
W-Curve Alignments for HIV-1 Genomic Comparisons
Douglas J. Cork1,2,3*, Steven Lembark4, Sodsai Tovanabutra1,2, Merlin L. Robb1,5, Jerome H. Kim1,5

1 United States Military HIV Research Program, Rockville, Maryland, United States of America, 2 Henry M. Jackson Foundation for the Advancement of Military Medicine,

Rockville, Maryland, United States of America, 3 Illinois Institute of Technology, Chicago, Illinois, United States of America, 4 Workhorse Computing, Woodhaven, New

York, United States of America, 5 Division of Retrovirology, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America

Abstract

Background: The W-curve was originally developed as a graphical visualization technique for viewing DNA and RNA
sequences. Its ability to render features of DNA also makes it suitable for computational studies. Its main advantage in this
area is utilizing a single-pass algorithm for comparing the sequences. Avoiding recursion during sequence alignments offers
advantages for speed and in-process resources. The graphical technique also allows for multiple models of comparison to
be used depending on the nucleotide patterns embedded in similar whole genomic sequences. The W-curve approach
allows us to compare large numbers of samples quickly.

Method: We are currently tuning the algorithm to accommodate quirks specific to HIV-1 genomic sequences so that it can
be used to aid in diagnostic and vaccine efforts. Tracking the molecular evolution of the virus has been greatly hampered by
gap associated problems predominantly embedded within the envelope gene of the virus. Gaps and hypermutation of the
virus slow conventional string based alignments of the whole genome. This paper describes the W-curve algorithm itself,
and how we have adapted it for comparison of similar HIV-1 genomes. A treebuilding method is developed with the W-
curve that utilizes a novel Cylindrical Coordinate distance method and gap analysis method. HIV-1 C2-V5 env sequence
regions from a Mother/Infant cohort study are used in the comparison.

Findings: The output distance matrix and neighbor results produced by the W-curve are functionally equivalent to those
from Clustal for C2-V5 sequences in the mother/infant pairs infected with CRF01_AE.

Conclusions: Significant potential exists for utilizing this method in place of conventional string based alignment of HIV-1
genomes, such as Clustal X. With W-curve heuristic alignment, it may be possible to obtain clinically useful results in a short
time—short enough to affect clinical choices for acute treatment. A description of the W-curve generation process,
including a comparison technique of aligning extremes of the curves to effectively phase-shift them past the HIV-1 gap
problem, is presented. Besides yielding similar neighbor-joining phenogram topologies, most Mother and Infant C2-V5
sequences in the cohort pairs geometrically map closest to each other, indicating that W-curve heuristics overcame any gap
problem.
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Introduction

In this paper we describe our analysis of variable gp120

sequences from HIV-1 using the W-curve. Our long term goal is to

find a fast, clinically useful tool for correlating HIV-1 sequences

with neutralization data. However, in order to achieve this goal,

we first show in this paper that a W-curve phenogram is

comparable to a phenogram of gp120 sequences generated by a

conventional string-based neighbor joining tool.

Representing DNA: Chaos and the W-curve
The W-curve was developed in 1993 as a visualization tool for

long genomic sequences [1]. It evolved from the Genomic Chaos

Game (CGR), which converts a sequence of DNA bases into a 2-D

numerical map [2,3,4]. The CGR and W-curve are computa-

tionally efficient and are effective for visual comparison of

sequences [3, 5, 6, 7, 8, and 9].

The original CGR was generated from the DNA alphabet of

{A, C, G, T} by assigning each character to the corner of a

square. For example, the original CGR visualization program used

the points AR (21, 1), CR (21, 21), GR (1, 1), and TR (1, 21).

A slightly different layout was used for our calculations, placing the

square with its corners on the axes and T-A-G-C bases at (1, 0),

(0, 1), (21, 0), (0, 21) [Fig. 1, panel A]. This order of corners helps

keep the curve from hugging the origin when studying genomic

DNA. For example, purines (A/G) and pyrimidines (T/C) are

most noticeable in the 2nd and 3rd quadrants. Starting from the

origin, the DNA strand is read from the 59 to 39, with each base

PLoS ONE | www.plosone.org 1 June 2010 | Volume 5 | Issue 6 | e10829



generating a new point in the X-Y plane one half way from the

previous point to the corner associated with that base [Fig. 1, panel

B]. CGR compares sequences without gaps and mismatches, the

distance between them calculated from the difference between the

final base points (39 end nucleotide)coordinates in a CGR [2,4].

