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INTRODUCTION

Hemodialysis is a major renal replacement therapy for 
patients with end-stage renal disease (ESRD) that requires 
a functioning arteriovenous fistula (AVF) or arteriovenous 
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Objective: To investigate the feasibility of using a deep learning-based analysis of auscultation data to predict significant 
stenosis of arteriovenous fistulas (AVF) in patients undergoing hemodialysis requiring percutaneous transluminal angioplasty 
(PTA).
Materials and Methods: Forty patients (24 male and 16 female; median age, 62.5 years) with dysfunctional native AVF were 
prospectively recruited. Digital sounds from the AVF shunt were recorded using a wireless electronic stethoscope before 
(pre-PTA) and after PTA (post-PTA), and the audio files were subsequently converted to mel spectrograms, which were used 
to construct various deep convolutional neural network (DCNN) models (DenseNet201, EfficientNetB5, and ResNet50). The 
performance of these models for diagnosing ≥ 50% AVF stenosis was assessed and compared. The ground truth for the presence 
of ≥ 50% AVF stenosis was obtained using digital subtraction angiography. Gradient-weighted class activation mapping 
(Grad-CAM) was used to produce visual explanations for DCNN model decisions.
Results: Eighty audio files were obtained from the 40 recruited patients and pooled for the study. Mel spectrograms of 
“pre-PTA” shunt sounds showed patterns corresponding to abnormal high-pitched bruits with systolic accentuation observed 
in patients with stenotic AVF. The ResNet50 and EfficientNetB5 models yielded an area under the receiver operating 
characteristic curve of 0.99 and 0.98, respectively, at optimized epochs for predicting ≥ 50% AVF stenosis. However, Grad-
CAM heatmaps revealed that only ResNet50 highlighted areas relevant to AVF stenosis in the mel spectrogram.
Conclusion: Mel spectrogram-based DCNN models, particularly ResNet50, successfully predicted the presence of significant 
AVF stenosis requiring PTA in this feasibility study and may potentially be used in AVF surveillance.
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graft [1]. However, over time, vascular thrombosis or 
stenosis occurs, and AVF tends to become dysfunctional. 
Hence, the accurate diagnosis of significant AVF stenosis 
and timely intervention are crucial for maintaining dialysis 
access.
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The latest 2019 Kidney Disease Outcomes Quality 
Initiative guidelines [2] recommend screening for AVF 
stenosis through regular physical examinations, including 
palpation and auscultation, by a health practitioner with 
moderate quality of evidence. AVF stenosis can be screened 
via auscultation based on abnormal blood flow, which is 
referred to as a high-pitched bruit. Auscultation is non-
invasive compared to digital subtraction angiography (DSA), 
which is the current gold standard for assessing vascular 
stenosis [3], and is simple and convenient compared 
to Doppler ultrasonography, which requires expensive 
equipment and skilled operators. However, diagnoses based 
on sound can be subjective and rely on the practitioner's 
clinical experience. Moreover, even a trained practitioner 
cannot quantify stenosis severity based on auscultation 
alone. Considering that the main indications for 
percutaneous transluminal angioplasty (PTA) are significant 
stenosis (≥ 50% of the lumen) or obstruction, it is difficult 
to accurately assess whether a patient needs PTA [4] based 
on bruit.

However, the quantification of auscultation and 
extraction of features to detect the presence of significant 
stenosis requiring PTA using deep learning can aid 
health practitioners in screening patients with ESRD 
who require angioplasty. Recent technical advances have 
enabled computer-based approaches, particularly artificial 
intelligence, to automatically interpret stethoscope-
recorded sounds for telemedicine and self-screening [5,6].

This pilot study aimed to evaluate the feasibility of using 
deep convolutional neural network (DCNN) models that 
analyze auscultation-based mel spectrograms to predict 
hemodynamically significant (≥ 50%) AVF stenosis.

