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Human milk is the optimal source of infant nutrition. Among many other health benefits,

human milk can stimulate the development of a Bifidobacterium-rich microbiome

through human milk oligosaccharides (HMOs). In recent years, the development of novel

formulas has placed particular focus on incorporating some of the beneficial functional

properties of human milk. These include adding specific glycans aimed to selectively

stimulate the growth of Bifidobacterium. However, the bifidogenicity of human milk

remains unparalleled. Dietary N-glycans are carbohydrate structures conjugated to a

wide variety of glycoproteins. These glycans have a remarkable structural similarity to

HMOs and, when released, show a strong bifidogenic effect. This review discusses the

biocatalytic potential of the endo-β-N-acetylglucosaminidase enzyme (EndoBI-1) from

Bifidobacterium longum subspecies infantis (B. infantis), in releasing N-glycans inherently

present in infant formula as means to increase the bifidogenicity of infant formula. Finally,

the potential implications for protein deglycosylation with EndoBI-1 in the development

of value added, next-generation formulas are discussed from a technical perspective.

Keywords: human milk oligosaccharides, N-glycans, endo-β-N-acetylglucosaminidase, bifidobacteria, infant

formula

INTRODUCTION

Human milk is the optimal source of infant nutrition. It provides all the energy, nutrients, and
bioactive compounds required for the growth and development of the infant. Human milk feeding
is associated with numerous benefits, including a reduced risk of gastrointestinal and respiratory
infections and improved immune development (1). Given the known benefits of humanmilk, there
is a great interest in improving infant formulas to resemble the compositional profile of human
milk (2) and reduce the relative deficits associated with infant formula consumption. Thus, a better
understanding of human milk components and their biological functions is paramount to the
improvement of infant formulas (3, 4).
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One of the most significant differences between human
milk-fed and formula-fed infants is the composition of the
gut microbiome (4–6). Breastfed infants have a less diverse
yet more stable microbiome, and certain species of infant-
adapted bifidobacteria can reach up to 90% of total fecal
microbiome (7–9). On the other hand, the microbiome of the
formula-fed infants is more variable (8, 10). To mitigate these
differences between infant formula and human milk, most
formulations add prebiotics such as galacto-oligosaccharides
(GOS) and fructo-oligosaccharides (FOS) (11, 12) and/or
probiotics. Probiotics added to formula are currently limited
to Lactobacillus rhamnosus GG and Bifidobacterium lactis (13).
Human milk contains complex carbohydrates known as human
milk oligosaccharides (HMOs). HMOs are not digested in
the small intestine and reach the colon intact where they are
fermented by specialized species of bifidobacteria (14). However,
most prebiotic compounds added to formula are not selective
for the growth of bifidobacterial (15). Thus, the difference in
oligosaccharide content in human milk and infant formula is
likely to explain, at least in part, the compositional differences in
the microbiome of formula-fed and human milk-fed infants.

Recently, synthetic HMOs such as 2′-fucosyllactose (2′FL)
and lacto-N-neotetraose (LNnT) have been added to infant
formula with the intent to increase the bifidogenic effect of
infant formula (16–19). However, HMO fortification of infant
formulas has remained low when compared to the global average
concentration of HMOs in human milk. On the other hand,
little attention has thus far been given to N-glycans, which are
naturally found as glycoconjugates in both human and bovine
milk proteins and bear striking structural and compositional
similarity to HMOs. Owing to both their compositional and
structural similarities to HMOs, N-glycans derived from milk
glycoproteins have been shown to be selectively bifidogenic. In
this review, we describe human milk as a complex biofluid.
We then describe the types, compositions, and indications for
most infant formulas available in the market. Finally, we propose
the use of specialized enzymes known to be active in the gut
microbiome of breastfed infants colonized with Bifidobacterium
in order to improve the bioavailability of N-glycans in infant
formula and we discuss potential applications for the design
on next-generation infant formulas to improve the suitability of
infant formulas for Bifidobacterium.

MACRONUTRIENTS IN HUMAN MILK

The composition of human milk is dynamic, and it has evolved
to provide optimal infant nutrition. Human milk contains
macronutrients including proteins, lipids, carbohydrates,
and micronutrients such as vitamins and minerals. It also
contains non-nutritional bioactive components, growth factors,
hormones, immunological factors, noncoding RNAs, and
microorganisms (20). The macronutrient composition of human
milk ranges from 9 to 12 g/L protein, 32 to 36 g/L lipids, 67 to 78
g/L lactose, and 5 to 15 g/L HMOs (3, 21, 22) (Table 1).

