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Simple Summary: Changes in metabolism are a well-known characteristic of cancer cells. Different
cancer types are unique in their genetic aspects, but also in their metabolism, which is in turn,
governed by genetics. The aim of our study was to find these differences in metabolic behavior
across different cancer types and uncovering intersections between gene expression and metabolic
deregulations. We scoured the public domain for metabolomics and transcriptomics data from
clinical profiling studies to perform a comprehensive comparison study. By combining evidence from
both the genetic and the metabolic aspects, we described the most prominently aberrated pathways
across eight different cancer types together with their metabolomic and transcriptomics similarities.

Abstract: One of the major hallmarks of cancer is the derailment of a cell’s metabolism. The mul-
tifaceted nature of cancer and different cancer types is transduced by both its transcriptomic and
metabolomic landscapes. In this study, we re-purposed the publicly available transcriptomic and
metabolomics data of eight cancer types (breast, lung, gastric, renal, liver, colorectal, prostate, and
multiple myeloma) to find and investigate differences and commonalities on a pathway level among
different cancer types. Topological analysis of inferred graphical Gaussian association networks
showed that cancer was strongly defined in genetic networks, but not in metabolic networks. Using
different statistical approaches to find significant differences between cancer and control cases, we
highlighted the difficulties of high-level data-merging and in using statistical association networks.
Cancer transcriptomics and metabolomics and landscapes were characterized by changed macro-
molecule production, however, only major metabolic deregulations with highly impacted pathways
were found in liver cancer. Cell cycle was enriched in breast, liver, and colorectal cancer, while breast
and lung cancer were distinguished by highly enriched oncogene signaling pathways. A strong
inflammatory response was observed in lung cancer and, to some extent, renal cancer. This study
highlights the necessity of combining different omics levels to obtain a better description of cancer
characteristics.

Keywords: association networks; cancer metabolism; biological networks analysis; gaussian graphi-
cal models; pathway analysis

1. Introduction

The vast amount of publicly available multi-omics databases with associated clin-
ical annotation including tumor histology, patient response, and outcome is enabling a
multidimensional approach to cancer investigations [1].

Among omics disciplines, metabolomics and transcriptomics have been favored by
systems biology tools to explore cancer biology. Metabolomics, i.e., the study of the na-
ture and the concentration profiles present in biofluids and tissues [2], has been usually
deployed in the clinical setting to investigate possible diagnostic or prognostic biomarkers
and to monitor patients [3–5], rather than to unravel cancer metabolism mechanisms or
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comparing differences between cancers. This is due to the reactive and circumstantial na-
ture of metabolism, even the most advanced measuring platforms can only take a snapshot
of the whole metabolome [6]. Combining multiple snapshots poses many technical diffi-
culties, including differences between measuring platforms, batch effects, and metabolite
identification.

In contrast to metabolomics, transcriptomics is a more holistic and standardized
approach where almost all gene transcripts can be measured [7]. This has led to the identi-
fication of biologically important genes and pathways frequently disrupted across many
cancer types and has revealed clinically relevant diagnostic, prognostic, and druggable
targets [8,9].

However, studies at different levels have clearly indicated that the complex nature of
cancer cannot be fully captured considering only one omics level at a time [10–12] and that
defining cancer hallmarks requires the characterization of molecular alterations at multiple
levels [10].

Using an integrative approach, we re-purposed publicly available metabolomics data
created for biomarker-discovery in combination with gene expression data to find differ-
ences and commonalities between eight cancer types at the biological pathway level. We
considered eight different cancer types (breast, lung, gastric, renal, liver, colorectal, prostate,
and multiple myeloma) and we explored and compared the associated metabolomic and
transcriptomic landscapes.

We combined standard univariate differential metabolite abundance and gene expres-
sion analysis with the inference and analysis of metabolite and gene association networks,
since relevant information is contained in the relationships among molecular features and
not in levels only [13,14].

We aggregated results from the metabolomic and transcriptomic levels at the pathway
level to overcome the problem of integrating data from different studies. We showed fun-
damental differences between the metabolomic and transcriptomic landscape of different
cancer types and highlighted that a better description of cancer characteristics is obtained
when different omics levels are considered.

2. Results and Discussion
2.1. Data Collection

We collected 14 metabolomics data sets encompassing eight different cancer types
(breast, lung, gastric, renal, liver, colorectal, prostate, and multiple myeloma from organ
tissue (5), urine (2), blood plasma (4) and serum (3)) that satisfied our inclusion criteria.
Eight transcriptomics data sets, matching the same cancer type of the metabolomics data
sets were also obtained. A complete description of all data sets can be found in Table 1.
Data collection is described in more detail in Appendix A. Metabolite occurrence across all
data sets is given in Table S1.

2.2. Analysis of Cancer Metabolomics Data
2.2.1. Differentially Abundant Metabolites in Different Cancer Types

We compared metabolite abundances between cancer and controls samples for each
cancer type (at the data set level) to investigate shared and different metabolic features
across different types of cancer and/or tissues. It proved hard to replicate the findings
reported in the original papers because of different (and often sub-optimal: lack of data
transformation, adjustment for multiple testing) data-analysis strategies and no paper
could be exactly replicated.

For six data sets (corresponding to renal, prostate, gastric, breast, and lung cancer) we
found none or less than five significantly different abundant metabolites between case and
controls; the remaining data sets gave varying numbers of differentially abundant metabo-
lites as shown in Table 2. Out of the 459 significant differentially abundant metabolites, 408
metabolites were found to be specific to only one cancer type.
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Table 1. A summary of all 14 metabolomics and 8 transcriptomics data sets across eight different cancer types and different
sampling origins. Data sets that are not accompanied by a paper are provided with their corresponding database ID from
either the Metabolomics Workbench or the Gene Expression Omnibus.

PubMed ID Database ID Data Type Cancer Type Sample Type Cancer Samples Control Samples Metabolites/Genes

ST000054 Metabolomics Breast Tissue 121 23 65
27036109 [15] ST000355 Metabolomics Breast Plasma 138 77 221
27036109 [15] ST000356 Metabolomics Breast Serum 104 32 262
31794572 [16] Metabolomics Breast Plasma 80 60 69
25126899 [17] ST000284 Metabolomics Colorectal Serum 66 92 113
29259332 [18] Metabolomics Gastric Plasma 19 20 107
21518826 [19] Metabolomics Liver Serum 82 71 66
21518826 [19] Metabolomics Liver Urine 82 71 77

ST000390 Metabolomics Lung Tissue 70 10 182
ST000396 Metabolomics Lung Plasma 41 200 126

23543897 [20] Metabolomics Lung Tissue 9 9 92
ST000221 Metabolomics Multiple myeloma Tissue 9 6 191

23543897 [20] Metabolomics Prostate Tissue 7 7 72
21348635 [21] Metabolomics Renal Urine 25 25 205
31594947 [22] E-MTAB-6703 Transcriptomics Breast Tissue 2088 214 20,545
31594947 [22] E-MTAB-6698 Transcriptomics Colorectal Tissue 1393 121 20,545
31594947 [22] E-MTAB-6693 Transcriptomics Gastric Tissue 691 46 20,107
31594947 [22] E-MTAB-6695 Transcriptomics Liver Tissue 264 137 20,107
31594947 [22] E-MTAB-6699 Transcriptomics Lung Tissue 1474 147 20,545
24816239 [23] GSE47552 Transcriptomics Multiple myeloma Tissue 41 4 22,470
31594947 [22] E-MTAB-6694 Transcriptomics Prostate Tissue 121 116 20,107
31594947 [22] E-MTAB-6692 Transcriptomics Renal Tissue 219 104 20,107

Table 2. Overview of the number of significantly differentially abundant metabolites per data set
and cancer type (Benjamini–Hochberg adjusted p-value padj < 0.05).