MATERIALS AND METHODS

Study Population
This single-center prospective study was approved by the 

Institutional Review Board of our hospital (IRB No. 2020-
2715-009). Patients with autologous AVFs who were referred 
for PTA owing to clinical signs of significant stenosis 
(pulsation, prolonged hemostasis time, and increased circuit 
pressure) were assessed for eligibility. Informed consent 
was obtained from all patients. The inclusion and exclusion 
criteria are summarized in Table 1. Forty patients with ESRD 
were enrolled in this study from November 2020 to August 
2021. Patients’ baseline characteristics were obtained from 
their electronic medical records. The framework of this study 

is shown in Figure 1. 

Digital Subtraction Angiography (DSA) and Percutaneous 
Transluminal Angioplasty (PTA)

One board-certified interventional radiologist with seven 
years of experience performed all DSA and PTA procedures. 
The fistula was accessed under ultrasound guidance, 
and a 7F vascular sheath was inserted at an appropriate 
puncture site along the AVF. The balloon was sized based 
on the diameter of the adjacent normal segment of the 
vein. Angioplasty was performed using the manufacturer’s 
stated burst pressure and was maintained for at least 30 
seconds until the waist deformity of the balloon catheter 
was completely effaced. Procedural endpoint or technical 
success was defined as less than 30% residual stenosis 
or restoration of the thrill on palpation. Clinical success 
was defined as the restoration of blood flow to a level 
permitting at least one dialysis treatment after PTA. The 
degree of AVF stenosis was quantified using the open-
source software ImageJ (US National Institute of Health) 
by measuring the vessel diameter at the most stenotic site 
and proximal non-stenotic site using DSA images before 
and after PTA. Each stenosis was independently measured 
three times, and the values were averaged. Complications 
were classified as major or minor according to the practice 
guidelines of the Society of Interventional Radiology [7].

Data: Recording of AVF Shunt Sounds
A wireless electronic stethoscope (Stemoscope, Hulu 

Devices) was used to record shunt sounds by placing it on 
top of the venous access 1–2 cm distal to the anastomosis 
site for 10–15 seconds. Shunt sounds were recorded before 
and after PTA and were labeled “pre-PTA” and “post-PTA,” 
respectively. A total of 80 AVF shunt sounds (40 pre-PTA 
and 40 post-PTA) were recorded and saved as .wav audio 
files. These 80 sounds were pooled for this study. According 

Table 1. Inclusion and Exclusion Criteria of the Study 
Population

Inclusion criteria 
1.  Native AVF at least 60 days before the procedure that had 

been used for dialysis for at least 8 of 12 sessions during  
a 4-week period, ensuring fistula maturity

2. ≥ 50% stenosis documented on fistulogram
Exclusion criteria

1. Thrombosed AVF
2. Age < 18 years 

AVF = arteriovenous fistula
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to DSA findings, all patients had significant (≥ 50%) 
stenosis before PTA, but none after. Therefore, all pre- and 
post-PTA sounds were categorized as positive and negative, 
respectively.

Data: Preprocessing and Feature Extraction
Because the length of each audio file varied due to 

manual recording, the audio files were trimmed or padded 
to a length of 6 seconds using the Python library Librosa 
[8]. In this study, we used a mel spectrogram for feature 
extraction because it is one of the most widely used 
methods for audio data representation [9,10]. To obtain a 
mel spectrogram, the audio file was first mapped from the 
time domain to the frequency domain using a short-time 
Fourier transform with a window length of 25 ms and stride 
length of 10 ms. The frequency was subsequently converted 
to a mel scale and amplitude-to-color dimensions using 
mel filters to generate a mel spectrogram, representing the 
short-term power spectrum of sound. Each mel spectrogram 
was again normalized and resized to a resolution of 128 x 
128 with three channels with the x-axis, y-axis, and color 
representing the time, frequency (Hz), and magnitude of 
amplitude, respectively.