Proteins in human milk comprise two major classes, caseins,
and whey (28). The main casein proteins are α-, β-, and

TABLE 1 | Human milk composition.

Component Amount References

Human milk composition

Energy 65–70 kcal/dL (3)

Lactose 67–78 g/L (3)

Protein 9–12 g/L (3)

Lipid 32–36 g/L (3)

Vitamins

Vitamin D 4–40 IU/L (23)

Vitamin C 30.3 ± 6.7 mg/L (24)

Vitamin K 0.9–6.9 mg/L (23)

Minerals

Calcium 84–462 mg/L (25)

Magnesium 15–64 mg/L (26)

Phosphorus 17–278 mg/L (25)

Sodium 512 mg/L (23)

HMOs 5–15 g/L (21, 22, 27)

Lactose

2′-Fucosyllactose (2′FL)

3′-Fucosyllactose (3′SL)

6′-Siayllactose (6′SL)

3′-Sialyllactose (3′SL)

Lacto-N-tetraose (LNT)

Lacto-N-neotetraose (LNnT)

Lacto-N-hexaose (LNH)

Lacto-N-fucopentaose I (LNFP I)

Lacto-N-fucopentaose II (LNFP II)

Lacto-N-fucopentaose III (LNFP III)

Lacto-N-fucopentaose V (LNFP V)

Siayllactose-N-tetraose b (LST b)

Siayllactose-N-tetraose c (LST c)

Disiayllacto-N-tetraose (DSLNT)

Fucosyllacto-N-hexaose (FLNH)

Difucosyllacto-N-hexaose (DFS-LNH)

κ-casein, and whey proteins are α-lactalbumin, lactoferrin,
immunoglobulins (Igs), serum albumin, and lysozyme (29, 30).
Non-protein nitrogen-containing compounds including urea,
uric acid, creatine, creatinine, amino acids, and nucleotides
represent∼25% of human milk nitrogen (31).

Fat is the largest source of energy in humanmilk, contributing
to 40–55% of the total energy provided by human milk.
Triacylglycerols contribute ∼98% of human milk fat. More
than 200 fatty acids are present in human milk with different
concentrations (32). Palmitic and oleic acids are the most
abundant fat types in human milk (33). The content of fatty
acids, particularly the long-chain polyunsaturated fatty acids
(LCPUFAs), is mostly affected by maternal diet.

Lactose is the main nutritional carbohydrate in human
milk comprising 67–78 g/L and supplies approximately half
of the energy obtained in by the infant. The other significant
carbohydrate fractions of human milk are HMOs. However,
contrary to that of lactose, the concentration of HMOs varies
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depending on the stage of lactation and maternal genetic factors,
ranging from 5 to 15 g/L (34).

HUMAN MILK OLIGOSACCHARIDES
(HMOs)

HMOs are non-nutritive, functional, and complex carbohydrates
in human milk. The composition of HMOs in human milk is
influenced by maternal genetic and lactation stage (35). Nearly
200 distinct oligosaccharides have been described to date (36).
The basic core structure of HMOs includes disaccharide lactose
at the reducing end, which is elongated with N-acetyllactosamine
units, by the action of specific glycosyltransferases in the
mammary gland. HMOs are composed of both neutral
and anionic species with five monosaccharides as building
blocks. These building blocks are D-glucose (Glc), D-galactose
(Gal), N-acetylglucosamine (GlcNAc), L-fucose (Fuc), and N-
acetylneuraminic (or sialic acid; NeuAc). The length of the
HMO chains varies from three to fifteen carbohydrate units, and
HMO structures can be either linear or branched forms (37, 38).
There are three main HMO categories: neutral N-containing
(non-fucosylated) (42–55%), neutral (fucosylated) (35–50%), and
acidic (sialylated) (12–14%) (39).

