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Obesity is a risk factor for cardiovascular diseases, diabetes and cancer. In
theory, the obesity problem could be solved by the adherence to a calorie-
restricted diet, but that is not generally achieved in practice. An alternative
is a pharmacological approach, using compounds that trigger the same
metabolic changes associated with calorie restriction. Here, I expand in the
pharmacological direction by identifying compounds that induce liver
gene signature profiles that mimic those induced by calorie restriction.
Using gene expression profiles from mice and rat, I identify corticosteroids,
PPAR agonists and some antibacterial/antifungal as candidate compounds
mimicking the response to calorie restriction in the liver gene signatures.
1. Background
Obesity results from an excess calorie intake relative to expenditure [1]. It seems
reasonable that calorie restriction would be sufficient to tackle this problem.
However, for a number of reasons, long-term calorie restriction is hard to sus-
tain [2]. A valid alternative is to search for pharmacological agents that could
achieve weight loss while maintaining a regular or less restricted diet [3,4].
Some advances have been made in this direction, with the development of
PPARα and PPARγ agonists that stimulate oxidation of fatty acids [5–7].

Drug repurposing is a potential strategy to identify additional compounds
to mimic calorie restriction [8]. A popular approach has been to search for com-
pounds that match a specified gene expression profile, based on the in vitro cell
culture response to a large library of compounds [9]. This approach has led to
the identification of putative calorie restriction mimetics [10]. Given the proven
success of the gene expression profile matching, it is desirable to develop a simi-
lar methodology to tackle disease phenotypes that are mainly manifested in
mammalian tissues.

Here, I propose a gene signature methodology to identify candidate com-
pounds that trigger a target gene signature profile. As a bait, I use gene
expression profiles from the liver of mice subject to calorie restriction, down-
loaded from Gene Expression Omnibus. As a probe, I use gene expression
profiles from the liver of rat exposed to a large collection of compounds from
a toxicology study [11]. I identified corticosteroids, PPAR agonists and some anti-
bacterial/antifungal agents as candidate compounds to mimic calorie restriction.
2. Methods
2.1. Gene signatures
All gene signatures were obtained from public repositories or literature reports.
The source and gene list of each signature is reported in electronic supplementary
material, table S1.
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2.2. Gene expression profiles
The gene expression profiles were downloaded from Gene
Expression Omnibus. In all cases, gene expression was quan-
tified using microarrays and the RMA signal (in log2 scale)
was used as the gene expression readout.

2.3. Gene set enrichment analysis
The significant induction/repression of a given gene signa-
ture on a given sample was quantified using gene set
enrichment analysis (GSEA) [12], as previously described
[13]. GSEA results in a positive and a negative score quanti-
fying the induction or repression of the gene signature,
together with their associated statistical significance (here
100 000 permutations of the gene assignment to probes). A
sample was defined positive (red) for a signature whenever
it manifested a significant positive score (statistical signifi-
cance ≤0.05), negative (blue) whenever it manifested a
significant negative score (statistical significance ≤0.05) and
no significant change (black) otherwise.

2.4. Similarity statistics
Given the signature scores for two samples, at the red/black/
blue level, the similarity was calculated using the Pearson
correlation coefficient (PCC). Given two groups of samples
associated with two different perturbations, the PCC was cal-
culated between all possible pairings between the two groups
and the values above the 5%, 50% (median) and 95% of all
calculated PCCs were stored for further analysis.