Data Set Cancer Type Metabolites Differentially Abundant (padj < 0.05)

31794572 [16] Breast Plasma 69 41
ST000054 Breast Tissue 65 2

27036109 [15] Breast Plasma 221 87
27036109 [15] Breast Serum 262 182
25126899 [17] Colorectal Serum 113 25
29259332 [18] Gastric Plasma 104 4
21518826 [19] Liver Serum 63 30
21518826 [19] Liver Urine 77 47
23543897 [20] Lung Tissue 92 43

ST000396 Lung Plasma 126 1
ST000390 Lung Tissue 182 3

ST000221 Multiple
myeloma Tissue 191 114

23543897 [20] Prostate Tissue 72 0
21348635 [21] Renal Urine 205 0

The most common differentially abundant metabolites are taurine, proline, and glu-
tamic acid, found in four out of the seven remaining cancer types, confirming the role of
these amino acids [24–28] and of amino acids in general in cancer biology [29].

We found lactic acid to be differentially abundant in breast, liver, and lung cancer.
Lactic acid is a well-known marker for the Warburg effect [30] indicating the use of gly-
colysis in cancer cells to shuttle more resources towards gaining cell mass. There is ample
literature about lactic acid either as a marker of tumor activity or regulator [31–33].

These results are in line with the findings of a recent meta-analysis by Goveia et al. [34]
which also found lactic acid, glutamic acid, tryptophan, histidine, glutamine, and kynure-
nine to be often reported in more than 200 cancer metabolomics studies. However, it should
be noted that they used a vote-counting approach to compare the reported findings of
multiple studies rather than re-analyzing data like in our study.

We used Pathway Enrichment Analysis on the cancer-specific differentially abundant
metabolites to reduce results to a smaller and more interpretable set of altered processes [35]
(all pathway analysis results are available in the Supplementary File Pathway.zip).

We took into account how much each pathway is impacted (i.e., its relevance) by
the selected metabolites since not all metabolites have the same relevance to defining the
overall pathway structure (see Methods) and not all metabolic pathways are relevant for
different cancer types [36].
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Overall, we found 18 unique enriched pathways in breast, liver, lung, and colorec-
tal cancer, while no enriched pathways were found in multiple myeloma, as shown in
Figure 1A. The most commonly enriched pathway between cancer types, aminoacyl-tRNA
biosynthesis, is but of little relevance given its moderate impact. The highly impacted
pathways are (i) glycine, serine, and threonine metabolism in breast and liver cancer, (ii)
taurine and hypotaurine metabolism, and glyoxylate and dicarboxylate metabolism in liver
and breast cancer, respectively, and (iii) D-glutamine and D-glutamate metabolism, and
arginine biosynthesis in colorectal, breast, and lung cancer.

Figure 1. Pathway analysis plot showing the impact on metabolic pathways that are significantly enriched (padj < 0.05)
and have a pathway impact score > 0.1 per cancer type. Datapoints are colored according to their impact score. (A)
Pathway impact according to differentially abundant metabolites (padj < 0.05); (B) pathway impact according to differentially
connected metabolites (Benjamini-Hochberg adjusted p-value padj < 005).

Serine and glycine are biosynthetically linked and are precursors for the synthesis of
proteins, nucleic acids, and lipids that are crucial to cancer cell growth [37–39]. The taurine
and hypotaurine metabolic pathway has been shown to be relevant to multiple types of
cancers, such as ovarian, lung, colon, and renal cancers, and was recently associated with
breast cancer [15]. These data have been re-analyzed in the present study, but we did not
find this pathway to be enriched in breast cancer but only in liver cancer. To the best of our
knowledge, this association has never been reported.

We applied Principal Component Analysis (PCA) on an ncancer × npathway matrix
containing pathway impact scores, to comprehensively evaluate pathway enrichment
analysis and to highlight the relationships at the metabolic level among different cancer
types. Figure 2A shows how different cancer types are characterized by the alteration of
different metabolic pathways. PCA (Figure 2A) shows a large separation between all cancer
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types. Liver cancer is characterized by tyrosine metabolism, taurine, and hypotaurine
metabolism, and cysteine and methionine metabolism, while lung cancer is characterized
by glycine, serine, and threonine metabolism, which is also an attribute of one of the two
breast cancers (data set ST000355).

Figure 2. Principal Component Analysis (PCA) of pathway impact and network analysis. PCA labels are colored according
to their cancer type and PCA loadings are labeled if they have a pathway impact score > 0.5. Sample origin is labeled
as T, U, S, P for tissue, urine, serum, and plasma, respectively. Multiple myeloma is abbreviated as MM. (A) PCA biplot
of pathway impact based on differentially abundant metabolites per cancer type; (B) PCA biplot of pathway impact
based on differentially connected metabolites per cancer type; (C) PCA biplot of topological network measures per
cancer type for all inferred metabolite association networks. Here, networks inferred from cancer or control samples are
labeled as “Ca” and “Co”, respectively; (D) receiver operating characteristic curves of topological measures predicting
cancer pathology on metabolite association networks (n = 28, 14/14). Predictions are based on logistic regression, cross-
validated with leave-one-out cross-validation. The Area Under the Curve (AUC), 95% confidence interval (CI), and
p-value of all topological measures are Nodes: AUC = 0.529, 95% CI = 0.488–0.570, p = 0.170, Edges: AUC = 0.526,
95% CI = 0.485–0.567, p = 0.216, Mean Connectivity: AUC = 0.545, 95% CI = 0.504–0.586, p = 0.0302, Mean Degree: AUC
= 0.542, 95% CI = 0.501–0.583, p = 0.0470, Mean Closeness: AUC = 0.598, 95% CI = 0.557–0.638, p = 2.20 × 10−6, Mean
Betweenness: AUC = 0.528, 95% CI = 0.487–0.570, p = 0.175, Diameter: AUC = 0.544, 95% CI = 0.503–0.585, p = 0.0369, Mean
Minimal Distance: AUC = 0.547, 95% CI = 0.506–0.588, p = 0.0244, Mean Page Rank: AUC = 0.529, 95% CI = 0.488–0.570,
p = 0.165, Hub Nodes: AUC = 0.552, 95% CI = 0.511–0.593, p = 0.0137, Centralization: AUC = 0.543, 95% CI = 0.502–0.584,
p = 0.0422, and Transitivity: AUC = 0.527, 95% CI = 0.486–0.568, p = 0.196. Definitions of topological measures are given in
Methods.
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2.2.2. Cancer-Specific Metabolite–Metabolite Association Networks

We took a systems-based approach by inferring statistical metabolite–metabolite
association networks [14] (see Methods). Networks and pathways are similar concepts
but bear different and complementary information [35]. Pathways are small-scale systems
of well-studied processes while (association) networks comprise system-wide association
among molecular features (in our case metabolites) resulting in simplified abstractions of
complex biological phenomena and are likely to contain novel information not covered in
well-defined pathways [35].

In total, we obtained 14 networks specific to eight different cancer types and 14
matched control networks. We explored network topology by considering a set of standard
topology measures that can be used to summarize the network characteristics [40,41],
which are given in Table 3.

Table 3. Topological network characteristics of cancer (Ca) and control (Co) metabolite association networks across cancer
types. Sample origin is labeled as T, U, S, P for tissue, urine, serum, and plasma, respectively. MM is multiple myeloma and
data set identifiers are noted as: * ST000054, § ST000221, # ST000390 and † ST000396. Topological measures in the column
names are: N = Nodes, E = Edges, Mean Conn. = Mean Connectivity, Mean Deg. = Mean Degree, Mean Close. = Mean
Closeness, Mean Betw. = Mean Betweenness, D = Diameter, Mean Min. Dist. = Mean Minimal Distance, Mean Page Rank,
Hub N = Hub Nodes, Centr. = Centralization, and Trans. = Transivity. All topological measures are further explained in the
material and methods.

Network N E Mean
Conn.

Mean
Deg.

Mean
Close.

Mean
Betw. D Mean Min.

Dist.
Mean Page

Rank
Hub

N Centr. Trans.

