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We describe new tools for the processing of electron cryo-microscopy (cryo-EM) images
in the fourth major release of the RELION software. In particular, we introduce VDAM, a
variable-metric gradient descent algorithm with adaptive moments estimation, for image
refinement; a convolutional neural network for unsupervised selection of 2D classes; and
a flexible framework for the design and execution of multiple jobs in pre-defined work-
flows. In addition, we present a stand-alone utility called MDCatch that links the execu-
tion of jobs within this framework with metadata gathering during microscope data
acquisition. The new tools are aimed at providing fast and robust procedures for unsuper-
vised cryo-EM structure determination, with potential applications for on-the-fly process-
ing and the development of flexible, high-throughput structure determination pipelines.
We illustrate their potential on 12 publicly available cryo-EM data sets.

Introduction
Structure determination of biological macromolecules through single-particle analysis of cryo-EM
images has recently reached a milestone by obtaining atomic resolution reconstructions [1,2]. With
increasing resolutions, the applicability of cryo-EM structure determination continues to improve, and
with many inexperienced scientists entering the field, the need for robust, easy to use image processing
procedures is increasing. Moreover, atomic resolution structure determination opens up new avenues
for cryo-EM structure-based drug design, which often requires high-throughput and automation to
enable the screening of many candidate molecules.
The development of user-friendly cryo-EM image processing software has come a long way. Early

software packages capable of performing cryo-EM structure determination by single-particle analysis,
including SPIDER [3], IMAGIC [4] and the suite of MRC image processing programes [5], were
mostly command-line driven and typically relied on extensive user experience to obtain good results.
The development of graphical user interfaces (GUIs) and more integrated workflows in the EMAN
software [6] reduced this requirement, making cryo-EM image processing accessible to more scientists.
Developments in SPARX [7], BSOFT [8], FREALIGN [9] and XMIPP [10] also contributed to
improved accessibility. The cryo-EM resolution revolution [11] further accelerated the focus on user-
oriented software developments, with new software packages like SPHIRE [12], cisTEM [13] and the
commercial cryoSPARC [14] implementing robust and easy-to-use pipelines for cryo-EM structure
determination. In addition, overarching software developments like Appion [15] and Scipion [16]
facilitated the combination of the different available software packages.
The first release of the RELION software coincided with the appearance of the first prototypes of

direct electron detectors that would spark the resolution revolution [17]. RELION introduced a novel
empirical Bayesian approach to single-particle analysis, with an explicitly regularized likelihood opti-
mization target [18]. In the Bayesian framework, parameters for optimal filtering of the reconstruction
are inferred from the data, thus removing the need for user expertise to tune related parameters in
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alternative softwares. Not only did the Bayesian approach lead to higher quality reconstructions; it also repre-
sented a step-change in software accessibility that expedited a rapid expansion of the field once direct detectors
became commonly available [19].
More recently, automation of large parts of the cryo-EM structure determination pipeline has received

increased attention. In particular, various unsupervised protocols for the earlier stages of image processing,
including motion correction in movies, contrast transfer function (CTF) parameter estimation and particle
picking, have been introduced, for example in FOCUS [20], SCIPION [21], WARP [22], tranSPHIRE [23],
SPREAD [24] and cryoFLARE [25]. Automated on-the-fly processing of cryo-EM data allows spotting pro-
blems in the data while they are being acquired, thus providing opportunities to change data collection and
save valuable time on the microscope. In addition, their standardized procedures lower the barriers for novel
users and facilitate the development of high-throughput structure determination pipelines.
This paper describes new tools for single-particle analysis in RELION-4.0 that aim to make unsupervised

cryo-EM structure determination faster, more robust and easier to automate.

Methods
VDAM: variable-metric gradient descent with adaptive moments estimation
Regularized likelihood optimization
We briefly recapitulate the regularized likelihood optimization algorithm that underlies classification and refine-
ment procedures in RELION [17,18].
Let X ¼ x1, . . . , xN [ C

L denote the Fourier transforms of the experimental particle images. Each particle
image is a noisy 2D projection of a rotated and translated volume, out of an ensemble of unknown volumes
with 3D Fourier transforms V ¼ v1, . . . , vK [ C

M , typically referred to as classes. We assume

x ¼ Hqv þ e, (1)

where Hq [ C
L�M is a complex valued matrix that takes a 2D slice out of the 3D Fourier transform after

applying the relevant composite transformation q∈Q : = SE(3), consisting of a rotation and translation, as well
as a (given) CTF. We assume uncorrelated Gaussian noise, or ei [ C

L � CN (0, s), as well as uncorrelated
Gaussian signal, or v [ C

M � CN (0, t), where both s [ RL
þ and t [ RM

þ are diagonal co-variance matrices.
We then seek the maximum a posteriori (MAP) estimate of V by maximizing the following regularized likeli-

hood function:

L(V, X) : ¼
XN
i¼1

log
XK
k¼1

ð
Q
P(xi j vk, q)P(q)dqþ

XK
k¼1

log P(vk), (2)

where we have assumed that X contains independent observations, and we have marginalized over the nuisance
variables, through an integration over Q and a summation over k. The likelihood term is calculated as
P(xi j v, q) ¼ CN (jxi � Hq

i vj, s); and the prior term as P(v) ¼ CN (0, t). P(q) expresses information about the
prior probability of the transformations, e.g. a 2D Gaussian distribution for the translations and typically a
uniform distribution for rotations.
To find the MAP estimate of V, we use the Expectation–Maximization algorithm, where we denote each iter-

ation with the index (n). Starting from an initial guess, V(0), we apply a fixed-point iteration approach by fixing
V and solving rvL(V, X) ¼ 0 for the parameters of a particular v. First, in the Expectation step we calculate
the gradient of (2) with respect to vk:

rvkL(V, X ) ¼
XN
i¼1

ð
Q
Pk(q j V, xi)[Hq

i
�
s�2(xi � Hq

i vk)]dq� t�2vk, (3)
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with

Pk(q j V, xi) ¼ P(xi j vk, q)P(q)PK
k0¼1

Ð
Q P(xi j vk0 , q)P(q)dq

: (4)

Then, in the Maximization step we solve for the parameters of a particular vk, which yields the closed-form
solution:

v(nþ1)k  B(n)
k

F(n)
k þ t�2

(5)

where the division is to be evaluated element-wise, and where

B(n)
k ¼

XN
i¼1

ð
Q
Pk(q j V, xi)[Hq

i
�
s�2xi] [ C

M ,

F(n)
k ¼

XN
i¼1

ð
Q
Pk(q j V, xi)[diag(Hq

i
�
s�2Hq

i )] [ RM
þ :

(6)

Variable-metric gradient descent
Optimization by gradient descent is an alternative to the Expectation–Maximization algorithm, where the
update formula is generally a step in the direction of the negative gradient weighted with the learning
rate, h [ R:

v(nþ1)k  v(n)k � h(G(n)
k þ t�2v(n)k ) (7)

with G(n)
k : ¼ �rvkL(V(n), X)jvk¼v(n)k

, as in (3). In this approach, the summation over i in (3) and (6) are typic-
ally carried out over a random subset of the data set, called a mini-batch, which is changed at each iteration.
We notice that the Expectation–Maximization algorithm can be viewed as a variable-metric gradient descent

(VMGD) algorithm, where the gradient in the update formula has been modified with a positive definite pro-
jection matrix, D(n), which changes every iteration [26]. Applying this to the GD update formula in (7) gives

v(nþ1)k  v(n)k þ hD(n)
k [G(n)

k � t�2v(n)k ] (8)

We seek a positive definite matrix D(n) that equates the gradient descent update to the Expectation–
Maximization update. From (5) and (8) we get

B(n)
k

F(n)
k þ t�2

¼ vk � hD(n)
k [G(n)

k þ t�2vk]: (9)

Solving for D, yields

D(n)
k ¼ diag{[F(n)

k þ t�2]�1}: (10)

Inserting this into (8) yields the following update formula for the VMGD algorithm:

v(nþ1)k  v(n)k � h
G(n)
k þ t�2v(n)k

F(n)
k þ t�2

(11)
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Note that, if the gradient was calculated over the entire data set, η can now be set to 1.0, since the gradient is
rescaled by D to fit the Expectation–Maximization step size. However, if updates are performed with mini-
batches, η should still be smaller than 1.0, because the estimated G from a subset is noisier. In our implementa-
tion, the default values for η range 0.1–0.9, depending on the stage of reconstruction.
If a Fourier shell correlation (FSC) can be calculated that assesses the signal-to-noise for v(n)k , then, using

equations (9) and (10) in [17], (11) can be rewritten as

v(nþ1)k  v(n)k � h FSC(n)
k

G(n)
k

F(n)
k þ e1

þ (1� FSC(n)
k )v(n)k

" #
(12)

where ε1 is a constant added to improve numerical stability.
In our implementation, we calculate FSC(n)

k using two separately reconstructed versions of vk, each from one
half of the data set X . Additionally, we define the rescaled gradient bG : ¼ G=(F þ e1), which is invariant to the
mini-batch size, for small values of ε1.

Adaptive learning rate
We also implemented an adaptive learning rate method, similar to methods commonly used in deep-learning,
including Adam [27], Adagrad [28] and ADADELTA [29]. Typically, these methods accumulate two gradient
moments, through running averages: m [ C

M tracks the momentum of the gradient (first moment), while
u [ RM tracks an estimate of the noise or error amplitude in the gradient (second moment). In particular, the
Adam optimizer, tracks |G|2 as the second moment. Instead, we calculate two gradients, Gh1 and Gh2 , for two
separate halves of the data set, h1 and h2, and accumulate these into two separate first moments. The second
moment, which is shared among the two halves, tracks jGh1 � Gh2 j2. Additionally, we avoid having to track F
separately by tracking the rescaled gradient bG instead. Thereby, we consider the following three running
averages for each k:

m(nþ1)
h1

 b1m
(n)
h1
þ (1� b1)bG(n)

h1

m(nþ1)
h2

 b1m
(n)
h2
þ (1� b1)bG(n)

h2

u(nþ1)  b2u
(n) þ (1� b2)jbG(n)

h1
� bG(n)

h2
j2:

(13)

The update formula for each half data set then becomes:

v(nþ1)k,h  v(n)k,h � h FSC(n)
k

m(n)
k,hffiffiffiffiffiffiffi

u(n)k

q
þ e2

þ (1� FSC(n)
k )v(n)k,h

264
375 for h ¼ h1, h2, (14)

where ε2 is a suitably small constant. In our implementation, β1 = 0.9 and β2 = 0.999.
Excluding the regularization term in (12) from the running averages in (13) serves to decouple the effects of

regularization and the learning rate, which has been shown to improve convergence efficiency for the Adam
optimizer [30].

Replacing inactive classes
In previous releases of RELION, especially in 2D classification, many classes would converge to contain no or
very few particles. This represented a waste of computational resources and often resulted in suboptimal classi-
fication of structural variability in the data. To address this issue we here propose an algorithm that, throughout
the gradient optimization, substitutes classes with small likelihood probabilities with classes that exhibit large
variability. This approach is inspired by methods used in the class of artificial neural network algorithms
known as self-organizing maps and neural gases [31]. At the end of each mini-batch, before the gradient
update is applied, we select class a, which is the class with the smallest likelihood probability, P(X j va). Next,
we select class b, which is the class with the largest jmb=(

ffiffiffiffiffi
ub
p þ e)j2. We then update va and its corresponding

moments as we would have done for vb using (13) and (14), and we keep vb the same as it was in the previous
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mini-batch. This effectively substitutes the smallest class with a numerically different version of the class that is
changing the most. The class substitutions are only performed if P(X j va) , r=K , where ρ is a user-defined
constant, called the class inactivity threshold (see section ‘2D classification with the VDAM algorithm’).

Implementation details
In previous releases of RELION, the initial references for 2D classification and 3D initial model generation
were initialized from averages of random subsets of the particles in random orientations. In RELION-4.0, the
default is to start from randomly positioned Gaussian blobs that are different for each class. The primary
purpose of this initialization is to diversify the classes early in the classification, thus leading to faster conver-
gence and the recovery of more class variability.
To further reduce computational costs for both 2D classification and 3D initial model generation, VDAM

optimizations are started with a high learning rate of 0.9. By default, the learning rate is then gradually reduced
to 0.3 for 2D classification and to 0.5 for 3D initial model generation. In addition, calculations are started from
relatively small mini-batches: 0:5% of the total data set size (with a minimum of 200 particles, and a maximum
of 10 000 particles for 2D classification and a maximum of 5000 for 3D initial model generation). After the
initial stage the learning rate is reduced to 0.3 for 2D classification and to 0.5 for 3D initial model generation,
and the mini-batch size is increased to 5% and 10% of the data set size, respectively (with a minimum of 1000
particles, and a maximum of 100 000 particles for 2D classification and 50 000 particles for 3D initial model
generation).
Although most of the data sets tested in this paper converge after 100 mini-batches, in order to obtain good

results for a larger number of data sets, we set the default on the GUI to 200 mini-batches, and ran all calcula-
tions in this paper using 200 mini-batches. In this way, the total number of passes through the entire data set,
i.e. epochs, is five or less, resulting in a major speed-up compared with the 25 full iterations that are done by
default using the EM algorithm. In the final iteration, a final pass through the entire data set is performed,
where only P(X j k) for each class k is calculated, further saving time compared with a normal epoch. In add-
ition, we noticed that the VDAM algorithm is less sensitive to truncation of the marginalization (i.e. skipping
those orientations from the integral in equation (2) with low probabilities) than the EM algorithm, leading to
additional increases in speed, in particular during the early stages of refinement.

Class ranker: automated 2D class selection
The selection of particles that give rise to 2D class average images with recognizable protein features is often
used to discard suboptimal particles from cryo-EM data sets. The selection of suitable 2D classes was done
interactively in previous releases of RELION. RELION-4.0 contains a new programe called relion_class_-
ranker that automates 2D class selection. This programe predicts a score for each class by combining the
output of a convolutional neural network that acts on the 2D class average images with 18 features (Figure 1A,B).
The convolutional neural network takes as input individual 2D class average images, cropped to contain only

the area defined by the circular mask used in the 2D classification, and rescaled to 64 × 64 pixels. The feature
vector is calculated for each class from RELION’s metadata of the 2D classification job, including the estimated
accuracies of rotational and translational alignments, the estimated resolution (1/d in 1/Å) and a so-called
weighted resolution, which is calculated as d2/lnN, where N is the number of particles assigned to the class. It
also contains features that are calculated from the 2D class average images, in particular the first to fourth
moments of density values inside an automatically determined mask for the protein region, the solvent region,
and for a ring around the outer diameter of the mask that has been applied to the 2D class average images.
The combined output from the convolutional neural network and the feature vector is passed through two
fully connected layers, with non-linear (ReLU) activation functions between the layers, to predict a single, float-
ing point value, score for each 2D class.
The network in the relion_class_ranker program was trained on 18 051 2D class average images