2′-3-Fucosyllactose (FL) or 3′-6′-sialyllactose (SL) is formed
when the lactose core is conjugated with Fuc or NeuAc. The
lactose core is coupled to repeats of lacto-N-biose (Galβ1-
3GlcNAc; LNB), and these chains are known as type 1 chains. The
most abundant HMO is lacto-N-tetraose (LNT) as type 1 (40).
When an N-acetyllactosamine unit (LacNAc; Galβ1-4GlcNAc)
is conjugated to the lactose core, the type 2 chain is formed.
Lacto-N-neotetraose (LNnT) is a type 2 chain in HMOs. Type 1
chains in HMOs are more abundant than those of type 2. Type
1 and 2 chain HMOs could be further elongated with fucosyl
and sialyl residues in α-linkages to form hexoses, octaoses, and
larger HMOs and together represent ∼70% of all human milk
oligosaccharides (34, 41) (Table 1). These alterations increase the
number and complexity of HMO structures (38, 42).

Functions of HMOs
HMOs are hypothesized to have many important roles in infant
innate defense, metabolic health, and neural development (43–
45). Clinical and in vitro studies suggest that HMOs may block
pathogen adhesion by serving soluble ligand analogs (43, 46,
47). As HMOs have structural features that mimic epithelial
surface carbohydrates, they are thought to also serve as decoy
receptors for pathogens (46, 48–50). HMOs are also thought to
promote several intracellular processes like differentiation and
apoptosis of intestinal epithelial cells (51). They can also have
direct bactericidal or bacteriostatic effects. For instance, some
HMOs can directly inhibit the in vitro growth of Streptococcus
agalactiae, a known invasive bacterial pathogen in newborns (27,
52); other HMOs have been demonstrated to reduce pathogen
adherence to colonic cells in vitro (53). Specific components
present in HMOs (e.g., sialic acid) are also critical for the
development of neurons and brain development, as well as

neuronal transmission, cognitive ability and synaptogenesis
(45, 54, 55).

One of the most well-characterized functions of HMOs
is to serve as a prebiotic source and shape the microbial
community of the infant gastrointestinal tract (56). HMOs reach
the colon undigested where they are utilized by specialized gut
microbes (57) that possess the necessary molecular machinery
for transport and metabolization of these complex structures.
Specific species of infant-adapted bifidobacteria [Bifidobacterium
longum subsp. infantis (B. infantis), Bifidobacterium bifidum (B.
bifidum), Bifidobacterium breve (B. breve), and Bifidobacterium
longum subsp. longum (B. longum)] have the capability to degrade
and utilize oligosaccharides and thus often become the most
dominant species in the breastfed infant gut (58–61). Short-
chain fatty acids (SCFA) (acetate, propionate, and butyrate) are
produced as a result of fermentation of HMO in the colon.
These molecules create an acidic environment (low pH) which
favors the growth of strains of bifidobacteria while concomitantly
creating an unfavorable environment for the growth of pH-
sensitive pathogens (7, 41, 62).

HUMAN MILK GLYCOPROTEINS AND
THEIR FUNCTIONS

Glycosylation is a diverse and common type of posttranslational
modification that involves the attachment of a saccharide chain to
a protein structure (63, 64). Approximately 70% of human milk
proteins are found in glycosylated forms including lactoferrin,
lysozyme, bile salt-stimulated lipase (BSSL), secretory IgA (SIgA),
casein, and α-lactalbumin (65, 66). Several preclinical and clinical
studies suggest that human milk glycoproteins have key roles
in infant development. For instance, osteopontin is involved
in regulating mineral deposition and osteoclasts activity in the
bones (67); insulin-like growth factors participate in the processes
related to the development of the intestinal mucosa (68); bile
salt-stimulated lipase aids milk fat digestion (69); lactoferrin
facilitates iron uptake in the small intestine (70); and β-casein-
based phosphopeptides facilitate calcium absorption (71, 72).

Human milk glycoproteins may also have roles in protecting
infants against pathogen infection (73–75). Lactoferrin has been
reported to have bacteriostatic and bactericidal effects (76,
77). Lysozyme cleaves glycosidic linkage in the peptidoglycan
structure of bacterial cell walls, providing innate protection
against microbial infections (78). Interestingly, the level of
lysozyme susceptibility varies between different bifidobacteria
strains (79, 80). Some bifidobacteria strains of human infant
origin aremore resistant to lysozyme relative to animal and dairy-
derived strains (81). This may suggest that lysozyme in human
milk acts as a selection factor for coevolved bifidobacteria in the
infant gut, such as B. infantis (80, 82, 83). Another predominant
human milk protein is SIgA. SIgA acts as a protective defense
against pathogens in the infant gut (74, 84). Other human
milk glycoproteins, including BSSL and lactadherin, also have
protective effects on the infant’s health (74). Notably, BSSL has
been associated with inhibition of Norwalk virus, a common
cause of gastroenteritis, in vitro (85).
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FIGURE 1 | Structural similarities between HMOs and N-glycans. Structurally, N-glycans are bound to the amide group of asparagine (Asn) residue of the proteins via

