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Abstract: Despite tremendous research efforts to identify regulatory factors that control energy
metabolism, the prevalence of obesity has been continuously rising, with nearly 40% of US adults
being obese. Interactions between secretory factors from adipose tissues and the nervous system
innervating adipose tissues play key roles in maintaining energy metabolism and promoting survival
in response to metabolic challenges. It is currently accepted that there are three types of adipose tissues,
white (WAT), brown (BAT), and beige (BeAT), all of which play essential roles in maintaining energy
homeostasis. WAT mainly stores energy under positive energy balance, while it releases fuels under
negative energy balance. Thermogenic BAT and BeAT dissipate energy as heat under cold exposure
to maintain body temperature. Adipose tissues require neural and endocrine communication with the
brain. A number of WAT adipokines and BAT batokines interact with the neural circuits extending
from the brain to cooperatively regulate whole-body lipid metabolism and energy homeostasis.
We review neuroanatomical, histological, genetic, and pharmacological studies in neuroendocrine
regulation of adipose function, including lipid storage and mobilization of WAT, non-shivering
thermogenesis of BAT, and browning of BeAT. Recent whole-tissue imaging and transcriptome
analysis of differential gene expression in WAT and BAT yield promising findings to better understand
the interaction between secretory factors and neural circuits, which represents a novel opportunity to
tackle obesity.

Keywords: white adipose tissue; brown adipose tissue; beige adipose tissue; adipokines; batokines;
sympathetic nervous system; innervation; denervation; thermogenesis; lipolysis; fatty acid oxidation;
high-fat diet; RNA sequencing

1. Introduction

Maintaining energy homeostasis is imperative for health maintenance in any living organism, a
process regulated by complicated neural circuits and secretory factors. The central nervous system
(CNS) receives and integrates a variety of external stimuli from the environment such as diet and
temperature, along with internal neural and chemical signals from peripheral tissues indicating energy
status and storage. The CNS subsequently sends outward signals via the autonomic nervous system
that directly contacts multiple tissues and organs to closely control metabolism and achieve the
metabolic homeostasis (Figure 1).
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release fatty acids and glycerol which are used by other tissues and organs [2]. During positive energy 
balance when energy intake exceeds energy expenditure, such as during feeding with a high-fat diet, 
extra calories are primarily stored as lipids that accumulate in adipose tissues via increased fatty acid 
uptake and de novo lipogenesis [3–6]. 

 

Figure 1. Neuroendocrine regulation of lipid metabolism at different types of adipose tissues. A two-
way communication exists between the brain and white, brown and beige adipose tissues (WAT, BAT 
and BeAT, respectively) involving neural signals consisting of afferent sensory nerves (green arrows) 
and efferent sympathetic nerves (brown arrows), and endocrine signals (red arrows) consisting of 
WAT adipokines and BAT batokines. Environmental stimuli (i.e., diet, temperature, exercise, fasting) 
that change energy stores modulate sympathetic activity to regulate lipolysis, lipogenesis, and 
adipokine secretion at WAT; thermogenesis, fatty acid oxidation, and batokine secretion at BAT; and 
induction of BeAT and browning. A number of WAT adipokines (such as leptin and adiponectin) and 
BAT batokines (such as fibroblast growth factor 21 [FGF21] and interleukin 6 [IL-6]) interact with 
neural circuits to cooperatively regulate whole-body energy metabolism. 

Chronic dysregulation of energy balance due to energy intake exceeding energy expenditure 
results in excess lipid storage in adipose tissues, leading to obesity. Currently, 39.8% of adults and 
18.5% of children in United States have a BMI over 30 and are classified as obese [7]. A number of 
environmental factors in Western society, including calorie-dense diet, sedentary lifestyle, and stress 
collectively contribute to an imbalance of energy homeostasis and development of obesity [8]. 
Obesity is closely associated with the development of chronic diseases, such as type 2 diabetes, 
cardiovascular diseases, non-alcoholic hepatic steatosis, and some types of cancer, and thus it is a 
major health issue [9–11]. Because of the global increases in the incidence of obesity and its associated 
metabolic diseases, it is of great significance to understand mechanisms underlying the regulation of 
lipid metabolism in adipose tissues. Consequently, increasing attention has been placed on 
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Figure 1. Neuroendocrine regulation of lipid metabolism at different types of adipose tissues. A two-way
communication exists between the brain and white, brown and beige adipose tissues (WAT, BAT and
BeAT, respectively) involving neural signals consisting of afferent sensory nerves (green arrows) and
efferent sympathetic nerves (brown arrows), and endocrine signals (red arrows) consisting of WAT
adipokines and BAT batokines. Environmental stimuli (i.e., diet, temperature, exercise, fasting) that
change energy stores modulate sympathetic activity to regulate lipolysis, lipogenesis, and adipokine
secretion at WAT; thermogenesis, fatty acid oxidation, and batokine secretion at BAT; and induction of
BeAT and browning. A number of WAT adipokines (such as leptin and adiponectin) and BAT batokines
(such as fibroblast growth factor 21 [FGF21] and interleukin 6 [IL-6]) interact with neural circuits to
cooperatively regulate whole-body energy metabolism.

Adipose tissue is one of the primary sites of the regulation of lipid metabolism, which includes
three metabolic processes: Lipogenesis involving cell proliferation and uptake of circulating free fatty
acids; lipolysis involving hydrolysis of triglycerides into glycerol and free fatty acids; and fatty acid
β-oxidation inside the mitochondria [1]. During negative energy balance when energy expenditure
exceeds energy intake, such as during exercise or fasting, stored lipids are mobilized via lipolysis to
release fatty acids and glycerol which are used by other tissues and organs [2]. During positive energy
balance when energy intake exceeds energy expenditure, such as during feeding with a high-fat diet,
extra calories are primarily stored as lipids that accumulate in adipose tissues via increased fatty acid
uptake and de novo lipogenesis [3–6].