Points in the CGR converge as sequence similarity increases.

Almeida et al. [3] verified that CGR’s have Markov chain

properties.

The W-curve projects the CGR representation along a discrete

Z-axis, using base numbers for co-ordinates. Programs for

visualizing DNA using W-curves are available for download

[10,11].

Many publications have used the CGR to visualize and evaluate

ungapped genes and relatively similar long genomic sequences

[12–17]. Aligning and comparing whole genomes with W-curves

was initially accomplished with visual graphic comparisons

[1,5,6,10,11]. Various distance methods have been employed to

compare and align relatively conserved similar sequences [5,7,8].

DNA sequences have been shown to exhibit interesting patterns

with W-curves and CGRs [1–9,12,13]. Previous work has been

presented that utilize the properties of the CGR to both align and

tree various genomic sequences [12,14,15]. In addition, prelim-

inary work has been conducted with W-curves to align and tree

similar W-curves of genomic sequences. [5,6,8].

W-curves and CGR’s have similar convergence properties. The

distinctive difference is that W-curves converge along the Z-axis.

Within a few bases of a single nucleotide polymorphism (‘‘SNP’’)

or at the end of a gap or multi-mer indel, the curves will converge.

SNP’s leave the curves diverging for short distance, indels a longer

one, and gaps cause a phase shift between the curves. Figure 2 is

an example of an SNP showing autoregression past a SNP. This is

the W-curve for a 7-base sequence with a SNP at base number 3, a

T vs. C. The #3 points are in separate quadrants, but by point #5

the curves are close and have similar slopes. A similar effect is seen

with gaps in that within a few bases the curves converge.

Autoregression also makes it possible to compare curves

constructed within a larger sequence against ones generated using

a fragment of the sequence. Figure 3 shows an example of the full

HIV-1 genome (top), the pol gene portion displayed by zooming in

on the bases (middle), and a separate copy of the pol gene

generated from a shorter sequence (bottom). After a few bases the

two pol gene curves are identical. Convergence between the two

pol curves looks identical to a SNP, matching the last base in the

genome prior to the pol gene.

Re-alignment of W-curves after they diverge depends on their

autoregressive behavior. Figure 2 shows a regression past a SNP,

which only requires examining a few points further down the

curve. Larger indels; however, require more work – stepping over

an arbitrary piece of curve to find the point of convergence. Gaps

further complicate this by introducing a phase-shift between the

curves, after which the curves converge [Fig. 4]. Gaps in the W-

curve appear as phase shifts between the two curves [Fig. 4].

Reading past the gap in a comparison requires changing the offset

of the points being examined. As shown in Figure 4, once the

points being compared are re-aligned, the convergence is identical

to a SNP or the start of a fragment. The overhead in processing

gaps this way is much lower as described in the implementation

section. Note that the advantage of the W-curve over the CGR is

that local sequential base positions are projected onto the Z axis

from the X-Y chaos game plane. This helps to realign similar W-

curves with gaps, SNP’s and indels, as described in the

implementation section below.

Adding the Z-axis gave W-curves the ability to handle

sequences with local divergences. This is necessary to handle

gaps, which introduce a phase shift (offset in Z-axis value) between

the curves after the gap.

The left panel of Figure 4 shows a view of one W-curve in the

X-Z plane. The right panel shows the same curve with the

addition of a gap at base 1201 (shown in green). After a few bases

to re-align the curves (shown in blue) the curves converge in the X-

Y plane, but at an offset of seven bases along the Z-axis (i.e.,

comparing points 1210 from the left to 1217 from the right will

give near- zero difference).

When comparing genomic DNA, the extreme nucleotide points

offer a better view of the differences between sequences than ones

near the origin. Panels A, B and C of Figure. 5 shows plots of the

Figure 1. W-curve nucleotide coordinate positions (left) and W-
curve projection of each nucleotide (right). The W-curve is
generated using a square centered at the origin with corners on the
axes (left). Each moving point moves halfway from a starting point P to P’
halfway to the corner for the next base in sequence (right). The numbers
iterate within the square as follows: P’(T) = [(Px+1)/2, (Py)/2]; P’(A) = [(Px)/
2, (Py+1)/2]; P’(G) = [(Px–1)/2], (Py)/2]; P’(C) = [(Px)/2, (Py–1)/2]
doi:10.1371/journal.pone.0010829.g001

Figure 2. Autoregression characteristics of the W-curve. Two
sequences are shown, one in green one in blue. The sequences differ at
base 3, which causes the curves to diverge. They converge again by
base number 7.
doi:10.1371/journal.pone.0010829.g002

W-Curve Alignments for HIV-1
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points in a W-curve plotted radially, viewed along the z-axis. The

first panel shows all of the points, and illustrates the well known

CG dinucleotide deficiency in the HIV-1 Genome. The second

panel shows only points with a radius less than 0.50. The last panel

shows only points with a radius .0.50.