N-acetylglucosamine (HexNAc) in a specific amino acid sequence Asn-X-Ser/Thr or Asn-X-Cys (cysteine) (where X could be any amino acid except proline) (87, 88).

N-glycans consist of a single core that has two N-acetylglucosamine (GlcNAc) followed by three mannoses. Further glycosylation determines the types of N-glycans

that are classified into three main classes: high mannose (HM), hybrid (HY), and complex type (CT) based on composition (89); HM glycans typically contain

unsubstituted terminal mannose sugars and 5–9 mannose residues attached to the chitobiose (GlcNAc2 ) core.

The glycan structures found on these glycoproteins are
strikingly similar to HMOs, in both their monosaccharide
composition and linkage types (86) (Figure 1). N-glycans
also form complex structures which increase their specificity.
This may explain why N-glycans isolated from human and
bovine milk are bifidogenic (90), although not equally across
bifidobacterial species (91). Specifically, N-glycans released from
bovine milk glycoproteins selectively stimulates the growth
of infant-adapted B. infantis whereas B. animalis, associated
with an animal origin, is not capable of utilizing these
structures (91). Further, a recent in vivo study showed that
19 unique N-glycan structures that are attached to lactoferrin
and immunoglobulins stimulate the growth of B. infantis (92).
Similar to HMOs, N-glycans are fermented into SCFAs, mainly
lactate, acetate, and also butyrate and propionate (93). The
colonic epithelium and microbial ecosystem can be affected
from these end products by absorbing SCFAs and lowering the
pH of the ecosystem (93). These metabolites primarily lactate
and acetate lower the intestinal pH providing resistance to
microbial colonization (7, 62, 94). Importantly, fermentation of
N-glycans into acidic end-products, such as acetate and lactate,
disfavors the growth of bacteria that degrade gastrointestinal
mucin, and contributes to a considerable reduction in potentially
pathogenic bacteria (7, 94–96). This is because most pathogenic

bacteria preferentially grow near neutral pH (pH: 6.0–7.0) or
grow under acidic conditions inefficiently (97). Therefore, the
establishment of the gut microbiome by limiting pathogenic
bacterial composition maximizes nutrition for other microbes
and reduces inflammation, virulence factors, and antibiotic-
resistant genomes (ARGs) in the gut environment. Thanks
to the results of the fermentation and these metabolites,
colonization of probiotic bacterial level in the gut microbiome,
especially Bifidobacterium and genes conferring utilization of N-
glycans, significantly increases. Thus, the development of the gut
microbiome by providing colonization resistance to intestinal
pathogens is critical for the development of the infant gut
microbiome (94, 98).

INFANT FORMULA AND N-GLYCANS

Infant formulas are intended as an effective breast milk substitute
and are formulated to mimic nutritional composition, including
macro- and micronutrients as well as bioactive components, of
human milk (99). Most infant formulas are manufactured from
bovine milk. The nutritional composition of all infant formulas
must follow the global standards as recommended by the
European Society for Pediatric Gastroenterology, Hepatology,
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TABLE 2 | Types of infant formulas and their properties.

Type of formula Key product features Intended

Routine use Conventional protein, fat, and carbohydrate composition to

support healthy growth and development, meeting the

requirements, for example, of the US Infant Formula Act, 1980

(104)

Suitable for most term infants, when breast milk is not an

option

Premature May contain partially hydrolyzed whey and carbohydrate source

lactose.