Data: Augmentation
The synthetic minority over-sampling technique (SMOTE) 

algorithm was used to generate synthetic mel spectrograms 
from existing neighboring mel spectrograms to best 
represent real-world data that may be obtained in clinical 
settings [11]. Data augmentation was performed 25 times 
(Fig. 2).

Model: DCNN Structure
In this study, widely used convolutional neural network 

architectures, including DenseNet201 [12], EfficientNetB5 
[13], and ResNet50 [14], were used to construct DCNN 
models for predicting hemodynamically significant AVF 
stenosis. Two fully connected layers using a rectified 
linear unit as the activation function were added after the 
Conv-pool layers with 2048 and 2048 neurons, and two 
dropout layers (rate = 0.5) were added after the first and 
second dense layers for regularization and to avoid model 
overfitting. Finally, for binary classification, a final layer 
with one neuron was added using the softmax activation 
function. DCNN models were initialized with ImageNet 
weights and compiled with categorical cross-entropy as 
a loss function and a root mean square propagation [15] 
optimizer with a learning rate of 0.0001. The models were 

Fig. 1. Framework of the proposed DCNN models. AVF = arteriovenous fistula, DCNN = deep convolutional neural network
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trained with batch sizes of 10 and 50 epochs. Each dataset 
was randomly divided into training, validation, and test 
sets using split ratios of 70%, 10%, and 20%, respectively 
(Fig. 2). Gradient-weighted class activation mapping (Grad-
CAM) [16] was used to produce visual explanations for DCNN 
model decisions.

Model: Implementation
All codes were written and executed on Google Colab 

(https://colab.research.google.com, n.d.), which provided 
12 Gb of random access memory and an NVIDIA Tesla K80 
graphics processing unit. Python version 3.10.4, along 
with the Python libraries NumPy, pandas, scikit-learn, 
TensorFlow, and Keras, was used. 

Evaluation: Metrics and Statistical Analyses
The performance of the DCNN models for diagnosing  

≥ 50% AVF stenosis was evaluated using the area under 
the receiver operating characteristics curve (AUROC) and 
using a confusion matrix, precision (i.e., positive predictive 
value), accuracy, recall (i.e., hit rate, sensitivity, or true 
positive rate), and F-1 score by applying a diagnostic cutoff 
of ≥ 0.5 for the final model output. The ground truth for the 

presence of ≥ 50% AVF stenosis was based on the results of 
DSA. Statistical analyses were performed using Google Colab 
or SAS software version 9.4 (SAS Institute).

RESULTS

Study Population Characteristics
The baseline characteristics of patients are summarized 

in Table 2. The median age of the 40 patients with ESRD 
was 62.5 years, and 24 male and 16 female comprised the 
cohort. The most common AVF types were brachial-cephalic 
(55%), radial-cephalic (40%), and brachial-basilic (5%). 
More than half (26/40, 65%) of all patients underwent PTA 
at least once prior to referral. All patients demonstrated 
technical and clinical success after PTA. There were no major 
complications, and one patient developed a hematoma after 
the procedure.

Mel Spectrograms of Pre-PTA and Post-PTA Shunt Sounds
Mel spectrograms generated from AVF shunt sounds 

before (pre-PTA) and after PTA (post-PTA) qualitatively 
correlated with the degree of AVF stenosis. The pre-
PTA mel spectrogram showed a greater magnitude of 

ESRD patients with dysfunctional 
autologous AVF referred for PTA

from November 2020 to August 2021 (n = 40)

Pre-AVF shunt sounds [before PTA]
(n = 40)

Pre-AVF shunt sounds [before PTA]
(n = 1000)

Modeling-set
(n = 1600)

Test-set
(n = 400)

Post-AVF shunt sounds [after PTA]
(n = 40)

Post-AVF shunt sounds [after PTA]
(n = 1000)

Data augmentation
randomization

x 25 x 25

Convolutional neural network models: ResNet50
DenseNet201
EfficientNetB5

Training-set
(n = 1400)