These peaks are useful for re-aligning curves after a gap, as they

are more discriminating than points closer to the origin and are

also sparse. This leaves us with fewer accidental local curve

alignments and also fewer points to examine.

Computations with the W-curve
This study used the W-curve for numeric comparison of

sequences. The main difference with the visualization programs

was rotating the square to have its vertices on the axes [Fig. 1].

With this approach all curves begin at (0, 0, and 0) and have a first

point at +/2 0.5 on the X or Y axis, with succeeding points

continuing to grow along the Z-axis. We have found that storing

the curves using Cylindrical notation simplifies some operations

and provides a simple, efficient comparison measure for the

Figure 3. W-curves of a whole HIV-1 genome (A) and embedded pol gene sequence (B, C). A W-curve of an entire genome of HIV-1
01TH.OUR6091 (Accession number AY358040 is shown in panel A. Panel B shows a ‘‘zoomed in’’ projection of pol gene HIV-1 99TH.OUR1991
(Accession number AY358039) with respect to base pair position in the whole genome. Panel C shows the same pol sequence extracted from the
fasta file and renumbered with respect to base pair position. Sequences can be input into one of two graphical packages for the W-curve existing on
the internet (10, 11).
doi:10.1371/journal.pone.0010829.g003

Figure 4. Autoregression in the W-curve after a gap inserted into sequences. The gap (green, right panel) offsets the matching portion of
the right curve by seven bases. After three bases for the curves to converge (shown in blue) the curves converge again. Comparing bases 1204 and
1211 (gap + convergence window) will show the curves aligning.
doi:10.1371/journal.pone.0010829.g004

W-Curve Alignments for HIV-1
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curves. Storing the curves this way leaves each point with a radius,

angle, and Z-axis value [Fig. 6]. This leaves the first point of each

curve with a radius of 0.50 and an angle at some multiple of 90

degrees (p/2).

Comparing the curves requires quickly detecting divergence

and smoothing over small differences to locate convergence points.

Ideally the difference measure should detect divergence within one

base and account for small differences in the curve to allow the

detection of convergence within 2–4 bases. For example, handling

the SNP in Figure 2 should result in the detection of divergence at

base 3 and convergence by base 7.

We have found a simple, fast measure that does both of these. It

uses the Cylindrical notation, taking the difference of the larger

radius and the smaller one’s projection onto it [Fig. 7]. The figure

shows the difference for a small angle, where the radii subtract and

the difference is relatively small. Once the angle grows past 90

degrees, the cosine goes negative and the distances add. This

accentuates divergence into different quadrants, common after a

1–2 base difference while minimizing small differences once the

curves have nearly converged

The Cylindrical approach was originally developed for

comparing bacteria and was used for an unpublished study of

Clostridia, which included 8124 species and was the largest

neighbor study done to date at 32,995,626 comparisons to

generate an upper-triangular comparison matrix. The comparison

measure minimizes differences in the same quadrant and

accentuates differences in opposite quadrants (e.g., TA vs. CG).

In this paper the W-curves are actually stored in cylindrical

notation and compared using this measure.

Figure 5. W-curve Z-Axis view of complete HIV-1 Genome
showing all points (A), points near origin with radius ,.5 (B)
and further out, with radius ..5 (C). The last group of points (C) is
used to re-align the curves after a gap. CG dinucleotide deficiencies are
seen in B and C.
doi:10.1371/journal.pone.0010829.g005

Figure 6. The W-curve for ‘‘CG’’ showing both Cartesian &
Cylindrical notation for the points. The curve is shown in blue,
layout lines indicating the X-Y locations and line for half-distance rule
between the points for C & G are shown in red.
doi:10.1371/journal.pone.0010829.g006

W-Curve Alignments for HIV-1
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HIV-1
HIV-1 has a high rate of mutation, in part because it lacks a

mismatch repair enzyme. The result is a high rate of gaps and

indels that cause problems for most multiple sequence alignment

(‘‘MSA’’) techniques, including the popular Clustal X [16]. This

complicates efforts to correlate the HIV-1 genome with neutral-

ization data, a necessary clinical step in developing effective

treatments for HIV-1 infection and AIDS.