from 233 RELION 2D classification jobs that were performed at the MRC-LMB over a period of approximately
4 years. Each of the jobs was assigned a job score, ranging from zero to one, and within jobs the class averages
images were manually divided into four categories depending on their quality. For each 2D class, the combin-
ation of its job score, its category assigned and its estimated resolution compared with the best resolution in its
2D classification job, were used to calculate a target class score, ranging from zero to one. The target scores
were intended to represent a ranking over all classes in the training set, with a score of one representing the
best classes from the best 2D classification jobs, and a score of zero representing the worst classes. The network
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was implemented and optimized with the Adam optimizer [27] for 200 epochs in pytorch [32], using a mean-
squared error between predicted and assigned scores. All 18 051 class average images, plus their metadata from
the 2D classification jobs and their assigned class scores are publicly available through the EMPIAR data base
(entry-ID 10812). The code used to optimize and execute the neural network are available from the RELION
github pages.

Schemes: planning and execution of multiple jobs
RELION’s pipeliner organizes the execution of RELION jobs, which represent individual tasks, and often the
execution of an individual command-line program, in the overall structure determination workflow. The pipeli-
ner also keeps track which jobs’ output files are used as input for other jobs, thus building a directional graph
of the processing workflow [33].

Figure 1. Class ranker neural network architecture and results.

(A) The overall architecture of the scoring network, which consists of three CNN blocks and a final feed forward network that

also incorporates the 18 features. (B) The CNN block architecture that incorporates three convolutional layers. The initial

convolutional layer, maps the input channels count C1 to the intermediate channels count C2 and the final layer preforms a

down sampling of the box size through a strided convolution and doubles the number of channels. (C) The mean-square error

loss during training, comparing with and without features. (D) A confusion matrix showing labeled scores versus predicted

scores, with bins of 0.1. (E) Example of classes with their predicted score.
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RELION-4.0 implements new functionality to plan the execution of multiple jobs in advance, including func-
tionality to execute branched decision trees, where decisions to follow one branch of sequential jobs or another
are made on-the-fly. A series of planned jobs, possibly including multiple branches, is called a Scheme.
To allow for flexibility in the design of the execution of multiple jobs, Schemes implement different types of

variables: stringVariables, booleanVariables and floatVariables. The values of these variables can be changed
through the execution of so-called Operators that form part of the Scheme framework. Multiple Operators have
been implemented, for example to perform simple mathematical operations on floatVariables; to perform
logical operations on booleanVariables; and to perform text modifications on StringVariables. In addition,
Operators exist for reading metadata values from RELION star files; for file handling operations; for sending
emails and for waiting a pre-determined amount of time. A full description of available Operators is available
from the RELION documentation, which has been rewritten, and is available from: https://relion.readthedocs.
io/en/release-4.0/.
Schemes can be thought of in terms of a directional graph, where the nodes of the graph are either jobs or

Operators. Edges connect two subsequent nodes, while Forks connect one input node to two possible output
nodes. Each Fork has an associated booleanVariable, whose value determines which of the two output nodes is
chosen upon execution of the Scheme. The topology of the graph inside a Scheme can be cyclical, thereby
enabling repetitive execution of jobs inside loops.
Schemes are defined by a scheme.star file that describes the different jobs, Operators, Variables, Edges

and Forks. The scheme.star file is stored inside a Schemes/schemename directory, which itself is inside
the standard RELION Project directory. The Scheme directory also contains subdirectories for each of the
RELION jobs that form part of the Scheme. These subdirectories each contain a file called job.star that
contains the parameter values for that job. The Scheme framework is flexible, in that users can define their
own Schemes by manually editing the corresponding star files. The job.star files for individual jobs can
also be saved through the Jobs menu on the RELION-4.0 main GUI.
Schemes are executed through the relion_schemer program, which launches the jobs, and keeps track of

the current status of the Scheme and the values of all its variables. It can also be used to abort a running
Scheme, to change its current variables or the parameters of its RELION jobs and to re-start from the point
where it was previously aborted. If any RELION job parameters were changed, the relion_schemer
program will re-execute those jobs from scratch, whereas jobs that are unaffected by the changes will continue
from where they were halted.
RELION-4.0 includes two example Schemes, called prep and proc. The prep Scheme imports micrograph

movies and performs motion correction and CTF estimation. The proc Scheme selects micrographs based on
their estimated CTF resolution limit, performs automated particle picking (using either RELION’s
Laplacian-of-Gaussian (LoG) approach or Topaz [34]), 2D classification, automated 2D class selection, 3D
initial model generation and 3D refinement. A flowchart of both Schemes, depicting all corresponding
RELION jobs and Scheme Operators is shown in Figure 2.
The python script relion_it.py, which already existed in RELION-3, has been modified to work with

Schemes in RELION-4.0. The modified script launches a GUI (see Figure 3) to gather parameter input from
the user and then executes the prep and the proc Schemes to process cryo-EM data sets in an unsupervised
manner. In addition, a new GUI called relion_schemegui.py has been written to facilitate the monitor-
ing of Schemes during their execution, as well as their aborting, changing of variables and re-starting.