Ca Renal (U) [21] 203 1939 0.407 0.095 0.348 0.009 6 2.886 0.005 95 0.163 0.191
Co Renal (U) [21] 203 1889 0.435 0.092 0.344 0.010 5 2.920 0.005 100 0.225 0.195
Ca Liver (S) [19] 62 229 0.547 0.121 0.205 0.067 11 5.003 0.016 43 0.207 0.036
Co Liver (S) [19] 62 191 0.428 0.101 0.051 0.036 11 4.489 0.016 40 0.129 0.025
Ca Liver (U) [19] 77 357 0.373 0.122 0.081 0.028 9 3.588 0.013 46 0.220 0.247
Co Liver (U) [19] 77 289 0.355 0.099 0.076 0.036 10 4.394 0.013 40 0.164 0.149
Ca Lung (T) [20] 91 632 0.272 0.154 0.152 0.026 8 3.484 0.011 14 0.223 0.457
Co Lung (T) [20] 91 612 0.263 0.149 0.135 0.023 8 3.239 0.011 15 0.295 0.372

Ca Prostate (T) [20] 72 294 0.168 0.115 0.052 0.045 16 5.513 0.014 9 0.167 0.447
Co Prostate (T) [20] 72 276 0.148 0.108 0.065 0.049 12 5.493 0.014 21 0.117 0.482
Ca Gastric (P) [18] 103 10204 2.072 1.943 0.243 0.000 1 1.000 0.010 0 2.018 1.000
Co Gastric (P) [18] 103 10004 2.225 1.904 0.193 0.000 1 1.000 0.010 0 2.017 1.000
Ca Breast (P) [16] 68 585 1.094 0.257 0.436 0.020 4 2.307 0.015 39 0.131 0.157
Co Breast (P) [16] 68 637 1.078 0.280 0.449 0.019 4 2.238 0.015 28 0.168 0.185

Ca Breast (T) * 65 499 0.566 0.240 0.370 0.028 5 2.750 0.015 8 0.229 0.334
Co Breast (T) * 65 293 0.409 0.141 0.106 0.042 10 4.130 0.015 23 0.234 0.397
Ca MM (T) § 191 3171 0.233 0.175 0.334 0.011 6 3.073 0.005 13 0.404 0.613
Co MM (T) § 191 2807 0.217 0.155 0.328 0.011 6 3.065 0.005 1 0.151 0.506

Ca Colorectal (S) [17] 113 813 0.650 0.128 0.347 0.017 6 2.911 0.009 59 0.122 0.169
Co Colorectal (S) [17] 113 713 0.710 0.113 0.327 0.019 7 3.100 0.009 69 0.084 0.141

Ca Breast (P) [15] 221 2863 0.941 0.118 0.389 0.007 4 2.585 0.005 78 0.146 0.215
Co Breast (P) [15] 221 2857 0.853 0.118 0.389 0.007 5 2.581 0.005 78 0.110 0.224
Ca Breast (S) [15] 260 3778 0.667 0.112 0.390 0.006 5 2.581 0.004 89 0.228 0.215
Co Breast (S) [15] 260 3500 0.463 0.104 0.377 0.006 6 2.675 0.004 69 0.143 0.233

Ca Lung (T) # 182 1614 0.732 0.098 0.261 0.010 5 2.831 0.005 123 0.101 0.153
Co Lung (T) # 182 2116 0.274 0.128 0.258 0.010 6 2.885 0.005 19 0.225 0.398
Ca Lung (P) † 126 878 0.460 0.111 0.247 0.016 7 3.055 0.008 62 0.113 0.189
Co Lung (P) † 126 914 0.833 0.116 0.169 0.014 5 2.844 0.008 98 0.140 0.110

To compare comprehensively the cancer-specific metabolite–metabolite association
networks with respect to their topological features and sample type (cancer or healthy
control), we performed PCA on the data given in Table 3. The resulting biplot is given in
Figure 2C. PCA showed that cancer networks are more similar to their control networks
than to other cancer-specific networks. Besides, different control networks inferred from
the same origin (tissue, urine, or blood) are highly different in network topology. It can be
observed that different control networks inferred from the same origin (tissue, urine, or
blood) have highly different network topologies as well.

Given the low separation between cancer and control networks in the PCA, we per-
formed logistic regression to quantify the association between the topological measures
and cancer status, i.e., comparing the topology measures of cancer and control networks.
The Receiver-Operator Curves (ROC) for these models are shown in Figure 2D. For all
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topological measures, the Area Under Curve (AUC) is around 0.5 and the highest achieved
is 0.598 for the mean closeness. This indicates that measures describing overall network
topology are weak estimators to discriminate between cancer and health-specific metabolite–
metabolite association networks. In other words, the characteristics of metabolic association
networks of cancer cells are almost non-distinguishable from normal cases. Overall, these
results indicate that differences able to discriminate between metabolite–metabolite associ-
ation networks specific to cancer and those specific to a healthy state must be looked for at
the metabolite/node level through differential network analysis which is presented in the
following section.

2.2.3. Differential Metabolite–Metabolite Network Analysis

To investigate differences of metabolite–metabolite association networks specific to
cancer and health status at the metabolite level, we performed differential connectivity anal-
ysis. In total, we found 1099 statistically significant (p-value adjusted < 0.05) differentially
connected metabolites across data sets or 925 across cancer types. Of these metabolites, 646
were unique, furthermore, 486 were found only once in any of the seven cancer types. The
most common metabolites were glutamine, kynurenine, leucine, phenylalanine, pyruvic
acid, and sorbitol, which occurred in five out of seven cancer types. An overview of the
number of differentially connected metabolites per cancer type is given in Table 4.

Table 4. Overview of the number of significantly differentially connected metabolites per data set
and cancer type (Benjamini–Hochberg adjusted p-value padj < 0.05) according to inferred metabolite
association networks.

Data Set Cancer Type Metabolites Differentially Connected

31794572 [16] Breast Plasma 69 60
ST000054 Breast Tissue 65 48

27036109 [15] Breast Plasma 221 181
27036109 [15] Breast Serum 262 191
25126899 [17] Colorectal Serum 113 100
29259332 [18] Gastric Plasma 104 4
21518826 [19] Liver Serum 63 52
21518826 [19] Liver Urine 77 64
23543897 [20] Lung Tissue 92 13

ST000396 Lung Plasma 126 114
ST000390 Lung Tissue 182 139
ST000221 Multiple myeloma Tissue 191 48

23543897 [20] Prostate Tissue 72 0
21348635 [21] Renal Urine 205 109

Similar to what was done in the case of differentially abundant metabolites, we per-
formed pathway impact analysis on the differentially connected metabolites and found
21 significantly enriched pathways: aminoacyl-tRNA biosynthesis and arginine biosyn-
thesis were enriched in four out of five cancer types. Figure 1B shows the impact of each
pathway. The most impacted are taurine and hypotaurine metabolism in liver cancer,
phenylalanine, tyrosine, and tryptophan biosynthesis, in liver and lung cancer, and pheny-
lalanine metabolism in lung cancer. Deregulations of tyrosine metabolism in hepatocellular
carcinoma have been reported in the literature as well [42,43]. Hypotaurine has been
shown to activate hypoxia signaling in vitro [44], which is an important survival strategy
of cancer cells. Multiple amino-acid related pathways like glycine, serine, and threonine
metabolism, and alanine, aspartate, and glutamate metabolism are highly impacted in
breast and colorectal cancer.