As a first step, we have to show that analysis with the W-curve

can be used to effectively compare HIV-1 sequences. In our case

we compared phenograms generated using the W-curve with

others previously done using Clustal X. The process of generating

these phenograms is described in the remainder of our paper.

Data sources
For this publication sequences were taken from a previous

report on an HIV-1 cohort study conducted in Thailand [17]. The

sequences have GenBank accession numbers EF376993 to

EF377287. The sequences themselves are portions of the gp120

including C2 through V5.

Results

One of our goals was to apply the W-curve to assist researchers

correlating viral sequences with clinical outcomes. This will

require tuning the process to correctly recognize specific sequences

from strains of HIV-1 with known clinical outcomes or correlate

regions of the sequences with clinical outcomes as they occur.

In order to accomplish this, we first must show that the

clustering of similar W-curves of HIV-1 env genes is congruent

with conventional phylogenetic trees generated from these same

genes. At the MHRP/HJF, we decided to reexamine C2 thru V5

region of the env gene that was sequenced from a subgroup of

eight mother/infant pairs: 051,056,060, 062, 066, 076, 082 and

095. The study was conducted in 1996 and 1997 and C2-V5

sequences were analyzed from HIV-infected infants and their

mothers from Lampang Provincial Hospital in Thailand. Cervi-

cal/vaginal secretions (CW), ethylenediamine tetraacetic acid

plasma (P), and PBMC (Peripheral Blood Mononuclear Cells)

were collected from mothers (M) in the third trimester.

The DNA derived sequences from these 3 different compart-

ments were compared to the infant peripheral blood mononuclear

cell (PBMC) DNA-derived sequences (I). CM240 was used as the

reference subtype. Phylogenetic analysis was conducted using the

Neighbor module of the PHYLIP package (version 3.5c) [18]. A

neighbor joining tree of each pair was constructed and

evolutionary distances between maternal compartments (CW, P

and M) and infant (I) for the M/I pair 051 are examined in

Figure 8.

Our analysis began with FASTA files of the sequences, labeled

by sample type and GenBank accession number. We generated an

upper-triangular comparison matrix using the W-curve with the

cylindrical storage format, trigonometric comparison method, and

scored the results with a simple sum of the differences and gaps. In

this case, the total of differences was added to the gap sizes,

divided by two times the longer sequence length. This was done to

normalize the difference per gap to 1.0 with the trigonometric

approach. The resulting matrix was processed by PHYLIP version

3.67-a neighbor with neighbor-joining and no outgroup or

randomization on a single dataset (18). The neighbor output was

processed by drawgram with default settings to produce the

diagram in Figure 8 (right tree).

The results of both approaches are functionally equivalent.

Neighbor, without a molecular clock using the W-curve matrix as

input, places the sequences in the same clades. Both techniques

also placed the M/I pair M051-3 in between the CW and P

samples.

This study also gave us the chance to compare various

computational approaches we have developed (see implementation

section below). The phenogram in Figure 8 was generated using a

W-curve stored in cylindrical notation with a trigonometric

comparison. Another analysis of the entire study used Cartesian

co-ordinates with a simple sum-of-squares difference. That one

correctly assigned the study groups into clades with less time,

memory, and code but did not do as well at the detailed distance

clustering level, as compared to the string-based trees. In the end,

we may find that different graphic approaches are useful at varying

levels of detail, offering the flexibility to choose approaches

appropriate to the immediate task and resources.

Given our goal of clinical application, reasonable running times

on commodity hardware are also important. The largely-single

pass nature of W-curve generation and comparison proved to be

reasonably fast when run on a desktop system. Table 1

summarizes the comparison size and run times for generating

the upper-triangular comparison matrixes we processed with

neighbor. These times give a good idea of how well the code

performs on commodity hardware. The range of 2–24 sec is well

within the clinical requirements for this kind of analysis.

Design & Implementation
Our implementation uses Perl for all of the data handling and

calculations. The W-curves themselves are stored as linked lists to

Figure 7. Difference measure for W-curves stored in Cylindrical
notation. Subtracting the projection of the smaller radius onto the
larger one smooths out small differences after the curves have largely
converged. For small angles (shown) the projection is subtracted and
produces a small difference. As the angle increases the projection
becomes small; points in opposite quadrants have obtuse angles with a
negative cosine, adding the projection onto the larger radius.
doi:10.1371/journal.pone.0010829.g007
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simplify node-by-node comparison and simplify the addition of

skip-chains. We have tried storing the curves in cylindrical and

Cartesian notation for use with different scoring algorithms. At this

point the cylindrical approach provides better detailed analysis but

the Cartesian method is faster and can probably be improved over

time. The entire process is broken into two steps: comparison and

scoring. The former generates a list of differences between curves

in a standard format; the latter generates the values used for

display of neighbor joining phenograms.