Chronic dysregulation of energy balance due to energy intake exceeding energy expenditure
results in excess lipid storage in adipose tissues, leading to obesity. Currently, 39.8% of adults and
18.5% of children in United States have a BMI over 30 and are classified as obese [7]. A number of
environmental factors in Western society, including calorie-dense diet, sedentary lifestyle, and stress
collectively contribute to an imbalance of energy homeostasis and development of obesity [8]. Obesity
is closely associated with the development of chronic diseases, such as type 2 diabetes, cardiovascular
diseases, non-alcoholic hepatic steatosis, and some types of cancer, and thus it is a major health
issue [9–11]. Because of the global increases in the incidence of obesity and its associated metabolic
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diseases, it is of great significance to understand mechanisms underlying the regulation of lipid
metabolism in adipose tissues. Consequently, increasing attention has been placed on understanding
the neuroendocrine regulation of adipose function as a regulatory mechanism of energy metabolism.
While the innervation of adipose tissue was first reported in the 1890s, more recent advancements in
imaging, tracing, and RNA sequencing have yielded new insight into the innervation of adipose tissue
and its function. This has led to the discovery of a number of adipose secretory factors that interact
with neural circuits extending from the brain to play important roles in regulating numerous processes
in white, brown and beige adipose tissues (WAT, BAT, and BeAT, respectively), including lipid storage
and mobilization of WAT, fatty acid oxidation and non-shivering thermogenesis of BAT, and browning
of BeAT, which ultimately affect whole-body energy homeostasis.

Because a better understanding of the regulation of lipid metabolism at the level of adipose tissues
may offer an innovative opportunity to tackle obesity, we aim to review advances in the understanding
of regulation of adipose function at different types of adipose tissues by summarizing historic and
recent studies using histological, imaging, genetic, and pharmacological approaches. In addition, we
compare expression of some genes related to neuroendocrine regulation of lipid metabolism between
WAT and BAT using recent RNA sequencing data obtained from different types of adipose tissues
of either lean male mice fed a standard low-fat diet or obese male mice fed a high-fat diet for four
weeks [12] (Table 1). Special emphasis is placed on results from genomic analysis of various types
of adipose tissues as this helps to understand differences between WAT and BAT, clarify unsettled
questions, and develop novel targets for better regulation of energy metabolism.

Table 1. Genes compared between white adipose tissue (WAT) and brown adipose tissue (BAT) of lean
and obese male mice using RNA sequencing data.

Gene Categories Genes
WAT BAT

Lean Obese Lean Obese

thermogenesis uncoupling protein 1 (Ucp1) Low Low High High

Brown adipocyte
precursors

myogenic factor 6 (Myf6)
Low NS High NS −

sarcoglycan gamma (Sgcg)

tropomyosin β (Tpm2) Low Low High High −

WAT adipokines leptin (Lep) NS High + NS low

adiponectin (Adipoq) NS High NS low

BAT batokines

interleukin 6 (Il6) Low Low High High

fibroblast growth factor 21 (Fgf21) NS NS NS NS

neuregulin 4 (Nrg4) NS NS − NS NS

Sympathetic
nerve tyrosine hydroxylase (Th) Low NS/ND High NS

Sensory nerve calcitonin gene-related peptide (Calca) NS High NS Low

Parasympathetic
nerve vesicular acetylcholine transporter (Slc18a3) ND

Lipolysis hormone-sensitive lipase (Lipe) NS High NS Low

Fatty acid
oxidation carnitine palmitoyltransferase 1 (Cpt1b) Low Low High High +

Obese mice fed with a high-fat diet had three times of adiposity comparing to the lean mice fed with a low-fat diet
for four weeks. Approximately 30 million of single-end sequencing reads were retrieved from each WAT and BAT
sample and aligned to the mouse genome (ENSEMBL 84 release, GRCm38.p4) [12]. The sequence data are available
at a publicly accessible database, Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/info/seq.html).
The accession numbers are GSE112740 for BAT samples and GSE112999 for WAT samples. The differentially
expressed genes between lean and obese mice were analyzed using DESeq2 package in R statistical language.
Threshold for differential expressed genes is absolute value log2 fold change > 1.5 and Padj < 0.05 is considered
statistically significant. Low: at least one type of WAT has significantly lower expression than BAT. High: at least
one type of WAT has significantly higher expression than BAT. NS: not significantly different expression between
BAT and any type of WAT. ND: Not detected. +: upregulated in obese mice. −: downregulated in obese mice.

https://www.ncbi.nlm.nih.gov/geo/info/seq.html
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2. Different Types of Adipose Tissues

2.1. Location of Adipose Tssues

It is currently accepted that there are three types of adipose tissues; WAT, BAT, and BeAT. WAT
is located in both subcutaneous and visceral regions (Figure 2). Some commonly studied WATs
in rodent models are subcutaneous inguinal WAT (IWAT), visceral retroperitoneal WAT (RWAT)
positioned behind the kidneys [13], mesenteric and omental WAT (MWAT) located in intestinal region
around digestive organs, and gonadal WAT (GWAT; male epididymal WAT or female parametrial and
periovarian WAT) which expands during the early stages of obesity [14] and serve as a vital adipose
depot for triglyceride storage [15]. WAT location is significant as increased visceral adipose mass is a
risk factor related to metabolic disorders such as insulin resistance, while subcutaneous adipose tissue
can be protective and improve insulin sensitivity [16–18]. BAT has been detected in the inter-scapular,
subscapular, cervical, mediastinal, perirenal, pericardial, and periaortic regions in rodents [19] and
humans [20–24]. In rodents, the commonly studied BAT is the interscapular BAT.
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Figure 2. Schematic overview of location of different types of white and brown adipose tissues.
Schematic diagrams indicating locations of different types of commonly studied WAT and BAT
commonly studied in male and female rodent models, including visceral RWAT, MWAT, and GWAT, as
well as subcutaneous IWAT and interscapular BAT.

2.2. Cellular Properties of Adipose Tssues

WAT and BAT have very distinct histological and cellular properties. Conventional white
adipocytes typically contain single large unilocular lipid droplets and few mitochondria. Conventional
brown adipocytes typically consist of numerous multilocular lipid droplets and large amounts of
mitochondria. Mitochondria contain high concentrations of iron pigmented-cytochromes, which gives
a brownish color to BAT. Mitochondria of BAT feature uncoupling protein 1 (UCP1) in the inner
membrane, a protein that uncouples mitochondrial respiration from ATP synthesis leading to energy
released as heat [4,25], especially in the setting of a cold environment [3]. Thus, UCP1 is a unique
biomarker for thermogenic BAT and BeAT.