Validation-set
(n = 200)

Test-set
(n = 400)

Fig. 2. Study flowchart. AVF = arteriovenous fistula, ESRD = end-stage renal disease, PTA = percutaneous transluminal angioplasty
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amplitude at high frequency, primarily during the systolic 
phase, corresponding to the known high-pitched bruit 
with systolic accentuation in patients with stenotic 

AVF (Fig. 3). To quantitatively confirm this finding, the 
mel spectrograms were equally subdivided into three 
categories of high-, medium-, and low-pitch frequencies, 
and histograms showing the number of pixels for each 
magnitude of amplitude (or pixel/sound intensity) for 
both pre-PTA and post-PTA shunt sounds were constructed 
(Fig. 4). At high-pitch frequencies, pre-PTA shunt sounds 
had a higher number of pixels with high-pixel intensities 
than that of post-PTA shunt sounds. At medium- to low-
pitch frequencies, post-PTA shunt sounds showed a higher 
number of pixels with high-pixel intensities than that of 
pre-PTA shunt sounds.

Performance of DCNN Models for Predicting 
Hemodynamically Significant Stenosis

Three convolutional neural network architectures 
(DenseNet201, EfficientNetB5, and ResNet50) were used 
to construct the DCNN models, and their performance 
metrics are listed in Table 3. The training and validation 
sets showed similar accuracy and loss at epochs ≥ 40 for 
DenseNet201, ≥ 12 epochs for EfficientNetB5, and ≥ 19 
epochs for ResNet50 (Supplementary Fig. 1). At these 
optimized epochs, the AUROCs of the DenseNet201, 
EfficientNetB5, and ResNet50 models were 0.70, 0.98, and 
0.99, respectively (Fig. 5). However, Grad-CAM heatmaps 
of DenseNet201 and EfficientNetB5 indicated areas in 
the mel spectrogram that were irrelevant to AVF stenosis 
(Supplementary Fig. 2). In contrast, the Grad-CAM heatmaps 
of ResNet50 highlighted areas in the borders of high- and 
medium-pitch frequencies as well as medium- and low-pitch 
frequencies pertaining to the difference between pre-PTA 
and post-PTA shunt sounds.

DISCUSSION

The proposed mel spectrogram-based DCNN models 
successfully predicted significant AVF stenosis requiring 
PTA. Mel spectrograms generated from auscultation 
showed patterns corresponding to abnormal high-pitched 
bruits with systolic accentuation observed in stenotic 
AVF. Histograms of the magnitude of amplitude for pre-
PTA and post-PTA shunt sounds based on high-, medium-, 
and low-pitch frequencies also confirmed this finding. 
Except for DenseNet201, EfficientNetB5 and ResNet50 
showed AUROCs > 0.95 at optimized epochs in predicting 
significant AVF stenosis, and Grad-CAM heatmaps showed 
that only ResNet50 reached decisions based on explainable 

Table 2. Baseline Patient Characteristics
Age, years* 62.5 (53.0–69.8)
Sex

Male 24 (60)
Female 16 (40)

AVF type 
Brachial-cephalic 22 (55)
Radial-cephalic 16 (40)
Brachial-basilic 2 (5)

Location of stenosis
Juxta-anastomotic vein 21 (53)
Cephalic arch 12 (30)
Cannulation zone 7 (18)

Previous PTA (+)
Number (x) of previous PTA 26 (65)

n ≤ 2 28 (70)
2 < n ≤ 5 8 (20)
5 < n ≤ 8 2 (5)
8 < n 2 (5)

ESRD etiology
Diabetic nephropathy 26 (65)
Hypertensive nephropathy 3 (8)
C1q nephropathy 2 (5)
RPGN 1 (3)
ADPKD 1 (3)
Unknown 7 (18)

