
More than a third of the nation’s population lives in areas
that exceed the current ozone standard (6). As healthcare providers
and scientists, the members of the American Thoracic Society
should urge the EPA to carefully consider the increasingly
strong epidemiologic evidence that long-term exposure increases
the risk of cardiopulmonary mortality when the agency next
evaluates the current NAAQS for ozone. n
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Remember Me? The Bone Marrow in Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrosing
disorder that is primarily confined to the lungs, in contrast to several
other nonidiopathic forms such as those associated with connective
tissue diseases. This does not exclude a participation of distant organs,
in particular the bone marrow, in the development and/or progression
of IPF. Despite early excitement of the potential for bone
marrow–derived cells to give rise to structural cells of the lung (1–3),
this concept of engraftment and differentiation has evolved into an
understanding of the more plausible paracrine functions of bone
marrow–derived cells in the host repair response to lung injury (4–6).

In this issue of the Journal, Nakashima and colleagues (pp.
1032–1044) (7) report exploring the hypothesis that low-level
injury to the lung insufficient to cause fibrosis (the “first hit”) leads
to a priming of the bone marrow that results in a more robust
fibrotic response to a second, more severe fibrogenic injury. With a

series of elegant bone marrow chimeric studies in mice, the authors
show that recipient mice subjected to bleomycin-induced lung
injury develop worse fibrosis with donors previously subjected to a
low-dose, nonfibrogenic lung injury. Further, their studies support
a requirement for the immunomodulatory glycoprotein, B7-
homolog 3 (B7H3, CD276) and the receptor for IL-33, ST2 (mouse
homolog of the IL-1 receptor-like 1 gene), in mediating the priming
effect on bleomycin-induced lung fibrosis. With corroborative
ex vivo studies, the authors surmise that B7H3 exacerbates
experimental lung fibrosis by activating (recruiting) a monocytic
progenitor population in (from) the bone marrow and skewing of
the immune response to a T-helper cell type 2 phenotype. The
potential clinical relevance of these studies is supported by the
observation that the soluble form of B7H3, sB7H3, is elevated in
plasma of human subjects with IPF and in BAL fluid during acute
exacerbations.

This innovative study provides conclusive evidence that
changes in the bone marrow resulting from remote subclinical injury
to a distant organ (the lung, in this case) may have a priming effect on
the subsequent host response to injury in amammalianmodel system.
This concept of immunological memory has classically centered
around antigen-specificmemory in adaptive immune cells such T and
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B cells but has recently been expanded to include antigen nonspecific
memory involving innate immune cells such as natural killer cells and
group 2 innate lymphoid cells (ILC2) (8). Although Nakashima and
colleagues focused their attention on this “memory-like property” of
ILC2 cells, it is important to recognize that antigen nonspecific
memory may be more ubiquitous and involve other innate immune
cells, as well as structural cells within an injury-challenged organ.
Indeed, prolonged memory encoded in skin epithelial stem cells after
an acute inflammatory stimulus enables these cells to more efficiently
restore barrier function after a subsequent insult (9). Interestingly,
B7H3 is ubiquitously expressed in both immune and nonimmune
cells, with high expression in epithelial cells (10). Thus, the specific
cell type or types involved in the encoding of memory to fibrogenic
injury need to be ascertained. Furthermore, the molecular
mechanisms of immunological memory are not well understood.
Although such memory encoded in immune cells such as T
lymphocytes in response to infectious agents has been well
appreciated for decades, similar effects of the host response to
noninfectious injuries is less well appreciated. In either case, the
origins of this memory have remained unclear; interestingly, recent
studies implicate the epigenetic, DNA methylation–dependent
differentiation of memory T cells from effector T cells (11, 12).

The study by Nakashima and colleagues indicates a
requirement for B7H3 in the more severe fibrotic response to a
second insult; however, it is not known whether this is a result of
signaling by the membrane-bound form of the protein or its soluble
form. Because the soluble form of such receptors can function as
potential decoy molecules, the precise role of these spliced variants
in the memory responses to noninfectious lung injuries need to be
clarified. Thus, although the finding of sB7H3 in the plasma and
BAL fluid of human subjects with IPF is intriguing, their precise role
in disease pathogenesis deserves further investigation.

From a translational perspective, this study provides insightful
clues to developing improved and testable models of experimental
fibrosis that may more closely resemble the human disease. A one-
time bleomycin injury to the lung elicits a resolving fibrosis response
in young C57BL/6 mice (13–15). However, repetitive injury with
bleomycin induces a more persistent fibrosis in these mice (16).
Although the study by Nakashima and colleagues did not examine
the persistence of the fibrotic response in their 2-hit model, it is
plausible that such models may produce a more durable response
that may be more amenable to study of disease pathogenesis and
provide more robust and reproducible platforms for preclinical
drug testing. n
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