Due to heterogeneity and plasticity of adipocytes, white and brown adipocytes change their
morphology and function when energy demands are changed under certain physiological or
pharmacological conditions. Specifically, in the setting of increased energy demand as seen in
cold exposure, brown-like adipocytes develop and emerge in WAT, a process known as “browning”;
whereas in a setting of decreased energy demands as seen in high-fat diet feeding, brown adipocytes
can be converted to white-like adipocytes, a process termed as “whitening” [26–28]. The development
of BeAT in WAT is considered favorable in systemic metabolic regulation [29,30]. A pioneering study
reporting beige adipocytes in traditionally WAT first appeared in the literature 25 years ago [31].
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Specifically, Young et al. reported enlarged BAT at classical BAT depots and presence of adipocytes with
similar morphology and UCP1 content as brown adipocytes at parametrial WAT in cold-acclimated
mice [31]. Loncar et al. then demonstrated increased mitochondria volume, crista density, and UCP1
expression in IWAT of cold-exposed cats [32] and mice [33], and such changes were reversible following
exposure to a warm environment [33]. Cousin et al. further measured UCP1 mRNA and protein levels
in several WAT depots in rats, and found that periovarian adipocytes displayed characteristics of
brown adipocytes besides UCP1 content, such as increased density of mitochondrial crista [34]. A few
research groups “rediscovered” thermogenic beige adipocytes in the recent decade [30,35–37]. Besides
cold exposure, increased adrenergic signaling from treatment of adrenergic agonists also induces
browning. Chronic administration of a selective β3-adrenergic receptor (β3-AR) agonist CL-316 243
triggers multilocular cells emerging in different WAT depots, including GWAT, RWAT, and IWAT, that
normally contain only unilocular white adipocytes [38].

Beige, including brown-like and white-like, adipocytes exhibit histological and functional
properties that are intermediary between white and brown adipocytes, containing numerous small
lipid vacuoles with multilocular lipid droplets, surrounded by well-developed mitochondria [39–45].
One major difference is that, white-like beige adipocytes in BAT developed from whitening process,
but not brown-like beige adipocytes in WAT developed from browning process, exhibit signs of
inflammation such as increased crown-like structure formation and degenerating mitochondria [28].
As such, BeAT typically indicates the WAT that shelters brown-like beige adipocytes via browning
process. Although there is a consensus that the presence of UCP1 expression in WAT is sufficient to
define beige adipocytes and development of BeAT, it is unclear what other signatures can differentiate
BeAT from typical BAT and how many beige cells must be present in a WAT depot to make it a BeAT.

Differential gene expression analysis of RNA sequencing data indicates that BAT expresses
significantly greater level of Ucp1 than GWAT (Padj < 0.05), but not RWAT or IWAT (Padj > 0.05), in
lean and obese mice. Furthermore, four-week high-fat diet feeding does not significantly change Ucp1
expression in BAT or WAT (Padj > 0.05; Table 1). These data confirm abundant expression of Ucp1
in BAT and differing levels in WAT based on location. GWAT, which predominantly houses white
adipocytes has the lowest level of Ucp1 expression; while RWAT and IWAT, which are known to induce
browning under certain conditions [46,47] contain mixed white and thermogenic adipocytes and thus
have greater levels of Ucp1 expression than GWAT (Padj < 0.05).

2.3. Precursors of Adipocytes

All types of adipocytes originate from multipotent mesenchymal stem cells. Various transcription
factors induce differentiation of these stem cells into various types of precursor cells [48–52], ultimately
driving cells to develop into adipocytes, myocytes, osteoblasts, chondrocytes, etc. Brown, but
not white, adipocytes are derived from myogenic factor expressing progenitor cells of the central
dermomyotome [48–50], and brown adipocytes share similar gene expression with myocytes. We have
reported that BAT expresses genes involved in muscle development, structure, and contraction process
such as those mesodermal developmental genes encoding myogenic factor 6 (Myf6), tropomyosin β

(Tpm2), and sarcoglycan γ (Sgcg), and these genes are downregulated by high-fat diet feeding [12].
When expression levels of these genes are compared between WAT and BAT, BAT in lean mice

expresses significantly higher levels of Myf6, Tpm2, and Sgcg than GWAT, RWAT, and IWAT (Padj < 0.05).
In obese mice, the differences in expression of these genes by adipose tissue type are much less evident,
with only Tpm2 expression remaining significantly higher in BAT than GWAT and IWAT (Padj < 0.05),
whereas expression of Tpm2 between BAT and RWAT and expression of Myf6 and Sgcg between BAT
and WAT are similar (Padj > 0.05). The change of differential expression pattern comparing BAT versus
WAT between lean and obese mice is due to high-fat diet significantly suppressing expression of Myf6,
Tpm2, and Sgcg in BAT (Padj < 0.05) without changing expression of these genes in WAT (Table 1).

These findings confirm that brown adipocytes and myocytes share some common precursors [49]
contributing to enriched expression of genes related to muscle differentiation and muscle function in
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BAT [53]. Additionally, depending on their locations, different types of adipocytes arise from different
precursor cells and may have unique gene signatures. For example, white adipocytes found in visceral
WAT versus subcutaneous WAT express different genes [17]. BAT has been shown to be composed of
both brown and beige adipocytes [54]. In humans, brown adipocytes located at BAT depots relatively
close to the body surface show gene signature more similar to beige adipocytes [41,55,56], while
brown adipocytes found in BAT with deeper locations express classical brown adipocyte-selective
markers [57]. Beige adipocytes display some unique molecular signatures that are not shared by either
typical brown or white adipocytes. Furthermore, diminished and abolished differences in expression of
myocyte-related genes between BAT and WAT by high-fat diet feeding in obese mice are possibly due to
whitening process of brown adipocytes. Because white-like and brown-like adipocytes emerge within
BAT and WAT, they may differentiate from brown or white adipocyte precursors or transdifferentiate
from mature adipocytes.

2.4. Physiologic Functions of Adipose Tissues

The major function of WAT is energy storage and release. Energy is accumulated in the form of
energy-rich lipid during times of positive energy balance, such as high-fat diet feeding. Stored energy
is mobilized to release fatty acids and glycerol via lipolysis during times of negative energy balance,
such as during exercise or fasting [3–6]. Thus, WAT plays significant roles in energy homeostasis via
storing and releasing energy.