Figure 2B shows the PCA plot on the pathway impact. We observed that colorectal
cancer and one of the three cases of breast cancer (data set ST000355) are characterized
by a highly impacted glycine, serine, and threonine metabolism, while also having their
alanine, aspartate, and glutamate metabolism impacted. Glutamate serves a critical role
in regulating the signaling kinases MEK (mitogen-activated protein kinase) and ERK
(extracellular signal regulated kinase) [45,46]. Besides, glutamate is closely connected to the
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TCA (tricarboxylic acid) cycle [47]. Both cancer types are also found to be directly affected
by the citrate cycle and glyoxalase and dicarboxylate metabolism, which are biochemically
tightly linked. This suggests that in breast and colorectal cancer, the citrate cycle is highly
affected. Lung cancer tissue is the only cancer type that is differentiated from all other
types by its phenylalanine metabolism, pyrimidine metabolism, and pantothenate and
CoA biosynthesis.

It is interesting to note how in the case of lung and breast cancer, different metabolic
signatures are obtained when considering metabolites derived from tissue or blood, while
for liver cancer differences in urine and blood point to the same altered pathways. This
complicates the definition of a single hallmark for every cancer type and highlights the
necessity for investigation at different levels.

These results, combined with the analysis of differentially expressed metabolites,
indicate the existence of a pan-cancer metabolic fingerprint characterized by altered protein
metabolism.

2.3. Analysis of Cancer Transcriptomics Data
2.3.1. Differentially Expressed Genes

We calculated differentially expressed genes by comparing expression levels between
cancer and control tissue samples in eight transcriptomics data sets that matched to the
metabolomics data in cancer type. Twenty-five differentially expressed genes were shared
across seven cancer types. Most genes, however, were not shared among the majority of
cancer types: 6251 genes were only significantly expressed in one cancer type. Results are
summarized in Table 5.

Table 5. Overview of the number of significantly differentially expressed genes per cancer type
(Benjamini–Hochberg adjusted p-value (padj) < 0.05).

Data Set Cancer Genes Differentially Expressed

E-MTAB-6703 [22] Breast 20,545 2892
E-MTAB-6698 [22] Colorectal 20,545 5577
E-MTAB-6693 [22] Gastric 20,107 691
E-MTAB-6695 [22] Liver 20,107 5225
E-MTAB-6699 [22] Lung 20,545 9086

GSE47552 [23] Multiple myeloma 22,470 132
E-MTAB-6694 [22] Prostate 20,107 3691
E-MTAB-6692 [22] Renal 20,107 9265

We performed Gene Ontology (GO) enrichment on the sets of differentially expressed
genes focusing on “biological process” ontology, which accounts for changes on the level
of granularity of the cell that is mediated by one or more gene products [48]. The 10 most
significantly enriched terms per cancer type were mostly related to the cell cycle pathways.
These pathways involve well-orchestrated transcriptional and epigenetic controls regulat-
ing the cell division process [49]. Breast, liver, and colorectal cancer were mostly enriched
in cell cycle-related terms, and renal cancer was characterized by a deregulated TCA cy-
cle. Prostate and lung cancer were enriched for cellular organization and morphogenesis
related terms, while gastric, colorectal cancer, and multiple myeloma, on the other hand,
showed to favor RNA and protein synthesis-related GO terms.

We performed a pathway impact analysis using the significantly expressed genes
from the eight cancer types. An overview of the results of this analysis can be found in
Figure 3A.

In agreement with GO enrichment analysis, we found the most commonly impacted
pathway across cancer types to be the cell cycle. This pathway is enriched in breast, liver,
colorectal, and lung cancer. The second most common pathway is fatty acid degradation,
which is enriched in colorectal, liver, and renal cancer. None of these results are surprising:
dysregulation of the cell cycle can lead to various diseases, including cancer [50–52], and
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reprogramming of fatty acid metabolism in cancer has been discussed as a means to
sustain the production of ATP and macromolecules needed for cell growth, division and
survival [53–55].

We observed several low impacted pathways like disease and pathogen-related path-
ways to be enriched in renal [56,57], and breast [58] cancer. Breast cancer is the only cancer
type that showed enrichment in a number of low-impact cancer-specific pathways and an
oncogene pathway (PI3K-Akt signaling [59]), suggesting this kind of cancer to be especially
driven by a high number of prominent oncogenes.

The focal adhesion (FA) pathway (FAs are large protein complexes that connect the
cell cytoskeleton to the ECM through integrins [60]) is highly impacted in breast, lung,
and prostate cancer. The latter being enriched in GO terms related to cell morphology, cell
adhesion, and the actin cytoskeleton. Cancer cells exhibit highly altered focal adhesion
dynamics [60,61] and cell adhesion, and matrix stiffness plays a pivotal role in cancer cell
invasion and metastasis [62,63].

Figure 3. Pathway analysis plot showing the impact on cellular pathways that are significantly enriched (padj < 0.05) and
have a pathway impact score > 0.1 per cancer type. Datapoints are colored according to their impact score. Multiple
myeloma is abbreviated as MM. (A) Pathway impact according to differentially expressed genes (padj < 0.05); (B) pathway
impact according to differentially connected genes (padj < 0.05). padj indicates Benjamini–Hochberg corrected p-values.

Consistent with the observation that changes in metabolism are a well-known charac-
teristic of cancer cells [64,65], we observed numerous highly impacted pathways related
to metabolism. However, different cancer types were impacted by different metabolic
pathways.

In liver cancer, we found alanine, aspartate, and glutamate metabolism, glycine serine,
and threonine metabolism, butanoate metabolism, tryptophan metabolism, and fatty acid
degradation to be highly impacted, while we observed valine, leucine, and isoleucine
degradation in the liver and in renal cancer as well. This latter pathway is used to generate
intermediates that can later be used for macromolecule synthesis [66,67].

Renal cancer was enriched for propanoate metabolism, glyoxylate and dicarboxylate
metabolism, pyruvate metabolism, oxidative phosphorylation, and the TCA cycle. Muta-
tions in genes related to the TCA-cycle enzymes succinate dehydrogenase and fumarate
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hydratase have been associated with renal cancer and correlated with the development of
renal tumors [68–70]. PCA (see Figure 4A) was performed on an ncancer × npathway matrix
containing pathway impact scores, to summarize and visualize cancer (dis)similarities. We
found that renal cancer is characterized by deregulation of TCA cycle-related pathways,
pyruvate metabolism, propanoate metabolism, apoptosis, and its pathogenetic signature.
Breast cancer, on the other hand, was characterized by cancer-specific pathways and cellu-
lar senescence pathway. Liver cancer was mostly distinguished by its metabolic character:
tryptophan metabolism, glycine, serine, and threonine metabolism, alanine, aspartate, and
glutamate metabolism, and butanoate metabolism.

Figure 4. Principal Component Analysis of pathway impact and network analysis. PCA labels are colored according to
their cancer type and PCA loadings are labeled if they have a pathway impact score > 0.5. Multiple myeloma is abbreviated
as MM. (A) PCA biplot of pathway impact based on differentially abundant genes per cancer type; (B) PCA biplot of
pathway impact based on differentially connected genes per cancer type; (C) PCA biplot of topological network measures
per cancer type for all inferred gene networks. Here, networks inferred from cancer or control samples are labeled as “Ca”
and “Co”, respectively; (D) receiver operating characteristic curves of topological measures predicting cancer pathology on
gene association networks (n = 16, 8/8). Predictions are based on logistic regression, cross-validated with leave-one-out
cross-validation. The Area Under the Curve (AUC), 95% confidence interval (CI), and p-value of all topological measures
are Edges: AUC = 0.941, 95% CI = 0.915–0.967, p = 7.59 × 10−242, Mean Connectivity: AUC = 0.830, 95% CI = 0.774–0.886,
p = 8.80 × 10−31, Mean Degree: AUC =0.941, 95% CI = 0.915–0.967, p = 7.59 × 10−242, Mean Closeness: AUC = 0.696, 95%
CI = 0.628–0.764, p = 1.85 × 10−8, Mean Betweenness: AUC = 0.652, 95% CI = 0.582–0.722, p = 2.14 × 10−5, Diameter:
AUC = 0.593, 95% CI = 0.521–0.665, p = 0.0114, Mean Minimal Distance: AUC = 0.652, 95% CI = 0.582–0.722, p = 2.14 × 10−5,
Mean Page Rank: AUC = 0.554, 95% CI = 0.481–0.627, p = 0.146, Hub Nodes: AUC = 0.931, 95% CI = 0.902–0.961,
p = 2.93 × 10−178, Centralization: AUC = 0.866, 95% CI = 0.813–0.919, p = 8.00 × 10−42, and Transitivity: AUC = 0.874, 95%
CI = 0.828–0.92, p = 1.48 × 10−56. Definitions of topological measures are given in Methods.
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2.3.2. Cancer-Specific Gene–Gene Association Networks

Similarly, to what was done with metabolite data, we inferred gene–gene association
networks to investigate gene relationships and their association with cancer types. Because
of the computational burden, we restrained our analysis to genes with sigma >1 across the
different data sets. In total, we inferred 16 matched networks for cancer and control groups
encompassing 2570 genes. We characterized the gene–gene networks using several topolog-
ical measures (see Table 6) and we observed, by applying PCA, a large separation between
all individual cancer types and their corresponding control network (see Figure 4C).