Like many other languages today, Perl does not support C-style

pointers, but it does have references. One issue with comparing

W-curves is the need to handle successive pairs of points, possibly

offset, one from each curve. Using arrays with integer offset is

inefficient for this kind of sequential access, so we used linked lists.

The lists also make adding skip-chains trivial, which helps in re-

aligning after gaps.

In each case the W-curve starts at the origin: (0, 0, 0). Since

most DNA sequencing systems use base counts instead of offsets

this keeps the subsequent Z-axis values in sync with the base

numbers. Storing the W-curve requires saving the half-interval

points, combined with the current base number for a total of three

values.

Skip-Chains
Our process begins by converting each DNA sequence to a

linked list of W-curve points. The list nodes are stored as array

references, with a next link followed by the geometry [Fig. 9].

Adding the skip chain starts at the head node, pushing a sentinel

node ahead to the next point outside the cutoff distance from the

origin. For the example in Figure 9, the fourth node is the first one

with a radius greater than 0.50. All the intervening nodes get a

reference to the sentinel, which advances the working node up to

the sentinel, and the process starts over again. Any links at the tail

of the list simply do not get a skip reference added to them.

Comparing the nodes starts with the head of each linked list. At

this point the relative offset of the nodes is zero. The initial

Figure 8. Neighbor-joining string-based phylogenetic tree vs. W-curve-based tree. Envelop C2-V5 from the 051 mother/infant pair
grouping from a study previously conducted in Thailand [17]. The string based tree at the left compares the infant sequences to the maternal viruses
from different compartments and CM240 as a reference subtype: (I) infant peripheral blood mononuclear cell (PBMC) DNA-derived sequences; M,
maternal PBMC DNA-derived sequences; P, maternal plasma-derived sequences; CW, cervical secretion-derived sequences. Numbers at the nodes
represent the maximum parsimony bootstrap value. Branch lengths between the sequences are proportionate to the scale bar and indicate the
number of mutations per base position per unit time. The tree at the right is the W-curve-based tree. Note the similarity in the clustering patterns.
The remaining phenograms are available in the supporting data for this paper [11].
doi:10.1371/journal.pone.0010829.g008
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alignment asks if the curves have a small difference for the first few

nodes, if so the initial chunk is inserted and comparison continues;

if not then the curves need to be aligned.

With this approach, SNP’s show up as a non-zero difference

between the curves. If the curves converge after a few bases

without adjusting their relative offset then there was an SNP and

the comparison can keep going ahead. Due the high rate of

mutation in HIV-1, SNP’s adjacent to one another – or close

enough to keep the curves from converging – are fairly common.

As a result, we use a relatively large window for SNP checks: 8

bases. Checking for convergence within that range is less expensive

than trying to re-align the curves.

Re-aligning nodes after a gap
Re-aligning the curves after a gap starts with a Cartesian

product of points within a window downstream of the divergence.

Taking a window larger than the largest expected gap means that

the curves will converge at least once within this gap window.

Within the window, pairs of points are examined for convergence

for a few bases. If the curves seem to match then the new relative

offset is incremented. When all points in the window have been

examined the most frequent value is chosen as the new offset and

the difference in offsets provides the size of the gap. Examining

points past the first match is necessary to avoid issues with

extraneous matches. It also gives equal weight to gaps on either

sequence.

This is where the skip chain is used: only points further from the

origin are used to start comparing the curves for convergence.

This saves checking about half the points on average and produces

fewer accidental matches due to points simply being close to the

origin.

Cylindrical storage leaves the difference a bit less obvious: the

angles will be larger but the radii might both decrease. Using the

trigonometric approach, a cutoff of 0.25 works well as a test for

diverging curves.

Given our goal of flexibility, comparison and scoring are

handled separately. The comparison generates values for each

contiguous section of W-curve along with one each for the initial

alignment and trailing portions of the curves. These comparison

values can be stored for later use and provide a standardized

interface for the scoring algorithms. In particular, the ability to

store comparison results will allow us to quickly evaluate and tune

scoring methods for specific cases.