The key roles played by BAT in energy balance regulation has been known for about 40 years [58].
Although amount of active BAT in humans declines with increasing age, the presence of metabolically
active BAT in adult humans was demonstrated over 20 years ago in clinical studies using 18F
fluorodeoxyglucose and positron emission tomography/computed tomography imaging technology
for the detection of cancerous tumors [59,60]. During the past decade, imaging studies not only
have confirmed the presence of functional, metabolically active BAT that contributes to cold-induced
thermogenesis in adult healthy humans, but also have revealed that BAT in adults can be activated
physiologically or pharmacologically [20–23,61].

BAT and BeAT are thermogenic adipose tissues, which produce heat through energy dissipation
for adaptive non-shivering thermogenesis in response to variety of stimuli [21,41–45,56,62–64]. A cold
environment increases thermogenic capacity physiologically [21] and upregulates genes involved
in lipid metabolism in human BAT, suggesting that BAT activation by cold temperature enhances
lipid metabolism in BAT [65]. Studies using genetic mouse models have consistently shown that
increased amount and activity of BAT and BeAT would protect from body fat gain, and prevent or
correct metabolic dysregulation induced by feeding a high-fat diet [66,67]. In contrast, dysfunction
and reduced activity of BAT and BeAT decrease lipid metabolism and lead to obesity [21]. Thus, BAT
and BeAT play essential roles in maintaining body temperature and regulating energy metabolism in
small mammals, hibernating mammals, and humans [3,4,20,21,23]. BAT and BeAT are recognized as
potential targets for increasing energy expenditure in the treatment or prevention of obesity, leading to
increased research attention on BAT and BeAT due to its therapeutic potential in humans.

2.5. Secretory Factors of Adipose Tissues

WAT is not only a site for energy accumulation, but it also functions as an endocrine organ [4,5].
Since the seminal discovery of leptin [68], a number of adipose hormones secreted from WAT, known
as adipokines, have been identified, and secretory functions of WAT has been confirmed [69,70].
When comparing expression of two well-defined WAT adipokines, leptin (Lep) [71] and adiponectin
(Adipoq) [72], in WAT and BAT, differential gene expression analysis reveals similar patterns for Lep and
Adipoq. First, expression of Lep or Adipoq is not significantly different between WAT and BAT in lean
mice (Padj > 0.05). In contrast, each type of WAT expresses significantly greater levels of Lep and Adipoq
than BAT of obese mice (Padj < 0.05). Second, high-fat diet-induced changes in expression pattern
between WAT and BAT is due to enhanced Lep expression in GWAT, RWAT, and IWAT (Padj < 0.05);
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while a combination of slight suppression of Adipoq expression in BAT (Padj > 0.05) and no change at
WAT (Table 1), consistent with increased leptin but reduced adiponectin circulating in obese mice [73].
These RNA sequencing data confirm that expression of these two well-defined WAT adipokines Lep and
Adipoq changes with increases in adiposity [73] and are more abundant in WAT than BAT, especially in
obese mice.

BAT releases batokines that are distinct from WAT adipokines and functions to facilitate metabolic
processes that favor thermogenesis and induction of browning [74]. Some of identified batokines
include fibroblast growth factor 21 (FGF21) [75] and neuregulin 4 (NRG4) [76]. These batokines is
usually not elevated under basal condition, but are induced during brown adipogenesis, thermogenesis,
or browning process. Interleukin 6 (IL-6) is a recently defined batokine from a BAT transplantation
study. A few studies have shown improved glucose and lipid metabolism in mice with BAT
transplantation [77–80] via enhancing sympathetic activity [77], a phenomenon that requires IL-6
release from transplanted BAT graft [80].

Although IL-6 has been proposed as a batokine [80], hard evidence is lacking. We compare the
expression of IL-6 gene (Il6), along with genes encoding two well-identified batokines FGF21 (Fgf21)
and NRG4 (Nrg4), between WAT and BAT. Expressions of batokine genes are usually upregulated
during thermogenesis or browning, but not at basal conditions without cold exposure or stimulation of
adrenal signaling. Like Fgf21 and Nrg4, expression of Il6 in BAT is similar between lean and obese mice.
It is noteworthy that expression of Nrg4 in GWAT, RWAT, and IWAT is significantly downregulated in
high-fat diet-induced obesity (Padj < 0.05), consistent with a recent study [81]. Also similar to Fgf21
and Nrg4, expression of Il6 is abundant in BAT, but is not significantly different from WAT, in lean mice
(Padj > 0.05). Different from Fgf21 and Nrg4, expression of Il6 is significantly higher in BAT than RWAT
and IWAT in obese mice (Padj < 0.05; Table 1). These RNA sequencing data support the idea that IL-6
is a batokine dominantly expressed in BAT.

3. Innervation of Adipose Tissues

3.1. Innervation of Adipose Tissues Regulates Metabolism

The autonomic nervous system innervating metabolic tissues and organs consists of two major
branches, the sympathetic and parasympathetic nervous system (SNS and PSNS, respectively), both
of which are primary efferent pathways that involuntarily respond to endogenous and exogenous
stimuli [82]. The SNS and its major neurotransmitter norepinephrine upregulate energy mobilization
and usage, whereas PSNS and its major neurotransmitter acetylcholine upregulate energy accumulation
and storage. Obesity is associated with reduced sympathetic activity or lowered sympathetic
response [83]. Sympathetic activity in WAT and BAT in response to different stimuli, such as
administration of glucose or insulin [84], cold [21], and physical exercise [85] becomes blunted in obese
individuals, which further promotes weight gain [86]. Characterization of neural circuits from the
brain to adipose tissues has represented a challenging issue. Below we provide more details regarding
the innervation of adipose tissues.

3.2. Innervation of Adipose Tissues from a Historic View

BAT innervation was reported many years before the innervation of WAT, with the first report of
innervation of BAT at pericardial region appearing in late 1890s [87]. BAT innervation in rodents was
then demonstrated by multiple research groups between 1930s and 1960s with differing opinions on
the function of innervation, due to the fact that nerve fibers of BAT were seen both at the parenchymal
space assumedly innervating brown adipocytes [88] and at vasculature assumedly innervating blood
vessels [89]. BAT innervation was further studied using electron microscopy, and both myelinated
and unmyelinated nerve fibers were seen at the parenchymal space and around vessels of BAT [90].
Importantly, axon terminals of some unmyelinated nerves containing synaptic vesicles were embedded
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on the surface of adipocytes [90]. This evidence showed brown adipocytes in direct contact with
parenchymal nerves, and thus direct innervation of brown adipocytes has been well accepted ever since.

