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Liming is an effective agricultural practice and is broadly used to ameliorate soil
acidification in agricultural ecosystems. Our understanding of the impacts of lime
application on the soil fungal community is scarce. In this study, we explored the
responses of fungal communities to liming at two locations with decreasing soil pH in
Oregon in the Pacific Northwest using high-throughput sequencing (Illumina MiSeq). Our
results revealed that the location and liming did not significantly affect soil fungal diversity
and richness, and the impact of soil depth on fungal diversity varied among locations. In
contrast, location and soil depth had a strong effect on the structure and composition of
soil fungal communities, whereas the impact of liming was much smaller, and location-
and depth-dependent. Interestingly, families Lasiosphaeriaceae, Piskurozymaceae, and
Sordariaceae predominated in the surface soil (0–7.5 cm) and were positively correlated
with soil OM and aluminum, and negatively correlated with pH. The family Kickxellaceae
which predominated in deeper soil (15–22.5 cm), had an opposite response to soil OM.
Furthermore, some taxa in Ascomycota, such as Hypocreales, Peziza and Penicillium,
were increased by liming at one of the locations (Moro). In conclusion, these findings
suggest that fungal community structure and composition rather than fungal diversity
responded to location, soil depth and liming. Compared to liming, location and depth
had a stronger effect on the soil fungal community, but some specific fungal taxa shifted
with lime application.

Keywords: microbial community, wheat, soil acidification, fungal community analysis, soil health

INTRODUCTION

Acidic soils are widespread in the world and it is estimated that acidic soils impact over 70%
of cultivable and potentially arable land (von Uexküll and Mutert, 1995; Baligar et al., 2001).
Soil acidification is a major environmental challenge for crop production in the Inland Pacific
Northwest (IPNW) (McFarland and Huggins, 2015; Ghimire et al., 2017), and is a major constraint
on plant productivity (Koenig et al., 2013). Continuous use of ammonium-based nitrogen fertilizers
and long-term continuous crop growth has caused soil pH to drop below optimum levels for crop
production (Schroder et al., 2011; Jones et al., 2019). With soil acidification, pH values below 5.5
increase the solubility and concentration of aluminum (Al3+) and manganese (Mn2+) in soil which
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can cause phytotoxicity and reduced crop yields (Kidd and
Proctor, 2001; Schroder et al., 2011; Schroeder and Pumphrey,
2013; Lewis et al., 2018). In addition, lower pH also reduces
water uptake and soil nutrient availability for plants (Kemmitt
et al., 2006). To alleviate the harmful effects of low soil pH on
crops, lime can be applied to buffer soil acidification, minimize
toxic effects of Al3+ and Mn2+, and increase soil fertility and
plant ecosystem health (Holland et al., 2018; Lewis et al., 2018;
Schroeder et al., 2018).

Soil acidity, represented by low pH and high concentration of
aluminum and manganese in soil, affects the activity, structure
and composition of the soil microbiome, which consequently
influences soil function (Lauber et al., 2009; Klaubauf et al., 2010;
Narendrula-Kotha and Nkongolo, 2017). Soil pH is considered
to be one of the most important soil health indicators (Kemmitt
et al., 2006; Rousk et al., 2009), strongly influences microbial
communities (Thompson et al., 2017; Jin and Kirk, 2018) and
impacts the metabolic activity of the soil microbiome (Leprince
and Quiquampoix, 1996; Kotsyurbenko et al., 2004; Ye et al.,
2012). Lime application in acidic soil increases soil pH, especially
in the soil surface (Lewis et al., 2018; Yin et al., submitted
manuscript). Numerous studies have examined the impacts of
lime on soil microbes and revealed that lime application changed
soil microbial composition and regulated their activities and
functions (Narendrula-Kotha and Nkongolo, 2017; Lewis et al.,
2018; Schroeder et al., 2018; Pang et al., 2019). Our recent
study found that liming has a small effect on soil bacterial
communities and the impacts were especially prominent in
the surface soil, compared with location and soil depth (Yin
et al., submitted manuscript). In addition, liming has been
shown to effectively inhibit microbial pathogen populations and
reduce disease incidence (Jones et al., 1975; Gatch and duToit,
2017). However, a majority of these studies focused on the
changes of bacterial communities after lime amendments in
agricultural soil, while the impact of lime on fungal communities
is less understood.

Fungi are the second most abundant group of soil microbiota
in density and share microhabitats with bacteria. Fungi play
key roles in the decomposition of plant residues and organic
materials (Rousk et al., 2009; Žifčáková et al., 2016), and are
mycorrhizal associates (Smith and Read, 1997; Marcot, 2017),
plant pathogens (Maron et al., 2011) and pathogen antagonists
(Heydari and Pessarakli, 2010). Compared to bacteria, fungi can
live in soil environments across a wider range of pH, temperature
and C:N ratios (Strickland and Rousk, 2010; Fra̧c et al., 2015).
Despite the broad habitat preferences of fungi, soil acidification
may change the composition of the soil fungal community,
and consequently, affect the transformation and availability of
nutrients for plants (Kemmitt et al., 2006; Al-Sadi and Kazerooni,
2018; Ning et al., 2020). Previous studies on investigating the
effects of liming on the fungal community reported conflicting
results. For example, Bothe (2015) and Wan et al. (2019) found
that liming changed both bacterial and fungal communities.
On the contrary, Pennanen et al. (1998) and Pawlett et al.
(2009) revealed that liming reduced bacterial phospholipid fatty
acids (PLFAs) but did not impact fungal PLFAs. To date, the
knowledge of soil fungi response to liming is very limited which

makes it difficult to understand the roles of liming on fungal
communities in acidic soil.