Premature and low birth weight infants, where donor milk

or mother’s own milk is not available

Higher calcium, phosphorus

Allergy management 1. Extensively hydrolyzed casein and/or whey Infants with allergy based on cow milk protein, where

breast milk is not an option

2. 100% free amino acids. No peptides Infants with bovine milk protein hypersensitivity even with

extensively hydrolyzed cow milk protein, and where

breast milk is not an option

Specialized metabolic conditions where

breast milk may not be an option

Carbohydrate-free formula Infants with carbohydrate metabolism disorders and

carbohydrate malabsorption

Reduced and modified fat formula Infants with fat malabsorption, chylothorax, and

decreased bile salts

Reduced mineral formula: lower phosphorus, iron, and

potassium

Infants with calcium disorder, renal insufficiency

and Nutrition’s (ESPGHAN) international expert group that
was commissioned by The Codex Alimentarius Commission in
November 2004 (100, 101).

There are several types of infant formulas (102, 103). Some
have specific clinical indications for use, including special
formulas for preterm infants, protein hydrolysate or elemental
formulas for infants that have cow’s milk and soy protein
allergies, or formulas for other specific nutritional requirements.
Other types of formula include indications such as lactose-
free formulas for lactose-intolerant infants, soy formulas for
galactosemia, and sensitive formulas that contain partially
hydrolyzed or reduced lactose content (Table 2).

The development of infant formulas has advanced
significantly over the past 50 years. Nonetheless, an “ideal”
microbiome where Bifidobacterium species predominate cannot
yet be obtained with infant formula feeding. Previously, we
reported that N-glycans, which are released from cow’s milk
proteins, have prebiotic activity supporting the growth of B.
infantis (90, 91). Thus, releasing N-glycans from proteins being
added to infant formulas may be an innovative and effective
strategy to harness the activity of naturally active enzymes in the
microbiome of breastfed infants to enhance the bifidogenicity of
infant formulas.

RELEASE OF N-GLYCANS FROM
GLYCOPROTEINS

N-glycans can be released by chemical and enzymatic
methods (105). However, enzymatic release is considered a
preferred method as it eliminates the possibility of chemical
or residual contamination. Moreover, due to the highly
specific nature of the enzymes, the enzymatic release of N-
glycans represents a more targeted and efficient approach
for releasing and increasing the bioavailability of these

bifidogenic structures. There are two known enzymes
that can release N-glycans: N-acetylglucosaminidases and
endo-β-N-acetylglucosaminidases (ENGases).

ENGases belong to EC number 3.2.1.X which corresponds
to the glycosylase-type hydrolyses cleaving O- and S-glycosyl
compounds. ENGases are further classified according to their
glycoside hydrolase (GH) family membership. These enzymes
are classified into two groups, GH families 18 and 85, based on
their amino acid sequence (106) within the Carbohydrate-Active
enZymes (CAZy) Database (http://www.cazy.org) (107). Family
GH18 is unusual in having glycoside hydrolases that are both
catalytically active chitinases and ENGases and also subfamilies
of non-hydrolytic proteins that function as carbohydrate-binding
modules/ “lectins” or as xylanase inhibitors whereas family GH85
solely contains ENGases.

Although all of the ENGases carry out the same hydrolytic
reaction, they have different tolerances as to the precise structure
of the N-glycans that they can hydrolyze. The ENGases are
all retaining glycosidases that hydrolyze substrates via a two-
step mechanism involving general acid/base catalysis. The main
difference between GH18 and GH85 ENGases is the active-site
amino acids either being two carboxylic acid residues (Glu and
Asp) or one carboxylic acid and one amino group (Glu and
Asn), respectively. Regardless of whether the active site contains
one or two carboxylic acids, the hydrolytic mechanism catalyzed
by the ENGases involves neighboring group participation of the
2-acetamide of the second GlcNAc residue (108).

ENGase enzymes cleave N-N′-diacetyl chitobiose moieties
found in the N-glycan core of high mannose (HM), complex
(CT), and hybrid (HY) N-glycans (Figure 1) and the released
N-glycans that stimulate the growth of B. infantis (109)
(Figure 2). EndoBI-1 from B. infantis (ATCC 15697) is a product
of the Blon_2468 gene. Other B. infantis strains known to
produce EndoBI-1 are JCM 7007, JCM 7009, JCM 7011, JCM
11346, ATCC 15702, and ATCC 17930 (110). The enzyme
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FIGURE 2 | Formation of highly bifidogenic N-glycans by B. infantis ENGases from glycoproteins (91, 92).