2.5. Positive hits
Given a bait gene signature scores, a probe gene signature
score was deemed a positive hit if the 5% value was positive.
For each compound tested in our probe dataset, there were
several conditions using different doses and treatment dur-
ations. Each of these conditions was processed as an
independent test. A compound was deemed a hit if it has a
significant enrichment of positives across the conditions
where it was tested, given the total number of conditions
tested and the total number of conditions scoring positive
in the whole dataset, using a hypergeometric distribution
(electronic supplementary material, table S2).
3. Results
3.1. Gene signature selection
Here, I will use liver gene expression profiles as a way to
identify compounds mimicking calorie restriction. These pro-
files report the expression of more than 20 000 genes as
measured using microarrays or RNA sequencing. This large
number of variables could carry as a consequence overfitting
towards any given dataset, making the biological interpret-
ation of any result difficult. There are multiple approaches
to reduce the number of variables. The standard choice is
unsupervised methods such as principal component analysis
or its nonlinear generalization using auto-encoders. However,
these approaches will be biased for the datasets used to deter-
mine the principal components. The analysis of gene
signatures provides an alternative supervised approach,
with the additional advantage of improving on the biological
interpretation.

Here, I will adopt a gene signature approach. Gene signa-
tures are gene lists based on pathway annotations, genes
changing their expression under pre-defined perturbations,
or any biological mean associating a group of genes. Ironi-
cally the number of gene signatures in repositories like the
molecular signatures database (MSigDB) [14] is getting
close to 20 000, bringing us back to the overfitting problem.
To tackle this issue, I will limit the analysis to a restricted
set of signatures with relevance to calorie restriction
(electronic supplementary material, table S1).

The list starts with two fundamental processes of organ
homeostasis, cell proliferation and tissue remodelling, fol-
lowed by gene signatures associated with central
metabolism, fatty acid metabolism, cholesterol metabolism
and one-carbon metabolism. I will use another subset of sig-
natures to interrogate the potential activation of relevant
transcriptional programs. This includes MYC targets as an
additional readout for cell proliferation, HIF1α targets for
the hypoxic response, NFKβ targets for inflammation, ATF4
targets for amino acid stress response, NRF2 targets for oxi-
dative stress response, HSF1 targets for proteotoxic stress
response and TFEEB targets for an autophagic response.
The list of signatures ends with variants of cell death, includ-
ing apoptosis, necrotic cell death and ferroptosis, plus DNA
repair as a readout for DNA damage response.

3.2. Gene signature validation
The signatures of cell proliferation and tissue remodelling
have been tested in the context of human tumours [13]. The
metabolic signatures are based on established gene annota-
tions of metabolic pathways. The transcription factor
targets’ signatures have been developed for the most part
from experiments with cells in culture. Therefore, it is impor-
tant to determine whether they reflect their associated
biology in whole tissues. To tackle this problem, I searched
the Gene Expression Omnibus database for gene expression
profiles associated with the relevant biological conditions.

I identified a dataset reporting liver gene expression
profiles of mice in a hypoxic chamber (6–8% oxygen) for
2 h (GSE17880 [15]). In this dataset, there is a significant
induction of the gene signature of HIF1α targets in the liver
of mice under hypoxic conditions relative to controls
(figure 1a). Interestingly, there is some variability with respect
to the metabolic signatures in the group of mice exposed to
hypoxia. Yet, in both groups, there is a consistent induction
of the HIF1α targets signature.

I identified another dataset reporting liver gene
expression profiles of mice injected with scrambled or liver-
specific siRNA against Keap1, the gene encoding the main
negative regulator of NRF2 (GSE80956 [16]). I found a clear
induction of the NRF2 targets gene signature in the mice
treated with the liver-specific Keap1 siRNA (figure 1b).

I identified a third dataset where the human TFEB gene
was injected into the liver of mice using an adenovirus trans-
duction system (GSE35015 [17]). Here again there is the
matching induction of the TFEB targets gene signature in
mice injected with human TFEB expressing adenovirus rela-
tive to non-injected controls (figure 1c). In this context,
there is also induction of the HIF1α and NRF2 targets
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Figure 1. Gene signatures validation. Mouse liver gene signature profiles following pre-defined perturbations. (a) Mice in a hypoxic chamber (6–8% oxygen) and
controls (21% oxygen). (b) Transfection of liver-specific siRNA targeting Keap1 or scrambled control (Ctrl). (c) Human TFEB expressing adenovirus injection into mice
liver and non-injected controls. (d ) Livers of wild-type (+/+) and Pparα−/− (−/−) mice. (e) Human MCF7 breast cancer cell lines under amino acid deprivation
and control (Ctrl) cells cultured in complete medium. The arrow points to the gene signature that should be activated based on the perturbation applied. Red
represents significant induction, black no change and blue significant repression relative to controls (left column).