In this study, we established winter wheat plots in two
precipitation zones in Oregon, applied four different rates of lime,
and conducted Illumina Miseq to explore the response of the
soil fungal community to lime amendments. The objectives of
this study were to investigate the impacts of liming, location,
and soil depth on the soil fungal community over 2 years. We
hypothesized that (1) liming will significantly influence the soil
fungal community composition and diversity; and (2) location
and soil depth will modulate the impacts of liming on soil
fungal communities.

MATERIALS AND METHODS

Study Site and Experimental Design
This study was conducted in two wheat field sites in Oregon
within the IPNW, United States which are Columbia Basin
Agricultural Research Center (CBARC) in Pendleton (hereafter
Pendleton) and the CBARC Sherman Station in Moro (hereafter
Moro). Pendleton is in Umatilla County, OR (45.718874, -
118.624236) and Moro is in Sherman County, OR (45.483149,
-120.725561). The dominant soil type at both locations was
a Walla Walla silt loam: coarse-silty, mixed, and mesic Typic
Haploxerolls (Web Soil Survey, 2013) and soil pH was below 5.2
in the top 15 cm. The annual precipitation at Pendleton (442 mm)
was higher than at Moro (282 mm).

Total field size was 58.5 m wide by 60.9 m long and the
experimental plot size within the field was 7.3 m wide by 15.2
m long. Each study site had 16 plots (four treatments × four
replicates) which were randomly arranged. Thus, a total of 32
plots were established in two study sites. Winter wheat cv.
“Stephens” was seeded with a no-till plot drill 39 and 86 kg/ha
urea was added at planting at the Moro and Pendleton locations,
respectively. Before planting, four different rates (0, 673, 1,345,
and 2,690 kg ha−1) of ultrafine liquid calcium carbonate (CaCO3,
NuCal, Columbia River Carbonates, Vancouver, WA) were
applied to surface soil using a custom sprayer outfitted with a
Boom Buster (Millen, Georgia) spray nozzle designed to spray
a 7.6-m swath in fall, 2016. Within 7 days of the application
the plots were subject to light vertical tillage with a Turbo
Max (Great Plains Ag. Inc., Salina KS) implement at 0◦ at
both locations. Minimal tillage was conducted at both locations.
All plots were managed using an appropriate fertility program
including nitrogen and other nutrients based on soil test reports.
Weed management and pest control were typical for production
of winter wheat in this region.

Soil Sampling and Chemical Analyses
Soil samples were collected from the two study sites in April 2017
and March 2018, respectively. Soil samples were taken down to a
depth of 22.5 cm using a 2.5 cm diameter hand soil probe. The
soil core was removed from the probe and separated based on
depth: 0–7.5 cm, 7.5–15 cm, and 15–22.5 cm. Each lime treatment
consisted of a composite of four soil cores. A total of 48 composite
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samples per location each year were divided into two portions
and stored at−20◦C for further analysis.

One portion of the soil samples was sent to a commercial
soil lab (Best-Test Analytical Services, Moses Lake, WA) for
soil physiochemical characteristics analysis as described by
Schroeder et al. (2018). Analyses conducted in this study
included organic matter (OM), pH, exchangeable bases (Ca,
Mg, and Na), DTPA extractable aluminum (DTPA-Al), KCl
extractable aluminum (KCl-Al), Cl, SO4.S, B, Zn, Mn, Cu,
Fe, N, P, K, and the cation exchange capacity (CEC). Briefly,
soil organic matter (OM) was determined using Walkley-Black
titration. Exchangeable bases (Ca, Mg, and Na) and Al were
extracted with KCl and measured by mass spectrophotometry.
The concentrations of Al, SO4.S, B, Zn, Fe, Cu, and Mn were
extracted with diethylenetriaminepentaacetic acid (DTPA) and
measured by mass spectrophotometry. The quantities of K and
P were determined using the Olson method, nitrate nitrogen was
measured using the chromotrophic acid method, and the cation
exchange capacity (CEC) was estimated using the ammonium
replacement method.