is classified as a GH20 member in the National Center for
Biotechnology Information Genetic Sequence Database (NCBI-
GenBank: ACJ53522.1) and EMBL European Bioinformatics
Institute (EBI) European Nucleotide Archive (ENA CP001095.1)
(111) and as a GH18 member in The Universal Protein Resource
Knowledgebase (UniProtKB: B7GPC7) (110). The other ENGase,
EndoBI-2 from Bifidobacterium longum subsp. longum 157F
(deposited as B. longum subsp. infantis 157F), is a product of the
BLIF_1310 gene (112, 113). The enzyme is classified as a GH18
member in NCBI-GenBank (BAJ71450.1). To date, only EndoBI-
1 has been shown to be active in the gut of healthy breastfed
infants colonized by B. infantis EVC001 (92), but both are likely
to be expressed in vivo. Interestingly, EndoBI-1 and EndoBI-
2 have different distributions among strains of Bifidobacterium
found in infants compared to adults, which may further suggest
the importance of these enzymes in healthy gut microbiome
formation in both adults and infants (114).

EndoBI-1 and EndoBI-2 are unique among other ENGase
members. EndoBI-1 and EndoBI-2 cleave N-glycans without

perturbing the native glycan structure (115). The enzymes
are considered fucose tolerant (110), meaning their activity
is not affected by a fucosylated N-glycan core and therefore
has a wider substrate specificity than similar enzymes (116).
Both enzymes are active toward all major types of N-glycans
found in glycosylated proteins (110). These unique enzymes
are heat resistant, which enables broad applications even for
industrial operations up to 95◦C (110, 117), in contrast to
the currently commercially available N-acetylglucosaminidases
such as PNGase F of Flavobacterium meningosepticum which
is heat labile (116). Further, both enzymes are considered safe
for use in the food and pharmaceutical industries, especially
when considering the sources of similar ENGase enzymes which
are used by potential pathogens to evade the host immune
system; such as Endo-COM from Cordyceps militaris (118),
EndoS and EndoS2 from Streptococcus pyogenes (119, 120),
EndoF3 from Elizabethkingia meningoseptica (121, 122), EndoH
from Streptomyces plicatus (123, 124), EndoD from Streptococcus
pneumoniae (3GDB.pdb), and EndoT from Hypocrea jecorina
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(125). Thus, making EndoBI-1 and EndoBI-2 the only two
enzymes currently considered safe for food applications.
Importantly, EndoBI-1 and EndoBI-2 could be easily cloned
and/or mass produced with known microbiologic procedures
and industrial techniques (110).

CHALLENGES IN THE STUDY AND
CHARACTERIZATION OF N-GLYCANS

One of the primary challenges facing the translation of
technologies surrounding N-glycan release is the precise and
accurate quantification and characterization of N-glycans.
Structural analyses of oligosaccharides and glycoconjugates by
high-throughput approaches are crucial for predicting their
functions. A number of chromatographic techniques have
been employed for the analysis of oligosaccharides (126).
One of the most common is porous graphitized carbon
chromatography–mass spectrometry (PGC-MS) (127). This
method can distinguish the isomers of oligosaccharides and
N- and O-glycans of glycoconjugates with different linkage
positions. This ability of PGC-MS makes the method more
powerful than previous techniques. To achieve the structural
identifications of HMOs faster and with more precision, a
library was recently presented for both native and sialylated
oligosaccharides, including retention times, accurate masses, and
tandem mass spectra of HMOs (38, 42). In addition, relative and
absolute quantification of HMOs was performed using the PGC-
MS approach (128). Thus, the alterations of HMO profiles could
be monitored throughout certain periods such as lactation. For
example, a specific method was recently demonstrated for the
absolute quantification of neutral and acidic HMOs (129). PGC-
MS can also be used for the characterization of glycoconjugates of
human milk. In one study, N-glycans released from human milk
whey glycoproteins were analyzed and compared with bovine
milk N-glycans using the PGC-MS technique (130). On the other
hand, a method including solid-phase permethylation step was
presented for the analysis of HMOs and glycans derived from
human and bovine milk whey glycoproteins by reverse-phase
liquid chromatography mass spectrometry (RPLC-MS) (131).
Matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-MS) has also been commonly used for
the characterization of HMOs and glycoconjugates (132, 133).
This approach makes the analysis very fast when compared
with chromatographic and electrophoretic techniques. In this
approach, typically neutral HMOs and N-/O-glycans can be
quantified using MALDI-MS because of unstable sialic acid
residues found in HMOs and glycoconjugates. However, sialic
acids can be derivatized by certain methods to make them more
stable during the MALDI-MS analysis (134).