royalsocietypublishing.org/journal/rsob
Open

Biol.10:200158

3

signatures. This could be biologically relevant. TFEB induces
an autophagy program that can lead to mitophagy and the
associated reduction in mitochondrial content. The latter
could in turn trigger a hypoxic and oxidative stress response,
leading to the induction of the HIF1α and NRF2 targets sig-
natures. Whether that is actually the case is beyond the
scope of this work.

I also took advantage of the exogenous TFEB expression
dataset containing liver gene expression profiles of Pparα–/–

mice. In the liver of these mice, there is a downregulation
of the PPARα targets signature as would be expected
(figure 1d ). In addition, the liver of Pparα−/− mice exhibits
downregulation of the fatty acids β-oxidation gene signature,
one of the main processes induced by PPARα.

Unfortunately, I could not find any liver gene expression
profile suitable to test the ATF4 targets signatures. In this
case, I rely on gene expression profiles of the human breast
cancer cell line MCF7 cultured under amino acid deprivation
(GSE62673 [18]). There is a consistent induction of the ATF4
targets signature under the deprivation of each amino acid
relative to cells cultured in complete medium (figure 1e).
Serine synthesis and mitochondrial one-carbon metabolism,
two pathways under the control of Atf4 [19–21], were also
induced upon amino acids deprivation (figure 1d ).
3.3. Validation across independent experiments

In a second validation, I evaluated the consistency of the sig-
nature profiles across two independent experiments testing
the same perturbation in the same organism. To this end, I
identified two liver gene expression profiles (GSE21329 [22]
and GSE57815 [11]) of rats treated with the PPAR agonists
pioglitazone and troglitazone. After computing the signifi-
cance scores for each gene signature on each liver, I
calculated the Pearson correlation coefficient between the
gene signature profiles of different experiments for each com-
pound. For pioglitazone, I obtained a median correlation of
0.37 with confidence interval [0.16, 0.49] and for troglitazone
a median of 0.32 with confidence interval [0.20, 0.44]. The
concordance between the signature profiles is also visually
observed (figure 2a and b).

One could argue that while these correlations have con-
fidence intervals on the positive side they are not too high.
However, we should bear in mind that there are differences
in the protocols used by each independent experiment. One
study (GSE59927) used the common rat, higher compounddoses
(pioglitazone 1500 mg kg−1 and troglitazone 1200 mg kg−1) and
short treatment time (3 days). The other study (GSE21329) used
Zucker obese rats, lower doses (pioglitazone 10 mg kg−1 and
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independent experiments, GSE57817 (Exp 1) and GSE21329 (Exp 2). Red represents significant induction, black no change and blue significant repression relative
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troglitazone 200 mg kg−1) and longer treatment time (21 days).
Given these protocol differences, I argue that a median Pearson
correlation coefficient in the range of 0.44–0.49 is high.
3.4. Gene signature profile of calorie restriction
Now I switch the attention to the bait, the gene signature pro-
file of calorie restriction. To this end, I selected datasets from
Gene Expression Omnibus reporting gene expression profiles
of mice subjected to dietary restriction (GSE51885 [23]), or
calorie restriction of different magnitude and duration
(GSE50789 [24] and GSE40936 [25]).

The gene signature profiles exhibit some similarities
across the different experiments and across mouse strains
(figure 3a). There is a consistent induction of the gene signa-
tures associated with central metabolic pathways (glycolysis,
pentose phosphate pathway, TCA cycle and oxidative
phosphorylation). However, there is some variability for the
gene signatures associated with fatty acid metabolism (fatty
acid metabolism, PPARα targets, fatty acid β-oxidation,
adipogenesis), cholesterol metabolism (cholesterol metab-
olism, SREBP1α targets, SREBP2 targets) and one-carbon
metabolism (1C cytosol, 1C mitochondria).