DNA Extraction and Illumina Sequencing
Microbial DNA was extracted from 0.25 g of the second portion
of soil samples (stored for 2 weeks at −20◦C) using a MoBio
PowerSoil kit (MoBio/Qiagen, Carlsbad, CA) following the
manufacturers’ instruction. Homogenization of soil samples
was performed with a FastPrep bead beater (MP Biomedical,
Santa Ana, CA) using the “soil” program. The DNA was
quantified using a Nanodrop spectrophotometer (Thermo
Fisher Scientific, Waltham, MA) and sent to the University of
Minnesota Genomics Center (UMGC) for amplification and
sequencing. PCR amplification used a dual-indexing approach,
as described previously (Gohl et al., 2016). Briefly, the fungal
ITS1 region was amplified in the first round of PCR using
primers ITS1∗_Nextera (5′-TCGTCGGCAGCGTCAGATGTGT
ATAAGAGACAGCTTGTCATTTAGAGGAAG∗TAA-3′) and
ITS2 (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA
GGCTGCGTTCTTCATCGA∗TGC-3′). The first PCR consisted
of an initial denaturing at 95◦C for 5 min, followed by 25
cycles of 98◦C for 20 s, 55◦C for 15 s, and 72◦C for 1 min,
with a final extension at 72◦C for 5 min. The products from
the first PCR were diluted 1:100, and 5 µl was included in a
second PCR using forward indexing primer (5′-AATGATACG
GCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC-3′)
and reverse indexing primer (5′-CAAGCAGAAGACGGCA
TACGAGAT[i7]GTCTCGTGGGCTCGG-3′) (i5 and i7 refer
to the index sequence codes used by Illumina. The flow cell
adapters are in bold). The second PCR consisted of an initial
denaturation at 95◦C for 5 min, followed by 10 cycles of
98◦C for 20 s, 55◦C for 15 s, and 72◦C for 1 min, with a final
extension at 72◦C for 5 min. The products were pooled, size
selected, and spiked with 20% PhiX prior to sequencing with an
Illumina MiSeq 600 cycle version 3 kit. qPCR was performed
to quantify copy numbers of bacterial community from each
sample with 16S rRNA primers Meta_V4_515F (5′-TCGTCG
GCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGC
CGCGGTAA-3′) and Meta_V4_806R (5′- GTCTCGTGGG

CTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTW
TCTAAT-3′) (16S-specific portion in bold) and ITS primers
ITS1-F (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGAC
AGCTTGGTCATTTAGAGGAAG∗TAA-3′) and ITS2 (5′-GT
CTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTGCG
TTCTTCATCGA∗TGC-3′) (ITS-specific portion in bold).
qPCR conditions for 16S RNA and ITS consisted of an initial
denaturation at 95◦C for 5 min, 35 cycles of 98◦C for 20 s, 55◦C
for 15 s and extension at 72◦C for 60 s, with the final extension
at 72◦C for 5 min. The raw sequence data was deposited in
OSFHOME1.

Sequence Processing
The sequence processing was conducted using USEARCH
(version 11; 42) to denoise sequences and define operational
taxonomic units (OTUs). Briefly, primer and barcode sequences
were removed along with 50 and 75 base pairs from the 3′ end
of forward and reverse reads, respectively. Reads were paired
with 15 maximum differences and an 80% identity threshold,
followed by the removal of conserved regions at the forward and
reverse ends of reads (81 and 68 base pairs, respectively). To
generate high-quality reads for denoising, reads were filtered with
a maximum expected error rate of 1, singletons were removed,
and sequences were denoised using the “unoise3” algorithm.
Processed reads were then mapped to OTU representatives to
generate an OTU abundance table. Taxonomy was assigned to
OTUs using the SINTAX algorithm with an 80% confidence
threshold to the SINTAX formatted UNITE database (version
7). OTUs identified as non-fungal were discarded and OTU
tables were rarefied to 16,000 sequences per sample for all
analyses unless otherwise noted. Material-free extraction controls
indicated minimal cross-contamination of fungal sequences in
OTU tables prior to rarefaction, thus no removal of contaminant
OTUs was necessary.

Statistical Analyses
The ratio of fungi and bacteria was calculated using copy
number of bacterial and fungal community from each sample and
compared among treatments by Kruskal-Wallis test. Non-metric
multidimensional scaling (NMDS) was performed to visualize
fungal community similarity among soil samples based on Bray-
Curtis distances using the “metaMDS” function of the vegan
package (version 2.4.1) in R. Soil chemical characteristics were
fitted to the NMDS ordination with the “envfit” function of vegan.
Permutational multivariate analysis of variance (PERMANOVA)
was conducted using the “Adonis” function of the vegan package
(nperm = 999). Fungal richness and Shannon diversity (H’) were
calculated and compared among treatments by Kruskal-Wallis
test. The abundance of fungal families (>0.1% of sequences) was
compared among treatments by Kruskal-Wallis test. DESeq2 was
used to identify OTUs that differed after lime application within
soil depth and location using unrarefied OTU tables filtered to
remove low abundance taxa (<10 total counts) and those found
in fewer than 3 samples. OTUs were considered as differentially
abundant if they had a base mean >50, FDR adjusted p-values of

1https://osf.io/twux3/?view_only=99b35f5e106542f3b08c7a1c2616f6e0
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<0.1, and estimated log2-fold change >1. Spearman correlations
were used to evaluate relationships between fungal families and
soil chemical characteristics using the “corr.test” function in the
Hmisc package in R.

RESULTS

Soil Fungal Community
After sequence data processing, 5,460,052 sequences were
obtained with a minimum of 16,000 sequences per sample. These
sequences were mapped to 4,824 OTUs prior to rarefaction. After
rarefaction, the most dominant phylum in soil fungal community
was Ascomycota (37.3 ± 0.47%, mean ± SE), followed
by Mortierellomycota (13.9 ± 0.49%), and Basidiomycota
(13.1 ± 0.49%). Ten other phyla, Chytridiomycota,
Calcarisporiellomycota, Kickxellomycota, Rozellomycota,
Olpidiomycota, Basidiobolomycota, Glomeromycota,
Zoopagomycota, Monoblepharomycota, and Mucoromycota
were also present in the test soil but at a lower frequency
(less than 2.0%). The four most abundant families comprised
over 26% of taxa in all samples, which were Mortierellaceae
(13.8 ± 0.49%), Aspergillaceae (5.6 ± 0.27%), Piskurozymaceae
(4.4± 0.19%), and Herpotrichiellaceae (2.7± 0.15%).