The basic structure used for comparison stores five values for

each contiguous section of the W-curve.

The values describe the beginning, end, and SNP difference

within the section in four z-axis values and a running total. Due to

initial alignment issues, the sections may not start on the same z-

axis value. For example, if a section of curve ran from base

position 110 R 150 on one curve and 115 R 155 on the other

with a total SNP difference of 23.45, the section’s data would look

like:

110, 115, 150, 155, 23:45½ �

The run lengths of these section are the same, allowing a sanity

check of subtracting the starting and ending bases for each curve

and checking that they are equal (e.g, 150–110 = 155–115).

Table 1. Benchmark results for sequence comparison using the W-curve.

Group Sequences Comparisons Elapsed Seq. Rate Avg. Bases Base Rate

(A) (B) (C) (D) (E) (F) (G)

= (B * B+1)/2 = C/D = C * F/D

051 31 496 2.1 sec 236 Hz 617 4515464 Hz

056 32 528 6.5 sec 80 Hz 596 1528012 Hz

060 40 820 24.3 sec 33 Hz 627 845278 Hz

062 39 780 11.0 sec 71 Hz 611 1696982 Hz

066 36 666 10.4 sec 64 Hz 607 1406507 Hz

076 38 741 2.0 sec 369 Hz 599 8400847 Hz

082 37 703 9.0 sec 78 Hz 607 1754569 Hz

095 40 820 15.2 sec 53 Hz 589 1268291 Hz

Avg 36 694 10.1 sec 123 Hz 606 2676994 Hz

For each group, the number of sequences determines how many comparisons must be made, average number of bases in each sample can be used to estimate the
processing rate in terms of the sequence lengths (vs. count of sequences). These times were taken from processing the upper-triangular distance matrices processed by
neighbor and drawgram to produce the phenograms from the Mother/Infant study data [11]. Variations in rates are largely due to timesharing overhead, which reflects
the likely environment of any clinical application. The data was measured using Perl-5.10.1 on linux-2.6.31 on an Asus M3N-HT (i.e., commodity desktop) motherboard
with 4GB RAM and AMD Phenom 3.0 GHz processor.
doi:10.1371/journal.pone.0010829.t001

Figure 9. Linked List and Skip Chain. Points on the W-curve are
stored as nodes in a linked list, using either Cylindrical (shown) or
Cartesian notation. The skip chain for each node references the next
node with a radius greater than 0.50, giving direct access to nodes used
in re-aligning the curves after a gap or indel.
doi:10.1371/journal.pone.0010829.g009
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Another check is that the relative offsets of the bases on each side

do not change (e.g., 110-115 = 150–155).

Frequently the curves do not align at the start. This requires

starting the comparison from a non-zero z-axis value on one or the

other curve – or both in many cases. The initial alignment is stored

in the first section. This always begins at 0 on each curve and ends

wherever the curves themselves match. For example, if two curves

aligned properly at offsets 4 & 5, the initial section would look like:

0, 0, 4, 5, 0½ �

Trailing differences are handled in a similar fashion. If two curves

of length 1000 & 1200 were aligned over their entire lengths (i.e., SNP

differences only, no gaps) then the final section would look like:

1000, 1000, 1000, 1200, 0½ �

Note that there will always be zeros for the first two positions of

the initial section, zero for the SNP difference in the trailing

section, and one pair of values on the trailing section will have a

run-length of zero. The before-and-after sections are where the

run-length sanity check is violated – and also why five values are

used to store the section values instead of starting points and run

lengths: differences at the beginning and ends of the curves are

handled with a constant format.

Looking at the sections of two curves, the simplest case is a curve

compared to it. If the sequence is N+1 bases long, the z-axis values

as offsets will be (0 ... N). The before section will show no initial

offset, the final section will show no trailing difference, and the

middle can be handled as a single section with zero total difference

between the curves:

0, 0, 0, 0, 0½ �, Initial Alignment Section

0, 0, 1000, 1000, 0½ �, Middle Section

1000, 1000, 1020, 1000, 0½ �, Trailing Section

If a pair of the curves 1001 bases long required a five-base offset on

one curve to align and have no gaps then their sections would look like:

0, 0, 5, 0, 0½ �,

5, 0, 1000, 995, 0½ �,

1000, 995, 1000, 1000, 0½ �,

with the final section using up the last five bases on the second

curve.