Among the transcription factor signatures, the calorie
restriction induces a consistent activation of the HIF1α targets
signatures and of TFEB targets signature (except for the
GSE40396 dataset). There is a consistent lack of effect on
the NFKβ, ATF4 and NRF2 targets signatures. There is a con-
sistent downregulation of the MYC and HSF1 targets
signature indicating a suppression (except for the GSE40396
dataset). As noted, the cohort subjected to the more extreme
calorie restriction (40%, GSE40396) exhibits a mismatch with
respect to the other two cohorts, even when restricting the
analysis to the same mouse strain (C57BL/6 J).

The GSE51885 dataset, representing dietary restriction
with a 25% reduction of all nutrients present in the control
diet, exhibits similar gene signatures to the GSE50789 dataset,
representing a 25% calorie restriction. This suggests that the
calorie restriction component of the dietary restriction is
responsible for the observed gene signatures.

Summarizing, in the context of mild calorie restriction
(approx. 25%), the liver exhibits an induction of gene signa-
tures associated with central metabolism, HIF1α targets and
TFEB targets. I note that these changes are consistent with
the underlying physiology. It has been shown that autophagy
is a modulator of the impact of calorie restriction on longevity
[26–28]. The induction of HIF1α targets is most likely a down-
stream effect, as seen from the injection of TFEB expressing
adenovirus into the liver of mice (figure 1c).

3.5. Compounds matching the calorie restriction gene
signature

Having identified the gene signature pattern induced by cal-
orie restriction, we can use it as a bait to uncover candidate
compounds to mimic calorie restriction. To this end, we
need access to liver gene expression profiles following treat-
ment with several compounds. Fortunately, a large-scale
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Figure 3. Candidate compounds. (a) Liver gene signatures of mice subjected to the reported calorie restrictions. Red represents significant induction, black no
change and blue significant repression relative to controls (left column). (b–d ) Liver gene signatures of mice exposed to (b) PPAR inhibitors (3 days with bezafibrate
100 mg kg−1 (Bezaf ), pioglitazone 1500 mg kg−1 (Piog), troglitazone 1200 mg kg−1 (Trog)), (c) corticosteroids (dexamethasone 1 mg kg−1 (Dexa), fluocinolone
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134 mg kg−1 (Nyst) and gentamicin 267 mg kg−1 (Gent)).
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toxicology study in rats has profiled 194 compounds (includ-
ing different vehicles) at different durations (0.25 to 7 days)
and reported the corresponding liver gene expression
(GSE57815 [11]). I will use the gene expression profiles in
this dataset as probes to identify compounds that trigger a
gene signature response similar to what observed for calorie
restriction.

Table 1 reports the best hits for each dataset and mouse
strain. The full list of hits is reported in the electronic sup-
plementary material, table S2. There are three major classes
of compounds identified in two or three conditions
(dataset/strain): corticosteroids, PPARα/γ agonists and
some antibacterial agents. The identification of PPARα/γ
agonists is a validation of the methodology. PPARα/γ ago-
nists have been developed for the management of
metabolic syndrome [29]. The identification of corticosteroids
and antibacterial/antifungal agents provides two new classes
of putative agents for the stimulation of a calorie restriction
transcriptional program.

A previous study has reported similarities between the
gene expression profile induced by calorie restriction and
the PPARα/γ agonist rosiglitazone, given further confidence
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to the identification of this class of compounds [30]. The gene
signature similarity between calorie restriction and PPARα/γ
agonist treatment can be visually inspected in figure 3a and b.
As calorie restriction, PPARα/γ agonists induce gene signa-
tures of central metabolism (TCA cycle and oxidative
phosphorylation), fatty acid metabolism and PPARα targets
signatures. However, as a difference with calorie restriction,
the PPARα/γ agonists do not induce the gene signatures of
glycolysis and the pentose phosphate pathway and only
Pioglitazone induces the TFEB targets signature.