Fungal to bacterial abundance ratios (F:B) were higher in
the surface soil (0–7.5 cm) than in the deeper soil (7.5–15
and 15–22.5 cm) at both locations (p ≤ 0.05, Kruskal-Wallis
test) (Figure 1). But no significant difference of F:B ratio was
observed between lime and no lime applications in each soil
depth at two locations.

Fungal diversity and richness varied between two sampling
times (year 2017 and 2018) (p ≤ 0.05, Kruskal-Wallis test)
(Figure 2). However, lime applications did not significantly
impact fungal diversity and richness, compared with the no lime
control treatment. In addition, fungal diversity and richness from
the surface soil were significantly higher than those of the deeper
soils at Moro, and only fungal richness from the surface soil
was higher than that of the deeper soil at Pendleton (p ≤ 0.05,
Kruskal-Wallis test), but no difference of fungal diversity was
observed. These results indicate that liming, location, and soil
depth had marginal and inconsistent impacts on fungal diversity,
while time after liming had greater influence on fungal diversity.

Non-metric multidimensional scaling (NMDS) and
PERMANOVA analyses of fungal community composition
revealed significant location (PERMANOVA r2 = 0.19,
p = 0.001) and soil depth (PERMANOVA r2 = 0.15, p = 0.001)
effects (Figure 3A). A small but significant effect of liming
(PERMANOVA r2 = 0.02, p = 0.015) on fungal community
composition was observed (Figure 3B). Additionally, fungal
community dissimilarities were significantly correlated with soil
chemical parameters, including organic matter (OM), DTPA-Al,
KCl-Al, pH, and nitrogen (NH4.N and NO3.N) (Figure 3B).
Further, fungal communities from different locations and soil
depths were analyzed independently using NMDS. The results
showed that time after lime treatment (year) influenced fungal
composition (PERMANOVA, p = 0.001). The impacts of liming
on fungal community composition were only observed in the

surface soil at Moro (PERMANOVA r2 = 0.12, p = 0.008), but
not in the surface soil at Pendleton or in deeper soils at either
location (p > 0.27) (Figure 4).

Effect of Location and Soil Depth on
Fungal Taxa
Differences in the relative abundance of fungal families by
location and soil depth were observed in soil samples without
liming (p ≤ 0.05, Kruskal-Wallis test). Eighteen and 14 fungal
families were significantly affected by location and soil depth,
respectively, where some families were more abundant in the
surface soil (0–7.5 cm) (e.g., Coniochaetaceae, Dothioraceae,
Lasiosphaeriaceae, Piskurozymaceae, and Sordariaceae),
some in deeper soil (15–22.5 cm) (e.g., Calcarisporiellaceae,
Geminibasidiaceae, Kickxellaceae, and Mortierellaceae),
and some families (Aspergillaceae, Hypocreaceae, and
Myxotrichaceae) in the middle layer (7.5–15 cm) (Table 1).
Moreover, nine families varied significantly with both
location and soil depth.

Effect of Lime Applications on Fungal
Taxa
Some fungal families varied in relative abundance with lime
application in different soil depths at each location (p ≤ 0.05,
Kruskal-Wallis test) (Figure 5). These families included
Chaetosphaeriaceae, Helotiaceae and Lasiophaeriaceae at
Pendleton, and Aspergillaceae, Lasiophaeriaceae, Pezizaceae
and Thelebolaceae at Moro in the surface soil. Notably,
the abundance of Helotiaceae and Pezizaceae increased
with rate of lime application, while Lasiophaeriaceae
showed an opposite trend. The abundance of Dothioraceae
and Helontialea_fam_Incertae_sedis at Pendleton and
Entolomataceae and Helontialea_fam_Incertae_sedis at Moro
varied with lime application in middle layer (7.5–15 cm). Families
Herpotrichiellaceae and Orbiliaceae varied with lime application
in deeper soil (15–22.5 cm) at Pendleton. No family in deeper
soil at Moro was affected by liming. Furthermore, DESeq2
analysis identified 53 (0–7.5 cm soil), 5 (7.5–15 cm soil), and 6
(15–22.5 cm soil) OTUs at Pendleton, and 12 (0–7.5 cm soil),
22 (7.5–15 cm soil), and 6 (15–22.5 cm soil) OTUs at Moro that
differed in abundance after liming application (base mean > 50)
(Figure 6 and Supplementary Figure 1). A total of 32 OTUs
increased and 32 OTUs decreased by liming at Pendleton,
and 20 OTUs increased and 20 OTUs decreased by liming at
Moro, respectively. However, most OTUs impacted by liming
were soil depth- or location-dependent, where OTU 148 had a
consistent negatively response to liming in both 7.5–15 cm and
15–22.5 cm soil at Moro, and OTU 32 had a consistent positive
response to liming in surface soil at Pendleton and middle
layer soil at Moro, while OTU 49 (Lasiosphaeriaceae) exhibited
an opposite response to liming in 7.5–15 cm and 15–22.5 cm
soil at Pendleton (Figure 6 and Supplementary Figure 1).
Interestingly, several fungal taxa among these OTUs known for
their roles as pathogens, such as Herpotrichiellaceae, Alternaria,
and Sordariomycetes, were found. On the other hand, a few taxa
were reported to have members with biocontrol activities, such as
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FIGURE 1 | Fungal: bacterial abundance ratios from soil at two wheat locations. (A) Pendleton. (B) Moro. F:B ratio: fungal: bacterial abundance ratio; Soil depth:
0–7.5 cm, 7.5–15 cm, and 15–22.5 cm; rate of lime application: 0, 673, 1,345, and 2,690 kg ha−1; The values are means (n = 8) ± SE (p ≤ 0.05, Kruskal-Wallis test).

