares identification method based on data
filtering. In addition, this paper also uses MATLAB software
to verify the superiority of the least squares method in
parameter identification, and then identifies the parameters
of an unknown steering system’s kinematic index, and
obtains the equivalent moment of inertia, equivalent
damping coefficient and equivalent stiffness, etc. motion
parameters, and verify the identified parameters. Simulation
results show that the proposed method can overcome the
phenomenon of “data saturation”, thereby improving the
parameter identification results.
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