MDCatch: integration with the microscope
To simplify launching of on-the-fly image processing and minimize user input errors we implemented
MDCatch, a graphical tool that extends relion_it.py functionality by linking microscope data acquisition
with the execution of RELION-4.0 Schemes. MDCatch is written in Python3 and PyQt5 and provides a simple
GUI (Figure 4) that fetches acquisition metadata from a running EPU (Thermo Fisher Scientific) or SerialEM
[35] session, and launches a pre-defined image processing pipeline. Besides RELION-4.0 Schemes, MDCatch
also works with Scipion 3 workflows [21]. MDCatch supports parsing of metadata from different file formats
(EPU’s XML, SerialEM’s MDOC, MRC, TIF) and associates this information with other microscope parameters
(detector type, MTF, gain reference etc.) that can be configured in advance. In cases where existing metadata is
not sufficient, users can manually input missing information. MDCatch was designed to be installed on a com-
puter that has access to both the raw data (movies) and its associated metadata, e.g. an EPU session folder. For
SerialEM data acquisitions, both movies and MDOC metadata files are expected to be in the same directory.
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Together with MDCatch we provide example pipeline templates for both RELION and Scipion, including
the prep and proc Schemes described above. By default, users are presented with a choice between three par-
ticle pickers: the LoG approach in RELION, crYOLO [36] or Topaz [37]. Upon execution of MDCatch, the
fetched metadata are saved in a text file and the image processing progress can be monitored with existing
project utilities in RELION or Scipion.

Figure 2. Schematics of the prep and proc Schemes that form part of the relion_it.py approach for automated,

on-the-fly processing. Scheme operators are shown with rounded boxes, RELION jobs with purple boxes; edges with arrows

and forks with light purple diamond shapes. For forks, the BooleanVariable that controls its outcome is indicated in the center

of the diamond. The WAIT operator waits for a defined time since it was last executed; the EXIT_maxtime operator terminates

the Scheme after a defined time since the Scheme was started; the SET_has_ctffind operator sets BooleanVariable

has_ctffind to true if the STAR file generated by the CtfFind job of the prep Scheme exists; the COUNT_mics operator sets

the current number of micrographs to the number selected in the job above it; the SET_mics_incr sets BooleanVariable

mics_incr to true if the current number of selected micrographs is larger than the previous number of micrographs (which is

initialized to zero); the SET_prev_mics operator sets the previous number of micrographs to the current number of selected

micrographs; the COUNT_parts operator sets the current number of particles to the number of selected particles in the job

above it. The SET_enough_parts operator sets BooleanVariable enough_parts to true if the current number of selected

particles is larger than a user-specified minimum.

Figure 3. GUI of the relion_it.py script for automated execution of the prep and the proc Schemes.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).4176

Biochemical Journal (2021) 478 4169–4185
https://doi.org/10.1042/BCJ20210708

https://creativecommons.org/licenses/by/4.0/


MDCatch is distributed separately from RELION-4.0, under a free, GPLv3 software license, and its code and
documentation are available at https://github.com/azazellochg/MDCatch.

Results
Optimization of the neural network in relion_class_ranker
During exploration of network architecture and optimization procedures, 5850 2D class average images, from
73 2D classification jobs, were set aside as a validation set to monitor overfitting. Because the final network
architecture and optimization procedure did not induce noticeable amounts of overfitting (Figure 1C), a final
optimization round was performed using all 18 051 classes. The resulting network had a mean-square error
loss of 0.015 on the predicted class scores. Optimization of a network where all feature values were set to zero
led to a mean-square error loss of 0.017, indicating that the features provided useful information in the scoring
process. Analysis of 2D histograms of the assigned and predicted class scores (Figure 1D) and manual assess-
ment of the predicted scores (Figure 1E) confirmed that the final network produces useful predictions over the
full range of assigned class scores. The optimized network was further tested as part of the automated process-
ing of 12 test data sets through the Schemes and relion_it.py approach, as described below.