Among the compounds scoring the highest, I found the
synthetic corticosteroids dexamethasone and fluocinolone
acetonide, often used as anti-inflammatory agents. The gene
signatures associated with these compounds include the
induction of HIF1α targets and partially the induction of
TFEB targets (figure 3c). They also induce some of the signa-
tures of central metabolism (TCA cycle and oxidative
phosphorylation) but fail to induce the signatures of glycoly-
sis and the pentose phosphate pathway, as seen for calorie
restriction (figure 3a).

The other new class of candidate calorie restriction
mimics is antibacterial/antifungal agents (figure 3d ). They
induce the gene signatures associated with the TFEB and
HIF1α targets, but they tend to induce a downregulation of
the gene signature associated with central metabolism. I
note that although these compounds are all classified as anti-
bacterial/antifungal agents they have different mechanisms
of action. Nystatin is an interesting candidate since it binds
to phospholipid membranes and this binding is enhanced
by the addition of cholesterol [31]. In fact, nystatin is fre-
quently used as a tool to lower cholesterol and this activity
leads to the induction of autophagy [32]. In agreement
with these known facts, nystatin induces the gene signature
associated with cholesterol synthesis (figure 3d ).
4. Discussion
This work demonstrates the use of liver gene expression sig-
natures from mammalian model organisms subjected to
calorie restrictions as baits to identify compounds that
induce a similar transcriptional response. In turn, we can
use as probes the liver gene expression signatures induced
by treatment with a library of compounds. Here, I have
used data from the public domain as a proof of concept
and identified corticosteroids and some antibacterial/anti-
fungal agents as new candidate compounds to mimic
calorie restriction.

The identification of PPAR agonists, as calorie restriction
mimetics based on the liver gene expression profiles, res-
onates with a recent study reporting the same conclusion,
but based on gene expression profiles for adipose, skeletal
muscle, heart and brain tissues [33]. Therefore, at least for
this class of compounds, there is evidence that the similarity
with the calorie restriction response extends to multiple
tissues.

In the case of corticosteroids, the list of candidate com-
pounds contains synthetic molecules like dexamethasone
and fluocinolone acetonide and endogenous molecules like
cortisone. Cortisone is produced from cholesterol in the adre-
nal gland and then converted to cortisol in the adrenal gland,
the liver and other tissues. Cortisone can be supplemented as
well. Calorie restriction increases circulating cortisone levels
[34], indicating a causal link for the similarity of the liver
expression profiles induced by calorie restriction and corti-
costeroids. The conversion of cortisone to cortisol in the
liver is reduced in obese individuals resulting in lower circu-
lating levels of cortisol [35]. However, the pathophysiology of
cortisol in the context of obesity is a complex matter [36],
making it difficult to anticipate whether the administration
of synthetic corticosteroids would provide any benefit or
worsen the disease symptoms. Furthermore, high levels of
cortisone are associated with cognitive impairment [37].
This should be further investigated.

The identified antibacterial/antifungal agents provide
additional candidate compounds that should be followed as
well. The specific compounds analysed here were constrained
to what was included in the toxicology screen. They were not
optimized by any means to induce a calorie restriction
response in the liver. The identification of nystatin, a com-
pound that lowers cholesterol and induces autophagy,
highlights a common feature of calorie restriction, the induc-
tion of an autophagy gene signature in the liver. Whether that
is the most relevant or a leading feature remains to be
determined.

There is plenty of room for improvement. One can expand
the compounds tested to a library that is more relevant than
the one used in the toxicology study. One can fine tune the
gene signature list to include other features deemed relevant
by human experts or artificial intelligence programs. Finally,
the same approach can be deployed to tackle other diseases.
5. Conclusion
Corticosteroids and some antibacterial/antifungal agents are
new candidate compounds to induce a liver transcriptional
response similar to calorie restriction.
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