Comparing curves identical aside from 20 trailing bases on one

curve would yield sections of:

0, 0, 0, 0, 0½ �,

0, 0, 1000, 1000, 0½ �,

1000, 1000, 1020, 1000, 0½ �,

SNP’s add to the total difference score within each set.

Comparing equally long curves with only SNP differences would

give a non-zero SNP total for the main portion:

0, 0, 0, 0, 0½ �,

0, 0, 1000, 1000, 45:67½ �,

1000, 1000, 1000, 1000, 0½ �,

Gaps introduce offsets between the start of one set and another.

Two curves align at the start and have a single gap of 20 bases

(520–500) in the middle would look like:

0, 0, 0, 0, 0½ �,

0, 0, 500, 500, 23:45½ �,

500, 520, 1000, 1020, 45:67½ �,

1000, 1020, 1000, 1020, 0½ �,

SNP’s account for a total difference of 23.45 in the first region,

45.67 in the second one. The last set of numbers shows that the gap

accounted for all of the difference in length between the two curves.

Values for curves that did not align at the start, had a few gaps,

and were mismatched in size at the end would look like

0, 0, 10, 0, 0½ �,

10, 0, 102, 92, 12:34½ �,

102, 99, 202, 199, 23:45½ �,

202, 199, 203, 215, 45:67½ �,

which indicates that the initial alignment started at base position

10 on the first curve, 0 on the second. In 92 bases there was a gap

that advanced the second curve (92 R 99). Finally, the second

curve is longer since comparison ends at 203 on the first curve, 215

on the second.

We currently normalize the score between curves to an average

difference per base in the range of 0 to 1 inclusive. Zero indicates

identical curves; one indicates that the curves lived in opposite

corners for the entire comparison. For the trigonometric difference

calculations, this requires dividing the total difference by two.

Gaps are counted with a weight of one in both techniques, with

leading alignment and trailing portions of curves treated as gaps.

The total of normalized differences and gap scores is divided by

the larger curve’s length, which is the maximum of the two lengths

in the last set of data, in order to get a final difference value.

For the last example, the total length is 215 (i.e., max 203, 215).

Differences total 81.46, which would normalize to 40.73 for the

trigonometric comparison. Gaps are an initial 10, intermediate 7

(99-92), and trailing 12 (215–203) for a total difference of

40.73+29 = 69.73. Dividing by the larger curve yields a difference

of 0.324. There is no question that this comparison is simplistic,

but it does work well in practice and splitting up the comparison

and scoring will allow us to evaluate multiple scoring rules as we

try to improve our algorithms.

Availability and Future Directions
Initial versions of the W-curve code and data used for the

analysis presented here are available as a single download from the

W-curve’s URL [11]. The code is currently somewhat elementary

but should serve as a starting point for anyone interested in our
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approach. Recent research with the CGR tool has led to a defined

spectrum of genomic signatures [19], a CGR of protein sequences

[20], a 3D graphical representation of RNA secondary struc-

tures[21], and further comparisons of whole genomes [7,15]. In

addition, going forward, our immediate goal is applying the W-

curve for clinical use in treating HIV-1. We are working in two

main areas here: improving the accuracy of our scoring algorithms

and automating analysis of genomic sequences from patient

samples. Improved comparison will require simply trying various

approaches to see which ones best models the clinical similarity

between HIV sequences. Automation will require modifying our

comparison and scoring algorithm to account for large gaps in

order to compare fragments of curves to genome sequences from

patient samples.

The first improvements we can make on comparing sequences

will be developing a workable Cartesian approach for comparing

the curves. The Cartesian approach is desirable for speed and also

because it lends itself to use with integer mathematics, which helps

both speed and memory use. This is where the graphical approach

has an advantage over other techniques: the flexibility in analysis

tools allows us to adjust the outcomes to match the foibles of HIV-1.

The current level of matching is sufficient to allow automating

more detailed analysis of HIV-1 genetics and clinical data.

Current research on HIV-1 is looking for ways to reliably predict

neutralization based on the phylogenetic clustering of the

sequences as well as statistical analysis of the evolutionary

distances between the entire genome, genes, or even large

proteins [22–27]. There appears to too much noise to make

reliable predictions. More recent studies have focused on specific

regions of the env gene. The important area is gp120, which has

a mix of variable and conserved regions (C1 thru V5 of the env

gene). The question is can they be correlated to immune function.

The Maternal/Infant study described in our results looked at

gp120’s C2-V5, but even this region may include some

unnecessary variable regions. The problem is that even the

locations of each fragment within gp120 vary between samples,

requiring significant manual curation to prepare the sequences

for comparison.