The innervation of WAT has been relatively understudied due to high lipid content in WAT that
makes innervation difficult to visualize. It is also challenging to distinguish if terminals synapse on
white adipocytes or stromal vascular fractions including vascular endothelial cells of vasculature,
fibroblasts, immune cells such as macrophages. Similar to BAT innervation, debate for WAT innervation
has focused on the nerve fibers around vasculature. Earlier studies suggested that WAT nerve fibers
mostly were perivascular, and white adipocytes were not directly innervated or receive sparse neural
inputs [91,92]. It remained uncertain if WAT innervation regulates vascular function or lipid metabolism
until the 1990s. Since then much progress has been made in the understanding of different types of
innervation of adipose tissues along with its importance in the regulation of energy metabolism.

3.3. Sympathetic Innervation

The synaptic vesicles at nerve axon terminals were presumed to contain catecholamines and be of
sympathetic origin in early studies [90]. Influential studies by Bartness and colleagues have provided
abundant anatomical, histological, biochemical, and functional evidence that have advanced the field
of adipose tissue innervation [93]. In early 1990s, Youngstrom and Bartness injected a retrograde
fluorescent tract tracer FluoroGold into IWAT and GWAT, and FluoroGold-labeled cells were observed
in sympathetic ganglia T13 and T13-L2, respectively. They also injected an anterograde fluorescent tract
tracer indocarbocyanine perchlorate into sympathetic ganglion T13, and many labeled cells were seen
in the extracellular space surrounding adipocytes in IWAT and GWAT [92]. This pivotal study provided
undisputable proof of sympathetic innervation of white adipocytes and not just their vasculature [92].

Bartness and colleagues then demonstrated brain sympathetic neuronal connectivity with WAT
and BAT [94,95] using a retrograde tracer, pseudorabies virus (PRV), which only traces sympathetic
neurons that are synaptically connected [96]. This method defines hierarchical connectome mapping
neuronal pathways from the brain to adipose tissues. They further demonstrated that many PRV-labeled
neurons in important regions of the hypothalamus and brainstem involved in regulation of feeding
and energy expenditure express tyrosine hydroxylase (TH), a rate-limiting enzyme, and dopamine
β-hydroxylase, the final enzyme, for biosynthesis of norepinephrine. This not only indicated that
the labeled circuit marks the sympathetic innervation, but also supported a role for sympathetic
innervation of adipose tissues in energy metabolism [97]. Recent studies have demonstrated that
different locations of WAT and BAT are governed by diverse neurons and receive different degrees
of sympathetic innervation from the brain regions involved in metabolic regulations, with more
sympathetic neurons innervating BAT than IWAT throughout the entire neuroaxis [98].

Besides the tracing studies, sympathetic innervation of adipose tissues has been demonstrated
using immunohistochemical labeling for sympathetic nerves marker TH using thin adipose sections
of <10 µM thickness [77,91,99–101]. Immunohistochemical staining for TH in subcutaneous WAT,
visceral WAT, and BAT has shown that TH immunoreactivity at parenchymal nerve fibers increases
following cold exposure, which is accompanied by increased UCP1 expression and sympathetic
activity [46,77,101–104]. Warm temperature elicits the opposite effect in BAT, with decreased
sympathetic nerve activity and TH immunoreactivity [105].

3.4. Sensory Innervation

Anterograde tracers have been used to trace sensory nerve projections from adipose tissues to
dorsal root ganglia that house cell bodies of sensory neurons. Following implantation of True Blue, an
anterograde neural tracer, into subcutaneous IWAT, it appears in T13-L3 dorsal root ganglia, indicating
sensory innervation of IWAT [106]. H129 strain of herpes simplex virus, an anterograde transneuronal
tract tracer, has also been used to trace sensory nerve projections from IWAT and GWAT through
T13-L1 dorsal root ganglia [107] and from interscapular BAT through C1-T4 dorsal root ganglia [108]
in Siberian hamsters. Besides the tracing studies, sensory innervation of adipose tissue has been
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confirmed by histologically marking sensory nerves with sensory-associated neuropeptides, such as
calcitonin gene-related peptide (CGRP) and substance P [91,99,100,109].

WAT sensory innervation is understudied compared to its sympathetic innervation, and its
function is not completely understood. It has been proposed that sensory innervation may convey
information about adiposity to the brain as an afferent pathway and communicate between the brain
and adipose tissues as a feedback mechanism to regulate efferent sympathetic output [107,108,110].
Additionally, it is unclear what stimulates the secretion of CGRP or substance P in WAT or BAT and
how these sensory nerve-associated neuropeptides affect energy balance. Nevertheless, the presence of
both sympathetic and sensory nerves in adipose tissues supports a two-way communication with the
brain, through afferent sensory and efferent sympathetic fibers (Figure 1).

3.5. Parasympathetic Innervation

All BAT depots receive sympathetic innervation, but only mediastinal and pericardial BAT has
parasympathetic innervation [26,111]. Currently it is generally accepted that WAT has negligible or no
parasympathetic innervation, but there was a debate around this topic in early 2000s.

Kreier et al. used PRV to mark parasympathetic nerves in rats and suggested the presence of
parasympathetic nerves in WAT [112], which was questioned by Giordano et al. when WAT histology
failed to label parasympathetic postganglionic nerve markers such as vesicular acetylcholine transporter
(VAChT), vasoactive intestinal protein, and neuronal nitric oxide synthase in Siberian hamsters [113].
The marked CNS parasympathetic neurons and vagal innervation could be false positives due to
leaking of viral tracer PRV or improper surgical procedure [114]. Kreier et al. responded that lack of
parasympathetic nerve marker staining was inadequate to rule out parasympathetic innervation, as
these markers were not stable [115]. Berthoud et al. [116] and Giordano et al. [117] further questioned
the presence of parasympathetic innervation due to absence of any parasympathetic innervation-related
markers for ganglia, nerve, neurotransmitters, etc. at various types of WAT from multiple species
tested including mice, rats, and Siberian hamsters.