FIGURE 2 | Fungal diversity and richness indices among locations, soil depth, years, and lime applications. (A) Fungal Shannon diversity. (B) Fungal richness
(p ≤ 0.05, Kruskal-Wallis test).

Hypocreales and Mortierella. Moreover, a few genera, including
Trichoderma and OTU 127 (order Hypocreales), Peziza (order
Pezizales), and Penicillium (order Eurotiales), in Ascomycota
were increased by liming at Moro location. Taken together, these
results indicate that the impacts of liming on soil fungal taxa
were inconsistent and location- and soil depth- dependent.

Relationships of Fungal Communities
With Soil Chemical Properties
Lime application changed soil chemical properties, including
increasing pH and the levels of Ca2+ and calcium cation
exchange capacity (Ca. CEC) (Yin et al., submitted manuscript,
Supplementary Figures 2, 3). Additionally, a strong negative
correlation was observed between the organic matter (OM)
and soil depth (Supplementary Figure 3). The impacts of soil

chemical properties on fungal families were analyzed. Most
interestingly, the response of some fungal families to soil OM
and pH was opposite (Figure 7). For example, fungal families
were positively correlated with soil OM and negatively with pH,
including Chaetosphaeriaceae, Hydnodontaceae, Hypocreaceae,
Lasiosphaeriaceae, Piskurozymaceae, and Sordariaceae. Whereas
Herpotrichiellaceae was negatively correlated with OM and
positively correlated with pH. Compared with pH, six of seven
families had opposite correlations with Al-KCl or Al-DTPA
or both (Figure 7). Further, the correlations between soil
chemical properties and fungal families from different soil depths
were analyzed independently (Supplementary Figure 4). Similar
trends were found although the opposite response of a few fungal
families to OM and pH was observed only in the surface (e.g.,
Lasiosphaeriaceae) or deeper soil (e.g., Calcarisporiellaceae and
Hydnodontaceae). In addition, other soil characteristics, such
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FIGURE 3 | Non-metric multidimensional scaling (NMDS) of fungal community from all samples (Bray-Curtis distances). (A) NMDS of fungal community within
location and soil depth. (B) NMDS of fungal community within soil depth and lime application. Symbols represent soil depth and colors represent location or rate of
lime application. Vectors represent significant associations of soil chemical factors along with axes (vegan, p ≤ 0.05). Al-DTPA, DTPA extractable aluminum; Al-KCl,
KCl extractable aluminum.

as nitrogen (NH4. N and NO3.N), P, K, and cation exchange
capacity, had positive or negative correlations with fungal
families (Figure 7). These results suggest that soil characteristics
are important drivers of the fungal community.

DISCUSSION

Few studies have addressed the impact of lime application in
agricultural soil on the soil fungal community. We investigated
the changes in the soil fungal community after liming at two
locations with decreasing soil pH in the IPNW using high-
throughput sequencing. Contrary to bacterial communities (Yin
et al., submitted manuscript), location and liming did not
significantly influence fungal diversity and richness in soil, while
the impacts of soil depth on fungal diversity were location-
dependent. These results were consistent with the work by
Narendrula-Kotha and Nkongolo (2017) who showed that soil
liming had limited effects on fungal diversity. They were also
in agreement with work by Al-Sadi and Kazerooni (2018) who
reported that no significant differences of Chao richness and
Shannon diversity existed in root samples taken from limed soils.
However, this is not always the case for fungal diversity. Lin et al.
(2018) showed that lime or pig manure altered fungal community
diversity due to soil pH increase in Ultisols. Generally, fungi can

live in a wider range of pH than bacteria (Strickland and Rousk,
2010). In our study sites, liming ameliorated soil acidification in
the surface soil (0–7.5 cm) and soil pH slightly increased with
soil depth in both locations (Yin et al., submitted manuscript,
Supplementary Figure 2). Increasing pH by liming or soil depth
may benefit some fungi which are favored by relatively higher pH
conditions (Rousk et al., 2010). On the other hand, increased pH
may suppress the growth of other fungi which are well-adapted
to acidic soil (Dix and Webster, 1995). Consequently, fungal
diversity appeared to be unaffected by location and liming.