Comorbidities
Type 2 diabetes mellitus 26 (65)
Hypertension 26 (65)
Heart failure 4 (10)
Hyperlipidemia 9 (23)
Coronary artery occlusive disease 10 (25)
Peripheral artery occlusive disease 2 (5)

Current smoker 12 (30)
Body mass index* 22.7 (21.0–25.1)
Median time between AVF formation 
  date and PTA (days)*

839.5 (529.0–1351.5)

Median AVF stenosis (%) before PTA* 59.1 (49.1–65.2)
Median AVF stenosis (%) after PTA* 23.4 (15.1–36.4)
Median diameter (mm) of vessel* 6.8 (5.2–11.2)
Median flow (mL/min)* 491.4 (246.2–772.9)
Clinical success 40 (100)

Data area number of patients with % in parentheses, unless 
specified otherwise. *Data are presented as median values 
with the 25th percentile and 75th percentile in parentheses. 
ADPKD = autosomal dominant polycystic kidney disease, AVF = 
arteriovenous fistula, ESRD = end-stage renal disease, PTA = 
percutaneous transluminal angioplasty, RPGN = rapidly progressive 
glomerulonephritis
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Fig. 3. Audio signals (amplitude vs. time) (A, D), mel spectrograms (B, E), and digital subtraction angiography image (C, F) of 
61-year-old males with brachiocephalic fistula and cephalic arch stenosis.  
A-F. A, B, and C represent images before PTA (“pre-PTA”), and D, E, and F represent images after PTA (“post-PTA”). Compared to the post-PTA 
sound, the pre-PTA sound shows a stronger magnitude of the audio signal and higher pixel signal intensities at high-pitch frequencies with 
systolic accentuation in mel spectrograms. PTA = percutaneous transluminal angioplasty
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differences in the mel spectrogram.
Mel spectrogram patterns of pre-PTA and post-PTA shunt 

sounds were consistent with those of the time-frequency 
domain obtained through the S-transform-based method 
by Wang et al. [17]. In Wang et al. [17] study, the spectra 

of blood flow sounds of non-stenotic AVFs were mainly 
distributed between 200 and 600 Hz, whereas those of 
stenotic AVFs were mainly distributed from 600–800 
Hz. Moreover, stenotic AVF showed narrower features at 
higher frequencies, which is similar to our results. The 
narrower spectrum at higher frequencies can be thought 
to physiologically correspond to the seagull murmur 
generated by turbulence in the narrow vessels [18]. This 
murmur is most prominent in the systolic phase as a large 
amount of blood flow is transmitted rapidly through the 
arteriovenous anastomosis, allowing turbulence and murmur 
formation. Previous studies [19-21] have demonstrated 
that the frequency of this murmur correlates with the 
diameter of the fistula and confirmed that a higher pitch of 

Fig. 5. Receiver operating characteristic curves of the DenseNet201, EfficientNetB5, and ResNet50 models in predicting 
hemodynamically significant arteriovenous fistula stenosis in need of percutaneous transluminal angioplasty (A) and confusion 
matrixes of the DenseNet201 (B), EfficientNetB5 (C), and ResNet50 (D) models. AUROC = area under the receiver operating 
characteristics curve

A

C D

B

Table 3. Precision, Recall, and F-1 Score of DenseNet201, 
EfficientNetB5, and ResNet50 DCNN Models for Predicting 
Hemodynamically Significant Arteriovenous Fistula Stenosis

Model AUROC Precision Recall F-1 Score
DenseNet201 0.70 0.81 0.28 0.42
EfficientNetB5 0.98 0.95 1.0 0.97
ResNet50 0.99 0.95 0.98 0.96

AUROC = area under the receiver operating characteristics curve, 
DCNN = deep convolutional neural network
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murmur is produced with a narrower fistula. These findings 
are consistent with the fact that the blood flow sound 
intensities at higher frequencies tend to increase with 
stenosis, as demonstrated by our histograms. When the 
heart systole ends, the pumped blood flow is reduced, also 
reducing the spectral amplitude of the background blood 
flow sound, causing turbulence from the remaining blood 
flow to maintain spectral features at low pitch frequencies. 
This explains why pre-PTA shunt sounds showed a similar or 
slightly lower number of pixels at similar sound intensities 
at medium- to low-pitch frequencies than post-PTA shunt 
sounds.