Recent advances in whole-tissue three-dimensional imaging of adipose nerve fibers using
multiphoton microscopy clearly demonstrate that axons project to white adipocytes and form
neuro-adipose synaptic connections in the parenchyma of adipose tissues [2,118–120], which helps
to clear up confusion and increases our understanding of nerve-adipocyte and nerve-vasculature
interactions. A seminal study labels three markers, an adipocyte marker perilipin, a neural pre-synaptic
marker synaptophysin, and a sympathetic (TH) or a parasympathetic (VAChT) nerve marker in IWAT,
and visualizes and quantifies different types of nerves using this whole-tissue three-dimensional
imaging method [121]. This study shows that sympathetic nerve fibers (labeled with TH) are located
in close contact with approximately 91.3% of all adipocytes (labeled with perilipin), and 98.8% of the
neural fibers (labeled with synaptophysin) are labeled with TH, suggesting over 90% of adipocytes are
being directly innervated and nearly 99% of that innervation being sympathetic in IWAT. Additionally,
this study helps to clarify the issue of the presence of parasympathetic innervation in WAT, an unsettled
controversial issue over the previous decade. Less than five nerve fibers labeled with parasympathetic
nerve marker VAChT are detected in each IWAT sample, in contrast to the extensive arborization of
fibers labeled with TH [121], supporting the idea of pervasive sympathetic innervation with little to no
parasympathetic fibers in WAT [113].

Furthermore, because of the arborization pattern of sympathetic innervation, imaging of
whole-tissue, but not thin-sections, is necessary for accurate quantification of innervation. It is
worth noting that histology using adipose thin sections is suitable to visualize gross morphology
and cellularity such as cell size and cell number related to adiposity change such as hypertrophy
versus hyperplasia, cell structure change such as multilocularity versus unilocularity during browning
or whitening, expression of UCP1 and nerve markers, and presence of macrophages in crown-like
structures; but not suitable to quantify innervation, as cross-sections of nerves appear mostly as puncta,
or visualization of synapses. Therefore, TH immunoreactivity in adipose tissues confirms the presence
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of sympathetic innervation, but does not assess quantity or activity of innervation, as expression of TH
fluctuates in response to stimuli that change SNS activity.

3.6. Expression of Genes Related to Nerve Markers

RNA sequencing data from different types of adipose tissues of lean and obese mice allows for the
analysis of genes encoding TH (Th), a sympathetic nerve marker; CGRP (Calca), a sensory nerve marker;
and VAChT, a.k.a. solute carrier family 18 member 3 (Slc18a3), a parasympathetic nerve marker.

Differential gene expression analysis indicates that, expression of Th is generally abundant in
BAT but not significantly different from WAT (Padj > 0.05). Expression of Th in BAT and GWAT is
not significantly changed by high-fat diet feeding, but it is no longer detectable at RWAT and IWAT
of obese mice, suggesting dramatic reduction in Th expression and thus sympathetic innervation in
RWAT and IWAT during high-fat diet-induced obesity development. Expression of Calca is fairly
abundant in WAT but not significantly different from BAT (Padj > 0.05). High-fat diet feeding
does not significantly change Calca expression in any of WAT or BAT (Padj > 0.05). Interestingly,
GWAT, RWAT, and IWAT have a tendency to express greater levels of Calca than BAT in obese mice
(log2fold change > 1.5; Padj > 0.05), indicating that sensory innervation is relatively enhanced at WAT
during obesity development, possibly to convey changes in lipid storage to the brain [110]. Bartness
and colleagues have begun to understand the functional roles of adipose sensory innervation. They
have reported that increased secretion of WAT adipokine leptin [122] and local WAT lipolysis [123]
activate WAT sensory innervation, providing mechanisms for selective, depot-specific activation of
WAT sensory innervation. These studies, supported by the RNA sequencing findings, indicate reduced
sympathetic signal favors WAT lipid accumulation, with increased WAT sensory signal informing
the brain of adiposity during obesity development, thus forming a two-way brain-adipose control of
energy balance (Figure 1).

Expression of Slc18a3 gene for solute carrier family 18 member 3 that transports acetylcholine is
not detected in any of interscapular BAT, GWAT, RWAT, or IWAT (Table 1). It is noteworthy that both
Slc18a1 gene for solute carrier family 18 member 1 that transports serotonin and Slc18a2 gene for solute
carrier family 18 member 2 that transports norepinephrine, dopamine, serotonin, and histamine are
expressed in all sequenced adipose tissue samples. The RNA sequencing data are consistent with a
previous study showing that only mediastinal and pericardial BAT, but not interscapular BAT sampled
in our study, have parasympathetic innervation [26]. The RNA sequencing data are also in accordance
with imaging and histologic findings suggesting that parasympathetic innervation of WAT is negligible
compared with sympathetic and sensory innervation [121].

4. Physiological Function of Adipose Tissues Sympathetic Innervation

4.1. Function of Sympathetic Innervation of WAT

Various stimuli that change energy fluxes modulate the SNS, which further regulates lipolysis,
lipogenesis, adipocyte proliferation, and adipokine secretion [69,70,124]. Upon sympathetic stimulation,
increases in firing rates of the sympathetic neurons that innervate adipose tissues induce secretion of
norepinephrine at sympathetic postganglionic nerve terminals of surrounding adipocytes, subsequently
activatingβ3-AR, a G protein-coupled receptor [125] and adenylate cyclase, which increases intracellular
levels of cyclic adenosine monophosphate (cAMP). cAMP functions as a second messenger and activates
protein kinase A (PKA) [126].

In white adipocytes, PKA phosphorylates perilipin, a lipid droplet-associated protein, and a series
of lipases and esterases that convert stored triglycerides to diacylglycerol and monoacylglycerol [126],
and via a cascade of steps of lipolysis eventually to fatty acids and glycerol that can be used as energy
fuels of other tissues [2] (Figure 3). Function of sympathetic innervation in lipolysis at WAT has
been directly assessed using optogenetic nerve stimulation. An optical fiber is implanted unilaterally
into subcutaneous IWAT, and nerve stimulation leads to norepinephrine release, phosphorylation
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of hormone-sensitive lipase (HSL), and increased fatty acid release upon stimulation, compared to
contralateral un-stimulated IWAT [2]. This study provides direct functional evidence that activation
of sympathetic fibers is adequate to facilitate norepinephrine release and lipolysis [2]. Furthermore,
visceral WAT depots mobilize their lipid to a greater extent than subcutaneous WAT depots following
sympathetic action. For example, lipolysis at RWAT shows great response to pharmacological
stimulation by β3-AR agonists [127]. WAT sympathetic activation also inhibits adipocyte proliferation
and WAT expansion, with greater inhibition of expansion in subcutaneous IWAT compared to visceral
RWAT [128].
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Figure 3. Schematic overview of function of sympathetic innervation of white and brown adipose
tissues in the regulation of lipid metabolism. Schematic diagram indicating lipolysis and thermogenesis
in white and brown adipocytes respectively regulated by sympathetic innervation. In white adipocytes,
sympathetic innervation regulates a cascade of lipolysis to convert stored triglycerides (TG) to free fatty
acids (FFA) and glycerol that can be used as fuels of other tissues. In brown adipocytes, sympathetic
innervation regulates non-shivering thermogenesis. FFAs are transferred into mitochondria, primarily
by carnitine palmitoyltransferase 1 (CPT1), and serve as fuel for β-oxidation. UCP1 is activated to
disassociate respiratory chain from ATP production, and ultimately dissipates energy as heat.