Table 6. Topological network characteristics of cancer (Ca) and control (Co) gene association networks across cancer types.
Multiple myeloma is abbreviated as MM. Topological measures in the column names are: N = Nodes, E = Edges, Mean
Conn. = Mean Connectivity, Mean Deg. = Mean Degree, Mean Close. = Mean Closeness, Mean Betw. = Mean Betweenness,
D = Diameter, Mean Min. Dist. = Mean Minimal Distance, Mean Page Rank, Hub N = Hub Nodes, Centr. = Centralization,
and Trans. = Transivity. All topological measures are further explained in the material and methods.

Network N E Mean
Conn.

Mean
Deg.

Mean
Close.

Mean
Betw. D Mean Min.

Dist.
Mean Page

Rank Hub N Centr. Trans.

Ca Renal [22] 2570 148,296 0.811 0.045 0.433 0.001 3 2.311 0.000 2347 0.040 0.082
Co Renal [22] 2570 164,272 0.576 0.050 0.440 0.000 3 2.277 0.000 2055 0.086 0.121

Ca Gastric [22] 2570 111,026 1.273 0.034 0.398 0.001 4 2.513 0.000 2349 0.040 0.063
Co Gastric [22] 2570 163,932 0.366 0.050 0.425 0.001 4 2.357 0.000 1508 0.087 0.209
Ca Prostate [22] 2570 160,446 0.627 0.049 0.442 0.000 3 2.267 0.000 2251 0.061 0.091
Co Prostate [22] 2570 166,152 0.629 0.050 0.443 0.000 3 2.262 0.000 2149 0.078 0.107

Ca Liver [22] 2570 156,934 0.922 0.048 0.441 0.000 3 2.270 0.000 2358 0.047 0.081
Co Liver [22] 2570 151,116 0.620 0.046 0.433 0.001 3 2.314 0.000 2228 0.061 0.090

Ca Colorectal [22] 2570 108,138 1.687 0.033 0.398 0.001 4 2.518 0.000 2484 0.033 0.041
Co Colorectal [22] 2570 179,636 0.666 0.054 0.449 0.000 3 2.232 0.000 1904 0.074 0.139

Ca Lung [22] 2570 80,344 1.440 0.024 0.371 0.001 4 2.695 0.000 2483 0.030 0.038
Co Lung [22] 2570 168,414 0.713 0.051 0.443 0.000 3 2.264 0.000 2063 0.073 0.117
Ca Breast [22] 2570 50,256 1.164 0.015 0.334 0.001 5 3.000 0.000 2512 0.018 0.034
Co Breast [22] 2570 155,668 0.812 0.047 0.438 0.001 3 2.286 0.000 2283 0.050 0.082
Ca MM [23] 2570 145,712 0.325 0.044 0.418 0.001 3 2.395 0.000 2067 0.087 0.158
Co MM [23] 2570 356,528 0.152 0.108 0.292 0.001 6 3.423 0.000 0 0.080 0.602

Applying logistic regression on the topological measures, we could discriminate
between cancer- and control-specific networks as shown by the ROC curves in Figure 4D:
the number of edges, the mean degree, and the number of hub nodes in a network gave an
area under the curve of 0.941, 0.941, and 0.931, respectively. These best predictors indicate
that cancer-associated genes exhibit less interdependence with other genes than in normal
genes with some genes becoming an important genetic hub: this observation is consistent
with the notion of cancer driver genes [71].

A similar exercise was attempted by Ramadan et al. [72], and our results confirm that
the organization of genetic codependences is different between cancer and normal cells
and thus can be used to discriminate between the two statuses. However, as shown in a
previous section, the same cannot be achieved using the topology of metabolite–metabolite
association networks.

2.3.3. Differential Network Analysis

By means of differential connectivity analysis, we selected genes that showed dif-
ferential connectivity between controls and cancers, most of which are also differentially
expressed, as shown in Table 7. GO enrichment of this gene set yielded terms associated
with mitotic cell cycle process, cell cycle process, cellular amide metabolic process, immune
effector process, peptide metabolic process, and mitotic cell cycle in multiple myeloma,
and the GO term regulation of macromolecule metabolic process in breast cancer.

Subsequently, pathway impact analysis found many of the same pathways to be
enriched in all cancer types, as can be seen in Figure 3B. This gene list may be biased
because of the gene pre-selection, however, PCA (Figure 4B) on pathway impact scores
shows that cancer types are still separated from each other. Breast and prostate cancer are
mostly defined by the PI3K-Akt signaling pathway. Multiple myeloma is separated by its
impacted phospholipase D signaling. Liver cancer, on the other hand, is defined by gastric
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acid secretion function, a pathway that was not highlighted in the analysis of differentially
expressed genes and that has been reported in the literature [73].

Table 7. Overview of the number of significantly differentially expressed genes per cancer type
(padj < 0.05) according to inferred gene association networks. padj indicates Benjamini–Hochberg
corrected p-values.

Data Set Cancer Genes Differentially Connected (padj < 0.05)

E-MTAB-6703 [22] Breast 2570 2404
E-MTAB-6698 [22] Colorectal 2570 2550
E-MTAB-6693 [22] Gastric 2570 2552
E-MTAB-6695 [22] Liver 2570 2345
E-MTAB-6699 [22] Lung 2570 2536

GSE47552 [23] Multiple myeloma 2570 2005
E-MTAB-6694 [22] Prostate 2570 2146
E-MTAB-6692 [22] Renal 2570 2155

2.4. Joint Pathway Analysis

Cellular pathways and reaction networks are not controlled by metabolites or genes
alone, but by a complex interplay between genetics and metabolism [74]: therefore, we
integrated the results from metabolite and gene differential abundance/expression and
connectivity analysis to perform a joint pathway analysis using the approach proposed by
Chong et al. [75].

2.4.1. Joint Pathway Analysis of Differentially Expressed Genes and Differentially
Abundant Metabolites

In breast, liver, colorectal, lung cancer, and multiple myeloma, we found enough
significantly changed metabolites and genes to perform joint pathway analysis, which is
summarized in Figure 5A: in total, 149 different pathways were significantly enriched.

From the PCA shown in Figure 5C, we observed a good separation between most
different cancer types, with colorectal, breast, liver, and multiple myeloma clustering
together. We also observed that in this case, both liver data sets and all three breast data
sets cluster together as well. As this was not the case in the separate metabolite or gene-
based analyses (see Figures 2 and 4), this confirms that the genetic and metabolic aspect
alone is not enough for a full characterization of cancer similarities and differences.

Overall, we observed that lung cancer seems to possess a particular metabolic sig-
nature and it is well separated from the other cancer types. Multiple myeloma yielded
only one significantly enriched pathway: the ribosome pathway while the other cancers
all were enriched for cell cycle, DNA replication, Human T-cell leukemia virus 1 infection,
and the more general pathways in cancer pathway. In liver cancer, enrichment of arginine
biosynthesis, and valine, leucine, and isoleucine degradation, together with glycine, serine,
and threonine metabolism, and fatty acid metabolism-related pathways were found.