Contrary to fungal diversity, fungal community composition
was significantly influenced by location and soil depth.
Notably, stratification of fungal families was observed,
where families such as, Coniochaetaceae, Dothioraceae,
Lasiosphaeriaceae, Piskurozymaceae, and Sordariaceae
tended to predominate in surface soil, whereas families
Calcarisporiellaceae, Clavicipitaceae, Geminibasidiaceae,
Kickxellaceae, and Mortierellaceae predominated in deeper soil.
Moreover, the surface soil enriched families, Lasiosphaeriaceae,
Piskurozymaceae, and Sordariaceae, were positively correlated
with soil OM and aluminum, and negatively with pH, whereas
deeper soil enriched family Kickxellaceae showed an opposite
correlation with soil OM. OM was higher in the surface soil and
decreased with soil depth in our study sites. Plant residue and
litter layer may result in increased OM in the surface soil, while
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FIGURE 4 | Non-metric multidimensional scaling (NMDS) of fungal community within locations and soil depth (Bray-Curtis distances). Symbols represent sample
time after liming (year), and colors represent rate of lime application (kg ha−1).

plant residue is expected to be reduced with depth, which is
likely to be reflected by less OM in deeper soil. Similar to OM,
soluble aluminum was negatively correlated with soil depth, but
pH showed an opposite trend with lower pH in the surface and
higher pH in deeper soil. These results suggested that variation in
fungal families across soil depths may track stratification in OM,
pH, and aluminum in soil. Further, earlier studies also supported
these findings. For example, fungal community composition was
found to be distinct at different soil depths (Ko et al., 2017). Li
et al. (2017) revealed that the relative abundances of bacteria
and fungi significantly decreased at 0–40 cm depths. Similarly,
fungal community varied with the soil depths (Prober et al., 2015;
Schlatter et al., 2018; Guo et al., 2019). In addition, Schlatter
et al. (2018) found that family Lasiosphaeriaceae was more
abundant at soil surface, while Clavicipitaceae were in deeper soil
(10–25 cm). Taken together, stratification of OM, aluminum, and
pH across soil depths may generate distinct fungal communities.

Similar to the small impacts of liming on bacterial community
observed in our companion work (Yin et al., submitted
manuscript), we found a subtle effect of liming on fungal
community composition. However, liming influenced the
abundance of 11 fungal families in different soil depths
at two locations and seven families had strong correlations
with soil pH (Figures 5, 7). Most notably, the abundance
of family Lasiosphaeriaceae (phylum Ascomycota) decreased
with greater lime concentration in the surface soil and had
negative correlations with soil pH. Liming significantly increased
soil pH in the surface soil at two locations, suggesting
that liming decreased the abundance of Lasiosphaeriaceae
through increasing soil pH. Liming also decreased aluminum

concentration in the surface soil, and significantly increased soil
calcium concentration (Yin et al., submitted manuscript) which
may reduce the solubility of OM (Balaria et al., 2014). The
abundance of Lasiosphaeriaceae was positively correlated with
soil OM and aluminum (Figure 7), which could explain the
abundance of Lasiosphaeriaceae which decreased with greater
lime concentration in the surface soil. In addition, some
Ascomycetes are important sources of extracellular enzymes
(Moorhead et al., 2012) and liming may decrease the activities
of some extracellular enzymes (Cenini et al., 2016; Sridhar
et al., 2018), which may be the other reason for less abundant
Lasiosphaeriaceae in the surface soil. Similar trends were also
observed in the abundance of family Chaetospheriaceae in
the surface soil at Pendleton. In contrast, the abundance
of Helotiaceae at Pendleton and Pezizaceae at Moro in the
surface increased with the rate of lime application. Interestingly,
Helotiaceae was positively correlated with soil Ca, but negatively
correlated with soil Al, indicating the increase of Helotiaceae
with the rate of lime application through increasing soil Ca
and decreasing Al after liming. In addition, Helotiaceae was
negatively correlated with soil NH4. Helotiaceae is a small
group of fungicolous, lichenicolous, and discomycetes members
(Zhuang, 2000) and was reported to be positively correlated with
soil carbon accumulation (Zhang et al., 2017). Nagati et al. (2019)
found that higher abundance of Helotiaceae was associated
with the lower N nutrition of balsam fir near ericaceous
shrubs. Moreover, previous studies reported that soil C:N ratio
significantly increased with liming and the effect of liming on soil
fungal community was closely tied to the way liming affected the
C:N ratio (Melvin et al., 2013; Suz et al., 2014). It is suggested that
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TABLE 1 | The relative abundance (±standard error) of fungal families significantly impacted by location and soil depth without liming.

Family (relative abundance%) Pendleton (cm) Moro (cm) p-valuea (location) p-valuea (soil depth)

0–7.5 7.5–15 15–22.5 0–7.5 7.5–15 15–22.5

Aspergillaceae 1.96 ± 0.20 4.78 ± 0.52 4.08 ± 0.88 5.74 ± 0.84 11.11 ± 1.11 5.81 ± 0.93 9.11E-05 1.53E-02

Calcarisporiellaceae 0.02 ± 0.01 1.71 ± 0.31 3.49 ± 1.29 0.00 ± 0.00 0.08 ± 0.05 0.23 ± 0.12 2.39E-04 2.24E-04

Cantharellales_fam_Incertae_sedis 0.01 ± 0.01 0.00 ± 0.00 0.05 ± 0.03 0.15 ± 0.07 6.57 ± 3.71 3.72 ± 3.29 4.87E-05 >0.05

Ceratobasidiaceae 0.30 ± 0.15 0.34 ± 0.10 0.72 ± 0.28 0.08 ± 0.04 0.16 ± 0.08 0.12 ± 0.10 7.21E-04 >0.05

Chaetomiaceae 0.19 ± 0.07 0.23 ± 0.12 0.23 ± 0.07 0.79 ± 0.16 0.72 ± 0.17 0.50 ± 0.28 1.39E-03 >0.05