4.2. Function of Sympathetic Innervation of BAT

As mentioned previously, it has been known for over a century that there is sympathetic innervation
of BAT [87]. Since then, studies have supported the idea that catecholamines drive BAT non-shivering
thermogenesis that plays an integral role in body temperature maintenance in various mammalian
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species including humans [108,129–134]. Sympathetic activation of BAT thermogenesis promotes
heat dissipation of the energy contained in triglycerides. In brown adipocytes, free fatty acids are
transferred into mitochondria following sympathetic stimulation by carnitine palmitoyltransferase
1 (CPT1) located at the outer membrane of mitochondria. Inside the mitochondria, free fatty acids
serve as fuel for β-oxidation, which produces NADH and FADH that are later oxidized in the electron
transport chain. NE and β3-AR interaction and subsequent PKA-dependent processes lead to increased
expression of UCP1, which disassociates the activity of the respiratory chain from ATP production,
mediates proton reentry into mitochondrial membrane, converts energy of proton gradient into heat,
and ultimately dissipates energy as heat [3,4,132,135] (Figure 3).

The role of sympathetic activity in browning of white adipocytes and the development of BeAT has
been more recently described [30]. Various transcriptional regulators drive distinct steps of this process,
leading to the differentiation of preadipocytes into brown or beige adipocytes, increased mitochondrial
biogenesis, and overexpression of thermogenic proteins such as UCP1 [136]. For example, members of
peroxisome proliferator-activated receptor (PPAR) family, CCAAT/enhancer-binding protein (C/EBP)
family, and bone morphogenic protein family [48] are important transcriptional factors specific to
adipocyte differentiation [56,137]. Specifically, activation of C/EBPβ, which cooperates with a dominant
transcriptional co-regulator PR domain containing 16 (PRDM16) [138], induces PPARγ and C/EBPα
expressed in preadipocytes, acts jointly to promote adipocyte differentiation and adipogenesis [137],
which determines brown adipocyte lineage or enhances white adipocyte browning [139]. Members of
PPAR family and C/EBP family have been implicated as key enhancers for browning of adipocytes
and adipogenesis [27,140–142]. In addition, the hypothalamic AMP-activated protein kinase activates
WAT sympathetic innervation to promote browning [104]. It is possible that members of PPAR
family and C/EBP family at adipose tissues are regulated by sympathetic activity from certain stimuli,
which subsequently controls adipocyte differentiation and proliferation as well as browning of white
adipocytes. The events underlying browning processes regulated by distinct endogenous factors and
environmental stimuli are far from fully established [136].

4.3. Comparison of Sympathetic Function and Gene Markers between WAT and BAT

Sympathetic innervation is differentially activated and performs differing functions in WAT and
BAT. For example, in response to calorie overload, sympathetic activity in BAT increases to promote
energy expenditure, whereas sympathetic activity in WAT decreases to promote lipogenesis and
lipid accumulation. In contrast, in response to fasting or high-fat to low-fat diet switch, sympathetic
activity in BAT, along with many other tissues, decreases to conserve energy expenditure, whereas
sympathetic activity in WAT increases to promote lipid mobilization and fatty acid release for
other tissues to use [103,143,144]. In response to a cold environment, sympathetic activity in both
BAT and WAT increases to provide substrates for non-shivering thermogenesis to maintain body
temperature [145,146]. Therefore, sympathetic regulation of lipid metabolism varies in WAT and BAT
through discrete sympathetic projections [147], which diverge to coordinate WAT lipolysis and BAT
thermogenesis, leading to finely tuned control of whole-body energy homeostasis [148].

Intracellularly, early steps upon sympathetic stimulation involving activation of β3-AR and
adenylate cyclase, cAMP production, and PKA activation are common in both white and brown
adipocytes. PKA then phosphorylates and activates specific intracellular target proteins in different type
of cells. Lipolysis and fatty acid release involving activation of HSL is dominant in white adipocytes,
and fatty acid oxidation involving CPT1 is dominant in brown adipocytes. Data from the comparison of
the expression of HSL gene (Lipe) and CPT1 gene (Cpt1b) in WAT and BAT support lipolytic function of
WAT and fatty acid oxidation of BAT as major mechanisms to reduce lipid accumulation and regulate
whole-body lipid metabolism.

Differential gene expression analysis indicates that, high-fat diet feeding does not significantly
change Lipe expression in WAT or BAT (Padj > 0.05). Expression of Lipe is similar between WAT
and BAT in lean mice (Padj > 0.05), whereas subcutaneous IWAT, but not visceral GWAT or RWAT,
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expresses significantly greater expression of Lipe than BAT in obese mice (Padj < 0.05). These RNA
sequencing data indicate more abundant Lipe expression in subcutaneous IWAT relative to BAT in
high-fat diet fed obese mice, suggesting selective lipid mobilization at subcutaneous WAT but not at
visceral WAT during calorie overload. This finding corroborates that lipid accumulation mostly occurs
at visceral WAT during obesity development.

Differential gene expression analysis indicates that BAT expresses significantly greater Cpt1b
than GWAT and RWAT in both lean and obese mice (Padj < 0.05), while BAT has a trend to express
greater level of Cpt1b than IWAT (log2fold change > 1.5; Padj > 0.05). Additionally, there is a trend of
upregulation of Cpt1b expression in BAT in obese mice (log2fold change > 1.5; Padj > 0.05) (Table 1).
These data indicate more abundant Cpt1b expression in BAT than WAT, and support increased fatty acid
oxidation at BAT leading to enhanced energy expenditure, contributing to the homeostatic regulation
of whole-body adiposity during obesity development.