These pathways point towards an increase in macromolecule synthesis. In addition, in
lung and breast cancer, we observed enrichment and moderate impact in the phospholipase
D signaling pathway, which is involved in many metabolic processes [76]. A more cancer-
specific pathway, the central carbon metabolism in cancer pathway, was enriched, but was
marginally impacted in lung and breast cancer. Lung cancer, on the other hand, was highly
impacted in its glycolysis or gluconeogenesis pathway, a pathway critical for the growth of
certain cancers, including lung cancer [77]. Alanine, aspartate, and glutamate metabolism
was impacted moderately in various cancer types: breast, liver, and colorectal cancer. The
latter also was impacted in the metabolism of the important antioxidant glutathione.

Besides metabolic deregulations, lung, colorectal, and breast cancer were enriched
in multiple pathways that were related to cell adhesion and the cytoskeleton. We saw a
substantial impact in the regulation of the actin cytoskeleton pathway and a very high
impact in the focal adhesion pathway. Although mostly of little impact, we also detected
enrichment in multiple inflammatory, pathogen, or immune response-related pathways
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in liver, and especially lung cancer. Furthermore, it became clear that both breast and
lung cancer were strongly defined by the presence of various oncogene signaling and
cancer-related pathways. We noticed in lung cancer that the mTORC1 and mTORC2
protein complexes, which play an important role in regulating cell growth in regard
to nutrient availability [78], exhibit high overactivity, suggesting resistance to nutrient
deprivation [79,80]. Another shared impacted pathway between lung and breast cancer
was the EGFR tyrosine kinase inhibitor resistance pathway.

Figure 5. Joint pathway analysis. Multiple myeloma is abbreviated as MM. Sample origin of the metabolomics counterpart
is labeled as T, U, S, P for tissue, urine, serum, and plasma, respectively. (A) Pathway analysis score plot of the impact on
cellular pathways that are significantly enriched (padj < 0.05) per cancer type according to differentially expressed genes
(padj < 0.05) and differentially abundant metabolites (padj < 0.05); (B) pathway analysis score plot of the impact on cellular
pathways that are significantly enriched (padj < 0.05) per cancer type according to differentially connected genes (padj < 0.05)
and differentially connected metabolites (padj < 0.05). Data points are colored according to their impact score; (C) PCA biplot
of pathway impact based on differentially expressed genes and differentially abundant metabolites per cancer type; (D)
PCA biplot of pathway impact based on differentially connected genes and differentially connected metabolites per cancer
type. Datapoints are colored according to their cancer type. PCA loadings are labeled only if corresponding to a pathway
impact score >0.5. padj indicates Benjamini–Hochberg corrected p-values.
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2.4.2. Joint Pathway Analysis of Differentially Connected Genes and Metabolites

Parallel to joint pathway analysis using differential gene expression and metabolite
abundance, a second joint pathway analysis was performed using the results from differ-
ential network analysis. While the results from differential metabolite network analysis
proved useful, differentially connected genes did not. Since most cancer types yielded the
same significant differentially connected genes, there is also high concordance between
cancer types in the joint pathway analysis. These results therefore are deemed highly biased
and will not be elaborated on (Figure 5B). PCA (Figure 5D) on the pathway impact scores
revealed that breast cancer was mostly characterized by oncogene signaling pathways.
Liver cancer, on the other hand, was more defined by its primary bile acid biosynthesis.

2.5. Cross-Talk between the Metabolomic and Transcriptomic Landscapes of Different Cancer Types

The re-analysis of metabolomic and transcriptomic cancer data indicate that different
cancer types are characterized by different metabolomic and transcriptomic landscapes
and that different biological characteristics are highlighted when considering molecular
signatures that are obtained using differentially abundant/connected metabolites and
genes. The relationships between the different cancer types as expressed by differences
and commonalities in the impacted and deregulated metabolic pathways are shown in the
clustering trees in Figure 6A–F.

A high dissimilarity between cancer type clustering was obtained using different
approaches (i.e., considering metabolomics of transcriptomics data and differentially abun-
dant/expressed metabolites and genes) is observed. For instance, colorectal and lung cancer
cluster together when considering differentially abundant metabolites (Figure 6A) but are
dissimilar when considering differentially connected metabolites (Figure 6B). Multiple
myeloma and gastric cancer share a similar transcriptomic landscape defined by differen-
tially expressed genes (Figure 6C) but not when considering differentially connected genes
(Figure 6D).

It is noteworthy that similar cancer types cluster together (Figure 6E,F) only when
both metabolomic and transcriptomic data are considered indicating that cancer landscapes
can be fully characterized only when working at different omics levels.

Although topological metrics of metabolite–metabolite association networks were
not able to discriminate between controls and cancers, we see in Figure 6G that the same
measures are efficient in capturing the similarities among the same cancer type. On the
contrary, topological measures from gene–gene association networks (Figure 6H) can
discriminate between cancer and controls but not among cancer types. This may well be
an effect of different metabolite coverage: different experiments measure different panels
of metabolites while transcriptomics experiments usually measure the same set of human
genes.

We quantified (diss)similarities in pathway impact of cancer types, by calculating
the cophenetic correlation (ccoph) between all pairs of clustering trees (see Methods): the
corresponding correlation plot can be found in Figure 7. The correlations among the
different clustering are mostly negative, indicating high dissimilarity between cancer type
dendrograms of different approaches. However, we found agreement between cancer
types based on metabolite abundance and metabolite connectivity and gene connectivity
combined (ccoph = 1). Furthermore, the likeliness of cancer types based on the pathway
impact according to gene connectivity was similar to metabolite abundance (ccoph = 0.94)
and metabolite/gene connectivity joined (ccoph = 0.71). Gene expression and metabolite
abundance also agree on the kinship of different cancer types (ccoph = 0.69).
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Figure 6. Hierarchical clustering of cancer types based on the impact on cellular pathways that are significantly enriched
(padj < 0.05). Labels are colored according to their cancer type. Sample origin is denoted as T, U, S, P for tissue, urine,
serum and plasma, respectively (all transcriptomics analyses originate from tissue). All clustering is based on Euclidean
distance and average linkage: (A) differentially abundant metabolites (padj < 0.05); (B) differentially connected metabolites
(padj < 0.05); (C) differentially expressed genes (padj < 0.05); (D) differentially connected genes (padj < 0.05); (E) differentially
abundant metabolites (padj < 0.05) and differentially expressed genes (padj < 0.05) conjoined; (F) differentially connected
metabolites (padj < 0.05) and differentially connected genes (padj < 0.05) conjoined; (G) dendrogram based on the topological
network measures per cancer type for all inferred metabolite association networks. Here, networks inferred from cancer or
control samples are labeled as “Ca” and “Co”, respectively. (H) Dendrogram based on the topological network measures
per cancer type for all inferred genes association networks. padj indicates Benjamini–Hochberg corrected p-values.
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Figure 7. Cophenetic correlations between cancer type clustering across different analyses, measuring
clustering similarity. Color and size represent the Cophenetic correlation coefficient, with negative
correlations depicted as red and correlations as blue.

3. Materials and Methods
3.1. Data Acquisition
3.1.1. Inclusion Criteria for Cancer Metabolomics Data

To allow fair comparison and top-level data fusion, we defined a set of inclusion
criteria that had to be met by both metabolomics and transcriptomics data sets to be
included in our re-analysis:

1. Only contain human samples collected in a case–control setting.
2. Controls samples derived either from healthy subjects or from adjacent tissues from

the same patient, histopathologically classified as non-cancerous.
3. Being derived from patient tissue, blood, or urine.
4. Patients should have not been treated with chemotherapy, radiation therapy, or

small-molecule drugs at the time of sampling.
5. Contain a reasonable number of cancer and control samples (>5) and measured

metabolites (>30).
6. Studies using cancer cell lines, xenografts, or organoids were not included.