Clavicipitaceae 0.14 ± 0.09 0.59 ± 0.19 0.57 ± 0.20 0.05 ± 0.01 0.62 ± 0.15 0.59 ± 0.27 >0.05 9.36E-06

Coniochaetaceae 2.08 ± 0.61 0.28 ± 0.05 0.44 ± 0.15 1.92 ± 0.57 0.42 ± 0.13 0.34 ± 0.04 >0.05 4.43E-06

Cystofilobasidiaceae 0.41 ± 0.10 0.25 ± 0.17 0.25 ± 0.13 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 3.53E-08 >0.05

Dothioraceae 0.02 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.81 ± 0.16 0.24 ± 0.08 0.49 ± 0.06 1.60E-07 3.97E-02

Geminibasidiaceae 0.02 ± 0.01 0.21 ± 0.04 0.65 ± 0.16 0.08 ± 0.02 1.12 ± 0.28 2.20 ± 0.57 6.11E-03 1.20E-06

Herpotrichiellaceae 1.18 ± 0.15 1.39 ± 0.19 1.98 ± 0.50 4.90 ± 0.73 3.12 ± 0.65 4.52 ± 0.77 1.77E-06 >0.05

Hypocreaceae 0.62 ± 0.37 1.80 ± 0.38 0.76 ± 0.15 0.13 ± 0.03 0.59 ± 0.18 0.39 ± 0.18 6.16E-04 2.33E-03

Kickxellaceae 0.01 ± 0.01 0.14 ± 0.07 1.94 ± 1.14 0.05 ± 0.03 0.46 ± 0.19 0.57 ± 0.24 >0.05 7.07E-04

Lasiosphaeriaceae 2.51 ± 0.46 0.74 ± 0.32 0.55 ± 0.25 0.74 ± 0.25 0.34 ± 0.14 0.18 ± 0.11 1.80E-02 1.67E-03

Mortierellaceae 7.09 ± 1.29 15.85 ± 1.34 16.45 ± 1.84 8.78 ± 1.15 14.04 ± 2.27 16.37 ± 2.35 >0.05 6.49E-05

Myxotrichaceae 0.02 ± 0.01 0.15 ± 0.06 0.05 ± 0.02 0.08 ± 0.03 0.20 ± 0.08 0.09 ± 0.05 >0.05 7.56E-03

Orbiliaceae 0.01 ± 0.00 0.01 ± 0.00 0.08 ± 0.03 0.20 ± 0.02 0.05 ± 0.02 0.23 ± 0.09 6.77E-05 5.96E-03

Piskurozymaceae 5.63 ± 0.95 7.89 ± 1.21 4.52 ± 0.61 3.69 ± 0.27 3.55 ± 0.52 1.64 ± 0.31 9.10E-05 7.18E-03

Sordariaceae 3.86 ± 1.10 0.82 ± 0.22 0.76 ± 0.42 0.04 ± 0.02 0.05 ± 0.03 0.04 ± 0.03 3.65E-07 >0.05

Teratosphaeriaceae 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.57 ± 0.12 0.36 ± 0.24 0.48 ± 0.14 7.34E-09 >0.05

Xylariaceae 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.46 ± 0.25 0.22 ± 0.15 0.02 ± 0.01 8.05E-05 >0.05

Chaetosphaeriaceae 0.59 ± 0.18 0.78 ± 0.07 0.76 ± 0.08 0.08 ± 0.02 0.66 ± 0.28 0.96 ± 0.61 1.33E-03 3.04E-02

Helotiaceae 0.03 ± 0.01 0.10 ± 0.05 0.55 ± 0.47 0.13 ± 0.05 0.23 ± 0.08 0.29 ± 0.09 1.15E-02 >0.05

aKruskal-Wallis test.
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FIGURE 5 | Fungal families that were impacted by lime application at different soil depths. (A–D) 0-7.5 cm soil, (E) 7-15 cm soil, and (F–G) 15-22.5 cm soil. Box:
interquartile range. Mean: the heavy line in the box (p ≤ 0.05, Kruskal–Wallis test).

FIGURE 6 | Fungal OTUs that were differentially abundant among lime application within soil depth at each location. Soil depth: 0–7.5 cm, 7.5–15 cm, and
15–22.5 cm. Values on the X-axis represent the log2-fold difference in sequence abundance among lime amendments as estimated by DESeq2. Points to the right
of red vertical line are more abundant in lime amendments, whereas those to the left of red vertical line are less abundant in lime amendments. Dots indicate OTUs,
where the size of the dot is scaled by its mean abundance among all samples (baseMean > 50) and its color represents the phylum to which that OTU belongs. The
nearest taxonomy assignment is presented at left. Only OTUs with a mean abundance >10 and normalized counts >5 and present in at least 3 samples are
presented.
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FIGURE 7 | Heatmap of significant spearman correlations between fungal family abundance and soil chemical characteristics. OM, organic matter; Al-KCl, KCl
extractable aluminum; Al-DTPA, DTPA extractable aluminum; CEC, cation exchange capacity and the element listed before CEC (i.e., Ca.CEC) represents the
proportion of the CEC comprised of that specific cation. Significance was examined using R statistical software (p ≤ 0.05 and absolute r-value cut off 0.3).