Examining a Cartesian product of points works, but is

expensive. Peaks help, but are not enough for large windows

necessary to handle larger gaps or indels. Two approaches for

mitigating the cost would be progressive comparison and some

other algorithm like nearest-neighbor to estimate the comparison

points. Progressive scanning would use some cutoff based on

minimum vote count and ratio to the next-best estimate; other

algorithms could be used to reduce the number of points that have

to be examined.

Building a fragment library
The W-curve can help here because fragments of curves can be

matched easily. As shown in Figure 10 due to autoregression,

regions of gp120 in a W-curve from a genome or gene sample can

be compared to a library of fragments taken from samples with

Figure 10. Building a fragment library. Panels A, B, C, D describe
the process of extracting curve fragments. Autoregression allows re-use
of the curve fragments for comparisons between curves. Starting with
the W-curve for a genome or gene (A), regions corresponding to the
sequences of interest are found (B) and the remainder of the curve
dropped (C), leaving a set of smaller curves (D). The set of curve
fragments can be used to search for a list of regions in or score only
part of a gene. For example, scoring only the conserved regions of
gp120 may prove more effective for generating phenograms than using
the entire gp120 sequence or env gene.
doi:10.1371/journal.pone.0010829.g010
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known clinical outcomes. This allows for quick identification of

both the location of these regions on the sample and generating

comparison scores for the fragments.

Where the current studies compare contiguous regions of

gp120, this approach would generate individual scores for each

conserved and variable region on the samples. This approach

should remove extraneous variability in the sequences being

compared with their clinical outcomes.

This process would start with the W-curve for an entire genome

[Fig. 10-A]. We can then identify the regions of interest [Fig. 10-B,

in red], drop the remainder of the curve [Fig. 10-C], which leaves

us with fragments [Fig. 10-D] that can be matched to other

genome or whole-gene curves.

This should enable us to meaningfully compare the curves, even

when there will be huge gaps in the comparison. Hopefully this

will give us a repeatable process for predicting the neutralization

outcome of known vaccines.

The process for this analysis would begin with a set of gp120

sequences for standard genomes whose gp120 sequence have

already been broken down into conserved and variable regions in

both local (env) and global (whole genome) regions of HIV-1.

From there we can generate W-curves for the individual conserved

and variable regions. We would then use our existing analysis to

compare the regions with the new samples, adjusting the scoring

process to account for what otherwise look like huge gaps around

the fragments. If we can identify the conserved region locations,

we can use that knowledge to correctly locate and compare the

variable regions. The technique mimics virtual immunoprecipita-

tion or hybridization with same-sense W-curves rather than anti-

sense DNA or antibodies.

The advantage to this approach is automation: manual

overhead limits present studies to larger, contiguous sequences.

The W-curve does not require gap-stripped, reduced sequences to

run efficiently. We can already group samples into major clades

quickly, adding an integer approach should help speed things up

and make even larger studies possible.

One important breakthrough in comparing W-curves will be

the addition of indeterminate bases to the process. This might

require ‘‘forking’’ the curves or replacing our point comparisons

with an area and storing intermediate bases as a volume described

by the base members. Either way, handling this data would allow

us to directly process the Fastq output of Second-Generation

equipment used to process the HIV-1 sequences, such as the

Illumina. This approach could use fragments to store the divergent

portions of the curve, allowing comparison between curves for

closest-match estimates or maximum-likelihood estimates based on

the quality scores available in fastq data.

One similar area for fragments would be determining the order

of genes with bacteria or quickly identifying dangerous bacteria

from samples. Currently, both of these processes are time-

consuming and require significant manual effort. A library of

fragments could be used to locate the genes in order or determine

if smaller fragments are present in the samples.

Our algorithms also lend themselves well to multithreading.

Threaded processing of W-curve fragments could lead to very-

high-speed analysis of larger sequences or – ideally – fast, fully

automated analysis of clinical samples.

W-curves should be viewed as a separate iterated function

system family possessing autoregressive properties in the genera-

tion of self-similar local and global patterns [28,29,30]. These

properties, when properly applied by computational biologists and

bioinformaticians, have an enormous capacity to generate visual

representations that will allow the user to inspect and compare

both local and global features in genomic sequences. It may be

possible that the conformational changes in these local and global

genomic features, when correlated with clinical outcomes due to

infection by these sequences may lead to breakthroughs in vaccine

and antiviral development.
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