3.1.2. Metabolomics Data Collection

Two public repositories were searched for data from metabolomics-based cancer
studies: the EMBL-EBI maintained MetaboLights database [81] (https://www.ebi.ac.
uk/metabolights/ [82]) and the UC San Diego Metabolomics Workbench (https://www.
metabolomicsworkbench.org/ [83]). Seven data sets from Metabolomics Workbench and
zero from MetaboLights satisfied the inclusion criteria. Additionally, seven were obtained
through literature search by either contacting the authors or from the supplementary
material of the original studies. In total, 14 metabolomics cancer data sets were included.

3.1.3. Transcriptomics Data Collection

Transcriptomics data sets satisfying the inclusion criteria were downloaded from the
GEO database [84] (https://www.ncbi.nlm.nih.gov/geo/ [85]). A total of 8 data sets were
included in our re-analysis.

https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
https://www.metabolomicsworkbench.org/
https://www.metabolomicsworkbench.org/
https://www.ncbi.nlm.nih.gov/geo/
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3.1.4. Data Processing and Standardization

All data sets (both metabolomics and transcriptomics) were formatted and stored as
Rdata object (.rds). Cancer and control samples were put in separate data matrices, arranged
in a feature × observation format, with the columns containing metabolite or gene names
and the rows containing the sample ID. Samples from normal tissues and histopathological
non-cancerous adjacent tissues were classified as normal/controls. Samples from different
subtypes of the same cancer, i.e., fast- and slow-proliferating multiple myeloma were all
classified cancer samples. Furthermore, metabolites or genes with more than 10% missing
values were removed from the data set.

3.1.5. Metabolite Names Standardization

Metabolite identifiers used in the original data sets (KEGG [86], HMDB [87], Pub-
Chem [88], Chebi [89] and Metlin [90] identifiers) were standardized to the canonical
metabolite name as defined by the Human Metabolome Database [87] using the Metaboan-
alystR R package [75]. If different identifiers were used for the same metabolite and not
all resulted in the same metabolite name, majority voting determines the chosen name. In
the case that a canonical name could not be found, the name given by the authors was
used instead. If metabolite identifiers occurred more than once in a data set, they were
consolidated to a single instance by taking the mean over the different instances. Metabolite
names that did not have a matching alternative name, were manually curated.

3.1.6. Gene Names Standardization

All gene identifiers (names, Affymetrix probe names, etc.) in the downloaded tran-
scriptomics data sets were converted to HGNC gene symbols and names [91,92] using the
biomaRt R package [93]. If gene identifiers occurred more than once in a data set, they
were consolidated to a single instance by taking the mean over the different instances.

3.1.7. Missing Data Handling

Missing metabolite abundances/concentrations and gene expression values (if lower
than 10% for a given metabolite/gene in each data set) were imputed using the impute R
package [94] which uses nearest neighbor averaging with default parameters (number of
neighbors k = 10).

3.2. Statistical Analysis
3.2.1. Data Transformation

Metabolite abundances/concentrations and gene expression value were log-transformed
before analysis.

3.2.2. Metabolite and Gene Differential Abundance and Expression Analysis

Genes or metabolites that were differentially expressed or abundant were found using
the EdgeR R package [95]. A linear model was fit to the data using least square regression.
A contrast matrix was fit on this model to compute the estimated coefficients and standard
errors comparing cancer and control groups. From this, the moderated t-statistic, F-statistic,
and log-odds of differential values were computed using empirical Bayes.

3.2.3. Correction for Multiple Testing

p-Values for metabolite were adjusted using the Benjamini–Hochberg multiple test-
ing correction [96]. Due to the high number of genes, the stricter Bonferroni family-wise
error rate was used for all transcriptomics analyses. Genes or metabolites with an ad-
justed p-value < 0.05 were considered differentially expressed or abundant at the α = 0.05
significance level.
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3.2.4. Multivariate Analysis

Principal Component Analysis was used to visualize and explore high-dimensional
representations of each data set in terms of biological pathways (see Section 2 for more
details). Data were scaled to unit variance before analysis.

3.2.5. Clustering

To determine similarities between cancer types, hierarchical clustering was used [97].
The Euclidean distance between the first three principal components of each cancer type
was clustered with average linkage.

3.2.6. Comparing Cancer Type Clustering

The clustering of cancer types was compared between different analyses. As only
dendrograms with the same structure can be considered for direct comparison, leaves of
dendrograms were pruned to produce intersecting trees in a pairwise manner. If multiples
of the same cancer type were present in a dendrogram, the centroid was used to create the
initial clustering before pruning. To quantify the difference between the two dendrograms,
the cophenetic correlation was calculated which is defined as the intergroup dissimilarity
at which two observations in each dendrogram are first combined into a single cluster [98].

3.2.7. Network Inference

To infer metabolite–metabolite and gene–gene association networks, we used a mod-
ified implementation of the Probabilistic Context Likelihood of Relatedness based on
Correlations (PCLRC) [99]; standard correlations between two molecular features i and
j (either metabolites or genes) where replaced with partial correlations obtained using a
Gaussian Graphical Model (GMM). The PCLRC algorithm uses resampling to estimate
robust correlation based on the Context Likelihood of Relatedness approach [100] which
estimates the relevance of the associations between two features by considering back-
ground associations. The PCLCR returns a probability matrix P, containing the likelihood
0 < pij < 1 of each observed association rij between each metabolite or gene pair. Significant
associations were defined as

rij =

{
rij i f pij ≥ 0.95
0 i f pij < 0.95

. (1)

Default parameters were used (number of resampling iterations Niter = 1000; the
fraction of the samples to be considered at each iteration frac = 0.75 and fraction of the
total predicted interactions to be kept at each iteration rank.thr = 0.3.). All networks are
undirected and represented as an adjacency matrix M, populated by interactions (edges)
between metabolite/gene i,j (nodes).

3.2.8. Estimation of Partial Correlations Using Gaussian Graphical Models

Partial correlations were estimated using a Gaussian Graphical Model as implemented
in the GeneNet R package [101,102]. GeneNet allows estimating a GGM from a small
sample of high-dimensional data in a computationally and statistically efficient way. It
uses an analytic shrinkage estimation of covariance and partial correlation matrices and
performs optimal model selection based on local false discovery rate multiple testing. The
edges (i.e., the associations) to be included in the final association network are selected
using a computational algorithm depending on the relative values of the pairwise partial
correlations. For more details on GeneNet implementation, we refer to the original publi-
cation. Networks were inferred for both the transcriptomics and metabolomics data sets.
For each data set, separate interaction networks were computed for cancer and control
groups, respectively. To reduce noise and computational load of the network estimation
from transcriptomics data, only the most variable genes were considered. These were
defined as genes that occur in all transcriptomics data sets and have a variance that is
one standard deviation higher than the mean variance across all data sets. To make this
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one sigma cutoff, variances for all genes were log-transformed to normalize them before
calculating the mean and standard deviation of the variance. Furthermore, for genetic
association networks, Niter = 100, MaxPerm = 100, and a probability threshold of 0.99 were
used.

3.2.9. Differential Node Connectivity

The connectivity each node i in a given association network (either specific to cancer
or control samples), corresponding to either a gene or metabolite, is defined as:

χi =

(
J

∑
j=1

∣∣rij
∣∣)− 1. (2)

The differential connectivity ∆i for metabolites or genes i is defined as subtracting the
connectivity of control group from the cancer group:

∆cancer, control
i =

∣∣∣χcancer
i − χcontrol

i

∣∣∣ (3)

3.2.10. Assessment of the Significance of Differential Connectivity

Statistical significance of these differentially connected nodes (metabolites/genes)
was assessed using a permutation test. Briefly, the columns of input data matrices were
independently permuted to destroy the relationship among variables while preserving
their variance obtaining a permuted matrix Mk. For each node i in the permuted matrix
Mk, the differential connectivity was determined as:

∆cancer, control
i,k = χcancer

i,k − χcontrol
i,k (4)

Repeatedly permutating for k = 1000 yields an empirical null distribution Di of differ-
ential connectivity values ∆i,k. For each node in the network. From Di, the corresponding
p-value for ∆i (for the original, non-permuted network connectivity of node i) is calculated
as:

p∆i =
1 +

(
|Di| > |∆cancer, control

i |
)

k
. (5)

p-values for differentially connected metabolite and genes were corrected for multiple
testing using the Benjamini–Hochberg method.