Figure 4. GUI of the MDCatch utility for automated fetching of microscope metadata and launching of on-the-fly image

processing.
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Automated processing with Schemes and relion_it.py
To test the procedures for automated single-particle analysis in RELION-4.0, we processed 12 data sets from
the EMPIAR data base [38], using default parameters from relion_it.py, except for the experiment-
specific parameters and the particle diameter as shown in Table 1. The 12 data sets were selected at the start of
the project; no data sets were added or removed during the project. Motion correction for movies of these data
sets were performed in RELION’s own implementation of the MotionCor2 algorithm [47]. CTF estimation was
performed in CTFFIND4 [48]. Motion-corrected micrographs and extracted particles were saved in IEEE 754
16-bit float MRC format (mode 12), a new feature in RELION-4.0 to save a factor of two in required disk
space. The proc Scheme was used for automatically processing the data, up to 3D initial model generation
and refinement of downscaled particle images.
Only micrographs with resolutions beyond 6 Å, as estimated by CTFFIND-4, were included in the process-

ing. For all data sets, except for the ribosome data set collected with a phase plate (ribo-VPP; EMPIAR-10153),
particle picking using the pre-trained model in Topaz yielded reasonable results. For the ribo-VPP data set, the
unusually strong contrast in the phase plate images yielded suboptimal results in Topaz, and we used the
LoG-picker in RELION instead. All particles were extracted in the box sizes suggested by relion_it.py, i.e.
1.5 times the particle diameter, and downscaled to pixel sizes in the range of 2.8–3.5 Å (with the exact pixel
size depending on favorable downscaled image sizes for the fast Fourier transform algorithm). The extracted
particles were subjected to 2D classification with 100 classes, using the VDAM algorithm, followed by auto-
mated class selection in relion_class_ranker with a default minimum class score of 0.15. Finally, the
selected particles were subjected to 3D initial model generation in symmetry group C1, again using the VDAM
algorithm, with three classes, followed by 3D auto-refinement of the largest class after automated detection and
alignment of the symmetry axes. Figure 5 gives an overview of the results.
For all data sets, except the apoferritin data set (EMPIAR-10146), 2D classification with the VDAM algo-

rithm (see section ‘2D classification with the VDAM algorithm’) provided adequate information to assess the
quality of the data and the class ranking successfully identified suitable 2D class averages (see section
‘Automated 2D class selection with relion_class_ranker’). Dense packing of the apoferritin particles in
the micrographs caused the appearance of density for neighboring particles in the 2D class averages, which
resulted in too low class scores. Because only 294 apoferritin particles were selected, no 3D model generation
was attempted. For all other data sets, correct reconstructions could be obtained in a fully automated manner

Table 1. Test data set characteristics

Data set
EMPIAR
entry

Nr
micrographs Super-resol?

Voltage
(V) Cs

Phase
plate?

Pixel
size (Å) Symmetry

Particle
diameter (Å)

ribosome 10 028 1082 No 300 2.7 No 1.34 C1 320

TRPV1 10 059 1200 No 300 2.7 No 1.22 C4 150

TcdA1 10 089 97 No 300 2.7 No 1.14 C5 280

apoF 10 146 20 No 300 0.01 No 1.5 O 130

ribo-VPP 10 153 315 Yes 300 0.01 Yes 0.545 C1 320

aldolase 10 181 659 Yes 200 2.7 No 0.46 D2 180

g-sec 10 194 2922 Yes 300 2.7 No 0.7 C1 150

b-gal 10 204 24 No 200 1.4 No 0.885 D2 180

CMV 10 205 5619 No 300 2.7 No 1.065 I1 330

GDH 10 217 2491 No 300 2.7 No 0.66 D3 150

CB1 10 288 2754 No 300 2.7 No 0.86 C1 160

INX6 10 290 497 No 300 2.7 No 1.23 C8 150

ribosome: Plasmodium falciparum 80S ribosome [39]; TRPV1: transient receptor potential channel V1 [40]; TcdA1: Tripartite Tc toxin subunit A [12];
apoF: apoferritin; ribo-VPP: ribosome collected on a Volta phase plate [41]; aldolase: Rabbit muscle aldolase [42]; g-sec: g-secretase [43]; b-gal:
b-galactosidase; CMV: cowpea mosaic virus [44]; GDH: glutamate dehydrogenase; CB1: cannabinoid receptor 1G [45]; INX6: innexin-6
hemichannel [46].
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with resolutions close to the Nyquist limit for the downscaled particles (but also see section ‘Initial 3D model
generation with the VDAM algorithm’).

2D classification with the VDAM algorithm
Figure 6 shows two example comparisons between 2D classifications with the VDAM and the EM algorithms:
for the GDH and CB1 data sets. For each run, we manually selected the best classes (highlighted in purple in
Figure 6 for GDH and CB1), and subsequently used the corresponding sets of particles for 3D auto-refinement
to asses the relative quality of the classified subsets. Computations were performed on an Intel Xeon Gold 6242
and four NVIDIA GeForce RTX 2080Ti GPUs. All VDAM calculations were performed with the default class
inactivity threshold of 0.1.
Table 2 shows the results for five test data sets. Each run consists of 25 EM and 200 VDAM iterations,

which corresponds to 25 and approximately 6 epochs, respectively. The final epoch for the VDAM algorithm is
only performed to assess particle class assignment, and is thus faster. On average, the VDAM algorithm is a
factor of 5 faster compared with the EM algorithm for 2D classification, without affecting the quality of the
selected particles, as measured by the final resolution after auto-refinement.