Mel spectrogram-based DCNN models showed high 
diagnostic performance in predicting significant AVF 
stenosis, regardless of the type of DCNN architecture used 
to construct the model. Glangetas et al. [22] previously 
proposed the idea of an autonomous stethoscope developed 
by integrating an artificial intelligence algorithm into portal 
digital stethoscopes, which can be simply turned into a 
smartphone accessory [23]. While this idea was originally 
proposed to classify lung sounds, significant AVF stenosis 
requiring PTA may be monitored and screened using the 
above DCNN models to allow for timely interventions, which 
may lead to increased AVF patency and longevity [24,25].

This study has several limitations. First, this pilot study 
included a small number of patients, all of whom had 
venous outflow stenosis and underwent interventions 
by a single interventional radiologist, which may have 
contributed to selection bias. The primary focus of this 
study was to assess the feasibility of applying DCNN models 
to predict significant AVF stenosis requiring PTA. However, 
the post-PTA shunt sounds of the same patients from whom 
pre-PTA shunt sounds were obtained, instead of shunt 
sounds from completely different patients with AVF, were 
used as controls owing to ethical issues with performing 
DSA on patients with AVF without a clinical sign of 
stenosis. The inclusion of a more diverse group of patients 
without AVF stenosis should introduce more variation in the 
mel spectrogram, and the performance of the DCNN model 
may be lower than that presented herein. Further studies 
that include a more diverse group of patients without 
dysfunctional AVFs are warranted to validate whether these 
models can be used to screen for significant stenosis in 
general patients undergoing hemodialysis. Second, owing to 
the paucity of AVF shunt sounds, the SMOTE algorithm was 
used to generate synthetic mel spectrograms, and a separate 
external test set was not used. Third, mel spectrograms are 

the only type of visual representation of audio data, and 
for simplicity, the use of other representations, including 
harmonic-percussive spectrograms or scattergrams, has not 
been explored [26]. Fourth, recording of the shunt sound 
was performed collectively at venous access 1–2 cm from 
the anastomosis site before performing DSA, regardless of 
the stenosis site. Recording at this site may not have fully 
captured the degree of stenosis at proximal sites, including 
the cephalic arch, and the performance of DCCN models 
may have been improved if auscultation was performed at 
the site of stenosis. Finally, DSA was used as a reference 
instead of other imaging modalities, including Doppler 
ultrasonography, because DSA is the current gold standard 
for assessing vascular stenosis [3].

In conclusion, mel spectrogram-based DCNN models, 
particularly ResNet50, successfully predicted the presence 
of significant AVF stenosis requiring PTA in this feasibility 
study and may potentially be used in AVF surveillance.

Supplement

The Supplement is available with this article at  
https://doi.org/10.3348/kjr.2022.0364.

Availability of Data and Material
The datasets generated or analyzed during the study are 

available from the corresponding author on reasonable 
request.

Conflicts of Interest
The authors have no potential conflicts of interest to 
disclose.

Author Contributions
Conceptualization: Jae Hyon Park, Insun Park, Kichang 

Han. Data curation: Jae Hyon Park, Insun Park, Kichang 
Han. Formal analysis: Jae Hyon Park, Insun Park, Jongjin 
Yoon. Funding acquisition: Kichang Han. Investigation: Jae 
Hyon Park, Kichang Han. Methodology: Jae Hyon Park, Insun 
Park, Jongjin Yoon, Kichang Han. Project administration: 
Kichang Han. Resources: Kichang Han, Jong Yun Won. 
Software: Jae Hyon Park, Insun Park, Jongjin Yoon, Yongsik 
Sim. Supervision: Kichang Han. Validation: Kichang Han. 
Visualization: Jae Hyon Park, Insun Park. Writing—original 
draft: Jae Hyon Park, Insun Park, Jongjin Yoon, Kichang 
Han. Writing—review & editing: Jae Hyon Park, Insun Park, 
Jongjin Yoon, Yongsik Sim, Soo Jin Kim, Jong Yun Won, 