3.2.11. Metrics for Network Topology Characterization

The topology of interaction networks was characterized using various metrics besides
node connectivity χi. We used Centralization, Diameter, Hub Nodes, In Proceedings of the-
Betweenness, Closeness, Degree, Minimal Distance, Page rank and Transivity. All topological
measures considered were calculated using the Igraph R package [103] and are defined in
Appendix B.

3.2.12. Software

All code used for analysis is available in the Supplementary File Code.zip.

4. Conclusions

In this study, we attempted a joined re-analysis of publicly available metabolomics
and transcriptomics data to examine the metabolic and gene expression profiles of different
cancer types and to investigate similarities and dissimilarities that can be described at
different omics levels. Despite living in the era of Open Access to information, knowledge,
and data, metabolomics cancer data sets proved difficult to acquire.

The metabolomic community has proposed and agreed on data standards and re-
porting guidelines [104,105] but has not yet embraced broad data science. In contrast,
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the genomics community has strong precedents for broad data sharing and open science,
most notably the Bermuda Principles of 1996 [106]: since then, many scientific journals
have made deposition of transcriptomics profiles to the GEO database as (almost) a pre-
condition for publication. In fact, and we found no difficulties in finding and accessing
high-quality cancer transcriptomics data satisfying our inclusion criteria and matching the
selected metabolomics data in terms of cancer types. A comprehensive re-analysis of cancer
metabolomics data sets is challenging at least. Low-level data fusion (i.e., merging of data
sets before analysis) [107,108] of publicly available data sets, when obtained, is challenged
by the different number and type of metabolites measured and different sample sizes. At
the moment, the only viable solution for the de novo re-analysis of existing metabolomics
cancer data is to perform high-level data fusion, i.e., applying the same analysis on different
data sets and then integrate and compare the results as in the present study.

Metabolomic and transcriptomic landscapes highlight different patterns of variability
among different cancer types to the point that some cancers are similar in the metabolomic
space but not in the transcriptomic space and vice versa. This can be attributed to the
fact that the fluxes of metabolically regulated reactions are mainly a function of the sub-
strates and product levels, while the fluxes of transcriptionally regulated reactions are
mainly controlled by the expression level of the catalyzing enzymes [109]. Such differences
may also be attributed to different metabolite coverages among different experimental
studies, indicating the necessity of standardized metabolomics experiments to directly
compare different cancer types. Moreover, it proved to be impossible to obtain data where
metabolomics and transcriptomics data were obtained from the same patients. This adds
heterogeneity to the data that is difficult to overcome.

Overall, our results confirm that deregulations of protein metabolism and cell cycle
pathways are the main hallmarks of cancer, but cancer-specific signatures exist that are
better captured when both metabolite and gene expression landscapes are considered
simultaneously. For instance, cell cycle was mainly impacted in breast, liver, and colorec-
tal cancer, while liver cancer was found to be impacted in a relatively large number of
metabolic pathways, but especially in valine, leucine, and isoleucine degradation. Breast
and lung cancer both showed aberrations in cell adhesion mechanisms and several onco-
gene signaling-related pathways. We also showed the added value of using topological
features of association networks representing molecular codependences that are able to
accurately distinguish between cancer and control cases in genetic networks.

In summary, there is a great benefit in integrating and analyzing data at different
omics levels to elucidate the differences and similarities of cancer landscapes. However,
a true fusion of metabolomics and transcriptomics can only be accomplished through
improved metabolomic data reporting and sharing.
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Appendix A

Through manual curation of metabolic profiling studies, we selected 220 papers
adhering to our inclusion criteria. From these papers, 11 provided direct access to the
data. After contacting 129 corresponding authors, we managed to acquire three more. In
total, we considered 14 data sets encompassing eight different cancer types: breast, lung,
gastric, renal, liver, colorectal, prostate, and multiple myeloma and contains samples from
organ tissue (five), urine (two), and blood (four plasma, three serum) as given in Table 1
together with data descriptors. After cleaning and standardization, the data sets comprised
of 1095 different metabolites suitable for analysis. The most ubiquitous metabolite is
threonine, followed by creatinine, phenylalanine, proline, valine, and pyroglutamic acid,
occurring in nearly all data sets. A complete list of all metabolite occurrences can be found
in Supplementary Table S1.

For each of the eight different cancer types represented by the 14 metabolomics data
sets, we were able to find and access high-quality cancer transcriptomics data satisfying
our inclusion criteria and matching the selected metabolomics data in terms of cancer
types. Seven out of eight data sets originate from a homogenized microarray compendium
consisting of 95 different GEO studies [22]. A list of the cancer data sets obtained, and
associated data descriptors is given in Table 1. The eight data sets cover 22,470 genes of
which 16,040 are common among all data sets.

Appendix B

Inferred association networks are defined as a matrix Mij, where i and j are nodes. In
this matrix, the number of connections node i has, is defined by its degree k, where

ki =
∑j mij

N − 1
(A1)

with N being the number of nodes in a network, which is used no normalize for network
size. Size normalization allows for direct comparison between differently sized networks.
Node degree is equal to connectivity in binary networks.

Similar to node degree, Closeness was determined, which measures the distance of a
node to all other nodes. Closeness is defined as:

Ci =
1

∑j dij
N−1

(A2)

where dij is the distance between nodes i and j [110].
Another centrality measure, betweenness, represents the extent to which nodes are

in-between each other and is defined as:

Bi = ∑
v 6=j,v 6=i,j 6=i

σvij

σvj
, (A3)

where σvj is the total number of shortest paths from node v to j and σvij is the number of
those paths passing through node i. Node betweenness is also normalized for network size
by:

Bi norm =
2 ∗ Bi

N(N − 3)(N − 2)
(A4)

In addition, the importance of a node was also described by its page rank [111]
and whether it was a hub node. Page rank was calculated using the PRPACK algorithm
(https://github.com/dgleich/prpack) [112] using 0.85 as damping factor. The page rank
of a node is calculated as:

xi = ∑
j∈Li

xj

nj
, (A5)

https://github.com/dgleich/prpack
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where Li is the set of nodes that link to node i and nj is the number of nodes that are liked
to by node j. A node i was considered a hub node, on the other hand, if it has a clustering
coefficient ci < 0.03 and a degree ki > 5 [113], where:

ci =
number o f triangles connected to node i
number o f triples centered around node i

, (A6)

with a triple centered around node i being defined as a set of two edges connected to i.
Since different networks generally do not contain identical nodes, the mean of all

node-level topology measures was taken to compare the characteristics of whole networks.
However, the topology of each network was also described using multiple global measures.
The size of a network was described by the number of nodes and the number of edges
∑ mij. Additionally, the diameter D and the mean shortest path length ` of the network
was computed, where:

D = max
(
sij
)
, (A7)

and
` =

1
N(N − 1) ∑

i 6=j
sij, (A8)

with sij being the number of edges in the shortest path from node i to j.
Besides network size, its shape was evaluated by measuring a network level central-

ization metric using degree centrality:

CM =
∑i(max(ki)− ki)

N2 − 3N + 2
, (A9)

where a CM of 1 would mean a star network and a CM of 0 a fully connected network.
Finally, the tendency of a network to exhibit modular organization can be measured

by the transivity, which is a global clustering coefficient [114,115]:

c =
1
N ∑

i
Ci. (A10)
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