Automated 2D class selection with relion_class_ranker
The predicted class score of the relion_class_ranker program was designed to be on an absolute scale,
ranging from a value of zero for useless classes to a value of one for the best classes from the best data sets.
Therefore, because some data sets are better than others, the threshold for class selection may need to be
adjusted in line with the expected quality of the 2D class average images for a given data set. Figure 7 shows an
evaluation of the quality of the particle selection for all 12 test data sets, by comparing the selections based on
the indicated class score threshold (t) with a manual selection of suitable classes. Quality is measured in terms
of the false positive rate (FPR) and the false negative rate (FNR) of the particles from the selected 2D classes,
where the particles from the manually selected classes are considered the correct ones. To reflect that the
threshold value may be changed based on the expected quality of each data set, besides reporting the results for
the default score threshold of 0.15 used in relion_it.py, this table also shows the results for a freely
chosen, i.e. supervised threshold value (t = T) for each data set.

Figure 5. Automated structure determination for the test data sets.

For each data (see Table 1) the reconstruction after refinement with the downsampled particles is shown, together with the

number of auto-picked particles and the number of selected particles. Although not shown here, for the GDH, TRPV1 and

aldolase data sets, initial model generation does some times get stuck in local minima (see section ‘Initial 3D model generation

with the VDAM algorithm’ for more details). No map was reconstructed for apoF.
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For the ribosome, CMV, CB1 and γ-sec data sets, a higher threshold than the default leads to better results,
although only for the γ-sec data set the FPR is higher than 0.2 using the default threshold. For the TRPV1,
apoF, β-gal and INX6 data sets, a lower threshold yields better results, with the default threshold yielding FPRs
of 0.25 or higher. Nevertheless, as pointed out above, even when using the default threshold of 0.15, the particle
selection for all data sets, except apoF, allowed de novo reconstruction of a correct 3D map. Using the super-
vised threshold, for all data sets the FPR and the FNR are below 0.25.

Initial 3D model generation with the VDAM algorithm
To evaluate the overall performance of the VDAM algorithm for 3D initial model generation, we performed
ten repeats of 3D initial model jobs for the particle sets that were selected automatically by the relion_it.
py approach of the five data sets shown in Figure 8. Following the relion_it.py approach in RELION-4.0,

Figure 6. All significant 2D class averages from four different classification runs. (A) and (B) show results for the GDH data

set classified using the EM and VDAM algorithm, respectively. (C) and (D) show results for the CB1 data set classified using

the EM and VDAM algorithm, respectively. Classes are sorted according to their score from the relion_class_ranker

program, which is also shown for each class. Classes that were manually selected for subsequent 3D auto-refinement are

highlighted in purple.
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we used the VDAM algorithm with three classes and selected the most populated class after 200 iterations. For
each run, we used the selected model as initial reference for subsequent auto-refinement, and used FSC of the
refined structure to the known target structure, after manual alignment in Chimera [49], as a metric to distin-
guish between successful and unsuccessful runs.
Figure 8 shows examples of central slices of initial model reconstructions that converged to the target struc-

tures for the five data sets. For the GDH, CB1 and INX6 data sets, initial model generation was successful for
8, 9 and 10 out of the 10 runs performed, respectively. For the aldolase data sets, 5 out of the 10 VDAM calcu-
lations were successful. Convergence within 200 iterations was primarily hindered by heterogeneity, since a
large subset of the data set consisted of similar but incomplete particles. Since the automated procedure picks
the most populated class, sometimes the target structure is missed as it comes in at second place. The target

Figure 7. Analysis of the automated 2D class selection. For the 12 test data sets, the charts on the left show the percentage

of particles after manual selection (gray), after automated selection with a default threshold of 0.15 (orange), and automated

class selection with a supervised threshold (purple). The center two panels show the false positives rate, i.e. number of

particles selected by the class ranking procedure, but not by manual selection, divided by the number of selected particles in

the manual selection, and the false negative rate, i.e. number of particles selected by manual selection, but not by the class

ranking procedure, divided by the number of selected particles by manual selection, for the default (purple) and the supervised

(orange) thresholds. The panel on the right shows the value of the supervised threshold (t = T).

Table 2. Comparison between the two algorithms for 2D classification

Selected particles Time (hh:mm) Resolution (Å)

EM VDAM EM VDAM EM VDAM

TRPV1 250 182 203 740 03:26 00:50 3.2 3.3

g-sec 340 535 350 583 13:49 02:56 3.8 3.8

GDH 476 531 476 559 05:01 00:51 2.5 2.4

CB1 587 385 500 473 12:18 02:46 3.3 3.3

INX6 88 855 89 141 02:04 00:28 4.0 4.0

Good classes were selected manually, and the selected subset was further processed in auto-refine.
The number of manually selected particles are shown for each data set and algorithm, as well as the
execution time for 2D classification and the final resolution achieved with auto-refine using the subset
from the respective subsets.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 4181

Biochemical Journal (2021) 478 4169–4185
https://doi.org/10.1042/BCJ20210708

https://creativecommons.org/licenses/by/4.0/


structure, exhibiting D2 symmetry, makes up about 50% of the data set after the automated 2D class selection.
Manual selection might be a necessity to acquire a good final reconstruction for this data set. For the TRPV1
data set, only 4 out of 10 runs were successful. In this case, angular alignment posed the primary issue, possibly
due to the relatively large membrane patch.