the abundance of Helotiaceae may be related to soil nutrient is
C:N ratio. Tedersoo et al. (2006) revealed that some pezizalean
species were distributed in the forests with a high pH, which was
consistent with our findings. In addition, it was unexpected that
the abundance of ascomycete family Nectriaceae was very low
(<0.1%) in our soil. Nectriaceae includes numerous important
plant pathogens, such as Fusarium spp. soilborne pathogens
which are usually very common and associated with plant debris
and roots in agricultural soil (Silvestro et al., 2013; Karim et al.,
2016). However, the impacts of liming on fungal community
were observed in short term (2 years) after lime applications.
A few previous studies reported that impact zones with increased
pH and the changes of soil chemistry reached to depths of 50,
55, and 60 cm in over 10 years after liming (Tang et al., 2003;
Caires et al., 2008; Santos et al., 2018). The microbial properties
under longer timescale liming need to be further addressed.
In summary, location and soil depth significantly influenced
fungal community composition, while lime had a smaller impact.
A small number of fungal families varied in relative abundance
after liming and liming influenced some fungal family abundance
through increasing soil pH.

The ratio of fungal and bacterial abundance (F:B) was
considered to have important ecological significance in soil
ecology and affected by environmental changes (Strickland
and Rousk, 2010; Wang et al., 2019). We found that the
ratios of F:B were higher on the surface soil than that of
deeper soil at both locations. It is probable that fungi are
less affected by soil pH than bacteria (Rousk et al., 2010),
thus dominate in surface soil resulting in a higher ratio of
F:B than the deeper soil. Another possibility is that there is

more plant residue in the surface soil than the deeper soil.
Although both bacteria and fungi are decomposers in agro-
ecosytems, the roles they play are different. Compared to bacteria,
soil fungi mainly decompose recalcitrant organic materials,
such as lignin, cellulose, and hemicellulose, whereas bacteria
degrade labile fractions (Strickland and Rousk, 2010; Chen
et al., 2014). Thus, the surface soil may enrich more fungi
than the deeper soil for plant residue decomposition. Finally,
the oxygen concentration in the deeper soil is much lower
than those in the surface soil which may also change the
microbial distribution.

Findings from this study revealed that the most dominant
fungal phylum was Ascomycota, accounting for >35% of fungi
in examined soil. Ascomycota is the dominant phylum of fungi
in agricultural ecosystems and its high presence in our soil is
not unexpected. Ascomycota play significant roles in nutrients
and carbon cycling and induce the uptake of mineral nutrients
for plants (Semenova et al., 2015; Francioli et al., 2016; Yu
et al., 2018). The second and third most dominant phyla were
Mortierellomycota and Basidiomycota, accounting for similar
abundance. Mortierella is the largest genus in Mortierellomycota
and known as a ubiquitous saprobe (Buée et al., 2009).
Basidiomycota, rather than Ascomycota, was dominant in
terrestrial ecosystems such as forests but was much lower in
agricultural soils (Francioli et al., 2016) which supported our
results. Most interestingly, a few genera, including Trichoderma
and OTU 127 (order Hypocreales), Peziza (order Pezizales) and
Penicillium (order Eurotiales), in Ascomycota were increased
by liming at the Moro location. These results were consistent
with the works by Narendrula-Kotha and Nkongolo (2017) and
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Al-Sadi and Kazerooni (2018) who found that Penicillium was
more abundant in limed soil than a non-limed site. They were
partially in accord with (Ye et al., 2020) who revealed that
liming significantly enhanced the relative abundance of the order
Hypocreales but had no effect on the relative abundance of
Pezizales. Similarly, Pezizales are abundant in forest soil and
increased with liming (Kjøller and Clemmensen, 2009; Tedersoo
et al., 2014; Ge et al., 2017). Earlier studies showed that some
fungi, such as Hypocreales and Peziza, grow well in neutral
to slightly alkaline conditions (Yamanaka, 2003; Rousk et al.,
2010). Thus, one possible explanation is that increased pH by
liming in our study sites promoted the growth of Hypocreales
and Peziza and increased their abundance. Some genera of
Hypocreales were considered as sources of biocontrol fungi
for plant diseases (Bastakoti et al., 2017; Kepler et al., 2017)
and Penicillium was reported to interfere with the growth of
some fungal pathogens (Yuan et al., 2017). Similarly, genus
Mortierella from Mortierellomycota was slightly increased by
liming at Moro. Mortierella was reported to be beneficial for
plant growth and soil health by releasing P or degrading relative
abundances of the toxic compounds and producing antibiotics to
inhibit phytopathogens (Tagawa et al., 2010; Osorio and Habte,
2015; Li et al., 2018). A recent study found that the enrichment
of Mortierella species increased crop yield (Ning et al., 2020).
Therefore, the increased abundance of these taxa in limed soil
may contribute to pathogen suppression, promote crop growth,
thus indirectly increase crop yields. Further work is needed to
verify function of Mortierella in this system. This phenomenon
was only observed at Moro, indicating a location dependency.

CONCLUSION

Overall, our findings revealed minor impacts of liming on
soil fungal community composition, similar to small effects
on bacterial community (Yin et al., submitted manuscript).
Location and soil depth had a strong effect on soil fungal
community composition. However, the location and liming did
not significantly influence soil fungal diversity and richness.
Some fungal taxa, including species associated with plant benefits,
varied after lime application which may improve plant growth
and increase crop yields.
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