POTENTIAL APPLICATION OF ENGASES
IN NEXT-GENERATION FORMULAS AND
CHALLENGES

Although the composition of human milk is unparalleled in
terms of suitability for infant nutrition, there are a number of

logistical, practical, and medical reasons that necessitate the use
for infant formulas with barriers to breastfeeding and racial
inequities and/or socioeconomic barriers being prominent (135–
138). The use of microbial enzymes is a staple of the industrial
progress in the 21st century (139). The development of infant
formula has not been the exception. For example, various next-
generation infant formulas have been developed to manage cow
milk protein allergy. Infant formulas with reduced allergenicity
generally have partially or extensively hydrolyzed proteins,
or amino acid-based formulations. Allergenicity is decreased
by converting proteins to smaller peptides for modifying
conformation or structure epitopes recognized by the immune
system while maintaining caloric and protein and content,
or by replacing intact proteins or peptides with amino acid
formulations (140).

The process of producing partially or extensively hydrolyzed
proteins involves complex proteolytic processing steps to reduce
the size of bovine milk proteins. Protein glycosylation provides
a stabilizing effect to proteins, making the native protein state
more resistant to degradation (141, 142). Glycosylated proteins
are more resistant to proteases compared to their aglycosylated
(never glycosylated) or deglycosylated (enzymatically removed)
counterparts (143–145). In fact, the rate of proteolysis and
the amount of intact peptide (epitopes) available to reach
up the intestinal tract are influenced by the presence of
structural glycans (146). As bovine milk protein processing
represents a major hurdle for the production of partially
and extensively hydrolyzed proteins in infant formulas, the
introduction of ENGases to this process has the potential to
increase the efficiency and extent of protein hydrolysis required
for infant formulas.

Deglycosylation may also have implication for bioactive
proteins and the released N-glycans. For instance, lactoferrin,
an important bioactive protein added to formula, is heavily
glycosylated. Modifying glycosylation patterns is likely to change
bioactive sites and catalytic activities (147). Further, the released
N-glycans from glycoproteins can be recovered from protein
production streams and used as an added source of highly specific
prebiotics for the infant gut microbiome. These N-glycans are
then converted into metabolites with energy value for the infant
(e.g., acetate and lactate) when competent Bifidobacterium are
present, as well as to enhance the colonization of specialized
bifidobacteria, such as B. infantis, which provide essential
ecosystem services to the infant gut (Figure 3) (94).

The ENGase enzymes may be either used in the production
step to release high N-glycan concentrations in the infant
formulations or included as components of designed formulas
to release N-glycans in situ in the gut. Theoretically both native
ENGases produced by baby and infant safe organisms such
as EndoBI enzymes of B. infantis and ENGases produced by
recombinant organisms could be used for these applications.
However, in practice regulations in most of the globe and
especially in EU do not allow the use of GMO in baby and
infant products.

Although baby food and infant formula prepared with
ENGases produced by recombinant organisms used in the
production step could be considered as products derived with
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FIGURE 3 | Utilization rate of native glycoproteins and pre-released glycans by

ENGases (91).

GMOs, public and private standards for baby and infant products
are too strict to use these products yet for both US and EU
markets. Therefore, in the immediate future instead of ENGases
produced by recombinant organisms, ENGases produced by
baby and infant safe organisms such as EndoBI enzymes of
B. infantis are more realistic. Although the regulators in the
European Union can change the complete regulatory system
from a process-based system to a strictly product-based system,
such as in Canada in the future, these changes are unlikely to
affect baby and infant products.

CONCLUSION

The use of ENGase enzymes in the production of infant
formula has great potential to increase the nutritional values
of formula by releasing additional carbohydrates as sources of
energy and substrates from N-glycans, a so far underexploited
and underappreciated source. Due to their structural similarity
to the HMOs, the release of N-glycans is likely to be a
more successful approach to increase the potential for infant
formula to promote colonization of the infant gut by infant-
adapted Bifidobacterium, leveraging ingredients already present
in these formulations and a growing understanding of the
microbial enzymes active in the infant gut ecosystem. Finally,
deglycosylation of proteins also has the potential to create
value-added formulations as well as to have implications on a
manufacturing scale.
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