Discussion
In this paper, we present new features for single-particle analysis in RELION-4.0: the VDAM algorithm for
image refinement, the relion_class_ranker program for automated 2D class selection, and the Schemes
framework with an updated relion_it.py approach for unsupervised execution of workflows. In addition,
we describe the separately distributed MDCatch program that collects metadata from the microscope to facili-
tate on-the-fly data processing. The RELION-4.0 release also introduces new approaches to sub-tomogram aver-
aging, and a tighter integration of its pipeline approach with the CCP-EM software suite [50]. These two
developments will be described elsewhere.
By iterating through the data set fewer times, the VDAM algorithm provides substantial increases in speed

compared with the EM algorithm. For example, we illustrate that 2D classification with the VDAM algorithm
is up to six times faster than the EM algorithm, with larger gains in speed observed for larger data sets. Even
larger speed-ups may be obtained by reducing the default number of mini-batches from 200 to 100. Although
performing fewer iterations may affect the quality of the results for difficult data sets, the additional speed-ups
obtained might be valuable for better behaved data sets.
Besides speed improvements, our VDAM implementation also replaces inactive classes, which typically leads to

higher numbers of suitable classes that better capture the heterogeneity in the data. Compared with the standard
SGD algorithm, the VDAM algorithm also shows improved convergence behavior for 3D initial model gener-
ation. Because the VDAM algorithm automatically determines the regularization parameters, 3D initial model cal-
culations with the VDAM algorithm no longer need to be explicitly limited in resolution, as was the case with the
SGD algorithm. Thereby, higher resolution initial models may be calculated without user intervention, which
leads to more straightforward selection of suitable initial models. The freedom to progress to higher resolutions
may also contribute to better convergence of the VDAM algorithm compared with standard SGD. Although not
illustrated here, the VDAM algorithm can also be used for 3D classification and 3D auto-refinement. The latter
applications may be particularly interesting in the context of injecting more prior knowledge about protein struc-
tures into the 3D reconstruction process [51], which will be a direction of future research.
In previous release of RELION, manual selection of suitable 2D class average images represented a hurdle

for automated on-the-fly image processing in the typical workflow. The relion_class_ranker program
overcomes this hurdle. We found that a combination of a feature vector with a convolutional neural network
that acts on the 2D class average images yields excellent results in predicting scores for 2D classes that allow

Figure 8. Central slices of initial model reconstruction with three classes using VDAM algorithm for five data sets.
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their unsupervised selection. The feature vector contains two types of features. On the one hand, features like
the estimated angular and translational alignment accuracy and the class sizes contribute information from the
RELION refinement process that is not present in the class average images. On the other hand, hand-crafted
features that are calculated from the class average images, such as moments of pixel values in protein and
solvent masks, allow biasing the scores on information that is assumed to be important.
The class scores from the relion_class_ranker program are on an absolute scale. Although a default

selection threshold of 0.15 allowed automated structure determination for eleven out of 12 test data sets, in
practice many users may choose to tune the threshold value for their specific type of data. Tuned thresholds
gave particle selections with FPRs and FNRs of less than 0.25 for all data sets tested. Ordering 2D class averages
by their predicted class scores may also be useful for manual selection. In previous releases of RELION, 2D
class average images were typically displayed sorted on their class size. However, the VDAM algorithm often
converges to solutions that also contain relatively large classes with suboptimal particles. Therefore, we have
observed that sorting the classes based on their predicted scores is also helpful for manual selection of suitable
2D classes. Executing relion_class_ranker typically takes less than a minute.
The development of Schemes for the automated execution of pre-defined, image processing workflows that

represent branched decision trees is a less visible part of the improvements in RELION-4.0. As an example of
what is possible, we distribute the prep and proc Schemes for automated structure determination inside the
new relion_it.py approach. Although we show the usefulness of this fully automated approach on 12 test
data sets, we expect that many users will want to modify parts of this approach to fit their specific needs. The
Schemes are aimed at providing the flexibility that will be required by the different types of end-users to auto-
mate a wide range of image processing tasks.
In general, as cryo-EM structure determination continues to improve rapidly, we envision that flexibility in

the design of image processing workflows will remain essential for many users. The RELION tools described
here aim to facilitate this flexibility, as well as speed, and to help the inexperienced user in getting the most of
their cryo-EM images, while at the same time providing the advanced user with all the tools necessary to solve
the most difficult structures. Moreover, by distributing these tools as free, open-source software, we encourage
the cryo-EM community to build on the advances described.

Data Availability
RELION-4.0 is distributed under a GPLv2 license and can be downloaded for free from https://github.com/3dem/
relion/tree/ver4.0. The 2D class average images used for training the neural network in the relion_class_ranker,
together with all necessary metadata to replicate the training, can be downloaded from the EMPIAR data base
(entry-ID 10812).
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