4.4. Studying Sympathetic Function of Adipose Tissues via Denervation

Denervation of WAT of BAT is a great tool for studying sympathetic functions, a topic that was
comprehensively reviewed recently [149]. Denervation studies demonstrate metabolic perturbations
following loss of the nerve supply to WAT or BAT. Surgical denervation of WAT increases adipose
mass, reduces lipolysis, and promotes white adipocyte proliferation and differentiation in rats [150]
and Siberian hamsters [92,99,100,128]. Surgical denervation of BAT decreases expression of TH [151]
and UCP1 [152], and leads to impaired thermogenesis, reduced energy expenditure, increased body fat
mass [153], and “whitening” of BAT [151]. These studies highlight the importance of WAT innervation in
regulating lipolysis and proliferation, and BAT innervation in regulating thermogenesis and browning.
Therefore, denervation studies add credence and further support neural control of metabolism by
innervation of WAT and BAT.

Surgical denervation is considered more effective at eliminating neural input and output, as the
nerve bundles are physically severed, while vasculature is left intact. Surgical denervation, however, is
not specific to nerve type, as sympathetic and sensory nerves bundle and travel together, thus both are
severed. Although surgical denervation can be used to differentiate neural and endocrine effects on
metabolic regulation, it is not able to reveal which nerve type is relatively more essential in maintaining
certain metabolic effects.

An alternative approach is chemical denervation that removes a selective type of nerve supply to
WAT and BAT. Chemical sympathetic denervation typically uses 6-hydroxydopamine [154], which
is taken up into norepinephrine storage vesicles, leading to oxidative damage to vesicle membrane
and nerve degeneration, thereby producing denervation of sympathetic nerves while leaving sensory
nerves intact [149]. Chemical sympathetic denervation reduces expression of TH and norepinephrine
content without changing CGRP level, indicating intact sensory innervation, in BAT [98] and WAT [113].
Chemical sensory denervation typically uses 8-methyl-N-vanillyl-6-noneamide (i.e., capsaicin), the
pungent principle of hot chili peppers, which over-activates vanilloid receptor (i.e., capsaicin receptor)
and leads to influx of calcium and sodium ions, an excitotoxic effect that destroys small diameter
nociceptive sensory neurons along with unmyelinated and myelinated sensory nerves [149]. Chemical
sensory denervation reduces contents of CGRP and substance P, and leaves sympathetic nerves intact
in BAT [155] and WAT [100,110]. Chemical denervation, however, has certain drawbacks including
intra-tissue injuries related to multiple injections, uneven distribution of neurotoxins leading to lack of
uniform damage, lower efficacy in eliminating TH- or CGRP-immunoreactivity compared to surgical
denervation [100], and possible “reconnection” of damaged fibers as nerve markers reappear after a
certain period of time following injection [156].

WAT sympathetic denervation results in increased adipose mass characterized by an increase
in cell number and a decrease in lipolysis, which supports a mechanism by which the sympathetic
nerves regulate lipid metabolism via regulating adipocyte proliferation and lipolysis [149]. Bilateral
BAT sympathetic denervation increases sympathetic activity of IWAT [98], demonstrating adipose
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tissue crosstalk with the brain to maintain energy homeostasis. Similar to BAT chemical sympathetic
denervation and in contrast to WAT sympathetic denervation, WAT sensory denervation increases
adipose mass via hypertrophy instead of hyperplasia [99,100], providing a means of differential
control of WAT by sympathetic versus sensory nerves. BAT sensory denervation also impairs
thermogenesis [157], demonstrating the need for sensory feedback from BAT for proper thermogenic
function. Therefore, chemical denervation helps to deepen the understanding of action of specific
nerve types in adipose tissue, as well as feedback neurocircuit that involves the brain and multiple
peripheral tissues and incorporates both afferent sensory and efferent sympathetic nerves.

5. Conclusions

Obesity manifested as excessive lipid storage in adipose tissue is due to metabolic dysregulation
of energy homeostasis. WAT accumulates excess energy and BAT functions as a thermogenic organ
in response to metabolic challenges such as diet and cold, thus both are vital for the regulation of
lipid metabolism and body weight. The SNS plays a primary role in the regulation of BAT and BeAT
thermogenic activation and fatty acid oxidation, as well as WAT lipolysis, lipogenesis, and browning
(Figure 1). The functions of the SNS in these key metabolic processes represent potential therapeutic
targets for treating obesity.

New whole-adipose imaging and genomic analysis have advanced understanding of adipose
tissue innervation, transcriptome, and secretome. However, there is still much unknown regarding
to gene signatures of different types of adipocytes; adipose tissue innervation, especially in terms of
the innervation, transcriptome, and secretome of BeAT; how chemical messengers, including locally
secreted WAT adipokines and BAT batokines, circulating hormones from other organs, neuropeptides
and neurotransmitters from adjacent nerves, and affect sympathetic and sensory innervation of WAT
and BAT; and feedback regulation to control lipid metabolism. Additionally, the concept of brain
regulating lipid metabolism via innervation of WAT and BAT is well accepted, but most of current
knowledge is obtained from animal studies using rodents. It is uncertain if humans have similar
afferent and efferent neural circuits and feedback regulation of adipose tissues. More studies are needed
to identify neuroanatomic and synaptic structures of, metabolic functions, and chemical messengers
released from and used by each type of nerves in WAT and BAT. Now is an exciting time for further
research in neuroendocrine regulation of lipid metabolism at different types of adipose tissues.
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Abbreviations

AR adrenergic receptor
BAT brown adipose tissue
BeAT beige adipose tissue
C/EBP CCAAT/enhancer-binding protein
CGRP calcitonin gene-related peptide
CTP1 carnitine palmitoyltransferase 1
CNS central nervous system
FGF21 fibroblast growth factor 21
GWAT gonadal WAT
HSL hormone-sensitive lipase
IL-6 interleukin 6
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IWAT inguinal WAT
LFD low-fat diet
PRV pseudorabies virus
PSNS parasympathetic nervous system
RWAT retroperitoneal WAT
SNS sympathetic nervous system
TH tyrosine hydroxylase
UCP1 uncoupling protein 1
VAChT vesicular acetylcholine transporter
WAT white adipose tissue
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