957

Deep Learning Model for Screening AVF Stenosis

https://doi.org/10.3348/kjr.2022.0364kjronline.org

Shina Lee, Joon Ho Kwon, Sungmo Moon, Gyoung Min Kim, 
Man-deuk Kim.

ORCID iDs
Jae Hyon Park

https://orcid.org/0000-0002-7626-194X
Insun Park 

https://orcid.org/0000-0002-6413-752X
Kichang Han

https://orcid.org/0000-0002-9701-9757
Jongjin Yoon

https://orcid.org/0000-0003-4733-7658
Yongsik Sim

https://orcid.org/0000-0003-2711-2793
Soo Jin Kim

https://orcid.org/0000-0002-5576-8557
Jong Yun Won

https://orcid.org/0000-0002-8237-5628
Shina Lee

https://orcid.org/0000-0003-2821-9007
Joon Ho Kwon

https://orcid.org/0000-0001-6906-2590
Sungmo Moon

https://orcid.org/0000-0002-4334-3797
Gyoung Min Kim

https://orcid.org/0000-0001-6768-4396
Man-deuk Kim

https://orcid.org/0000-0002-3575-5847

Funding Statement
None

REFERENCES

1. Brescia MJ, Cimino JE, Appel K, Hurwich BJ. Chronic 
hemodialysis using venipuncture and a surgically created 
arteriovenous fistula. N Engl J Med 1966;275:1089-1092

2. Lok CE, Huber TS, Lee T, Shenoy S, Yevzlin AS, Abreo K, et al. 
KDOQI clinical practice guideline for vascular access: 2019 
update. Am J Kidney Dis 2020;75(4 Suppl 2):S1-S164

3. Lin YP, Wu MH, Ng YY, Lee RC, Liou JK, Yang WC, et al. Spiral 
computed tomographic angiography--a new technique for 
evaluation of vascular access in hemodialysis patients. Am J 
Nephrol 1998;18:117-122

4. Bountouris I, Kritikou G, Degermetzoglou N, Avgerinos 
KI. A review of percutaneous transluminal angioplasty in 
hemodialysis fistula. Int J Vasc Med 2018;2018:1420136

5. Bardou D, Zhang K, Ahmad SM. Lung sounds classification 
using convolutional neural networks. Artif Intell Med 

2018;88:58-69
6. Messner E, Fediuk M, Swatek P, Scheidl S, Smolle-Jüttner FM, 

Olschewski H, et al. Multi-channel lung sound classification 
with convolutional recurrent neural networks. Comput Biol 
Med 2020;122:103831

7. Sacks D, McClenny TE, Cardella JF, Lewis CA. Society of 
interventional radiology clinical practice guidelines. J Vasc 
Interv Radiol 2003;14(9 Pt 2):S199-S202

8. McFee B, Raffel C, Liang D, Ellis DP, McVicar M, Battenberg 
E, et al. Librosa: audio and music signal analysis in python. 
Proceedings of the 14th Python in Science Conference; 2015 
Jul 6-12; Austin, TX, USA: SciPy; 2015. p.18-25

9. Palanisamy K, Singhania D, Yao A. Rethinking CNN models for 
audio classification. arXiv [Preprint]. 2020 [cited 2020 Jul 1]. 
Available at: https://doi.org/10.48550/arXiv.2007.11154

10. Sehgal A, Kehtarnavaz N. A convolutional neural network 
smartphone app for real-time voice activity detection. IEEE 
Access 2018;6:9017-9026

11. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: 
synthetic minority over-sampling technique. J Artif Intell Res 
2002;16:321-357

12. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely 
connected convolutional networks. Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition 
(CVPR); 2017 Jul 22-25; Honolulu, HI, USA: IEEE; 2017. 
p.4700-4708

13. Tan M, Le Q. Efficientnet: rethinking model scaling for 
convolutional neural networks. Proceedings of the 36th 
International Conference on Machine Learning; 2019 Jun 
9-15; Long Beach, CA, USA: PMLR; 2019. p.6105-6114

14. He K, Zhang X, Ren S, Sun J. Deep residual learning for image 
recognition. Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las 
Vegas, NV, USA: IEEE; 2016. p.770-778

15. Kingma DP, Ba J. Adam: a method for stochastic optimization. 
arXiv [Preprint]. 2014 [cited 2020 Jul 1]. Available at: 
https://doi.org/10.48550/arXiv.1412.6980

16. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, 
Batra D. Grad-cam: visual explanations from deep networks 
via gradient-based localization. Proceedings of the IEEE 
International Conference on Computer Vision (ICCV); 2017 Jul 
22-25; Venice, Italy: IEEE; 2017. p.618-626

17. Wang HY, Wu CH, Chen CY, Lin BS. Novel noninvasive 
approach for detecting arteriovenous fistula stenosis. IEEE 
Trans Biomed Eng 2014;61:1851-1857

18. Hayek CS, Thompson WR, Tuchinda C, Wojcik RA, Lombardo 
JS. Wavelet processing of systolic murmurs to assist with 
clinical diagnosis of heart disease. Biomed Instrum Technol 
2003;37:263-270

19. Akay M, Akay YM, Welkowitz W, Lewkowicz S. Investigating 
the effects of vasodilator drugs on the turbulent sound 
caused by femoral artery stenosis using short-term Fourier 
and wavelet transform methods. IEEE Trans Biomed Eng 
1994;41:921-928



958

Park et al.

https://doi.org/10.3348/kjr.2022.0364 kjronline.org

20. Mansy HA, Hoxie SJ, Patel NH, Sandler RH. Computerised 
analysis of auscultatory sounds associated with vascular 
patency of haemodialysis access. Med Biol Eng Comput 
2005;43:56-62

21. Sato T, Tsuji K, Kawashima N, Agishi T, Toma H. Evaluation 
of blood access dysfunction based on a wavelet transform 
analysis of shunt murmurs. J Artif Organs 2006;9:97-104

22. Glangetas A, Hartley MA, Cantais A, Courvoisier DS, Rivollet 
D, Shama DM, et al. Deep learning diagnostic and risk-
stratification pattern detection for COVID-19 in digital 
lung auscultations: clinical protocol for a case-control and 
prospective cohort study. BMC Pulm Med 2021;21:103

23. Vasudevan RS, Horiuchi Y, Torriani FJ, Cotter B, Maisel SM, 
Dadwal SS, et al. Persistent value of the stethoscope in the 

age of COVID-19. Am J Med 2020;133:1143-1150
24. McCarley P, Wingard RL, Shyr Y, Pettus W, Hakim RM, Ikizler 

TA. Vascular access blood flow monitoring reduces access 
morbidity and costs. Kidney Int 2001;60:1164-1172

25. Tessitore N, Lipari G, Poli A, Bedogna V, Baggio E, Loschiavo 
C, et al. Can blood flow surveillance and pre-emptive repair 
of subclinical stenosis prolong the useful life of arteriovenous 
fistulae? A randomized controlled study. Nephrol Dial 
Transplant 2004;19:2325-2333

26. Nanni L, Costa YM, Aguiar RL, Mangolin RB, Brahnam S, Silla 
CN. Ensemble of convolutional neural networks to improve 
animal audio classification. J Audio Speech Music Proc 
2020;2020:8




