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Abstract

The heterogeneity of disease is a major concern in medical research and is commonly char-

acterized as subtypes with different pathogeneses exhibiting distinct prognoses and treat-

ment effects. The classification of a population into homogeneous subgroups is challenging,

especially for complex diseases. Recent studies show that gut microbiome compositions

play a vital role in disease development, and it is of great interest to cluster patients accord-

ing to their microbial profiles. There are a variety of beta diversity measures to quantify the

dissimilarity between the compositions of different samples for clustering. However, using

different beta diversity measures results in different clusters, and it is difficult to make a

choice among them. Considering microbial compositions from 16S rRNA sequencing, which

are presented as a high-dimensional vector with a large proportion of extremely small or

even zero-valued elements, we set up three simulation experiments to mimic the microbial

compositional data and evaluate the performance of different beta diversity measures in

clustering. It is shown that the Kullback-Leibler divergence-based beta diversity, including

the Jensen-Shannon divergence and its square root, and the hypersphere-based beta diver-

sity, including the Bhattacharyya and Hellinger, can capture compositional changes in low-

abundance elements more efficiently and can work stably. Their performance on two real

datasets demonstrates the validity of the simulation experiments.

Introduction

The heterogeneity of disease is the primary concern of precision medicine, and it challenges

medical research in many aspects, from the identification of risk factors to the development of

specific treatments [1–3]. Patients with the same perceived disease may respond quite differ-

ently to the same treatment and show distinct prognoses in clinical practice. Most common

diseases are so complex that they have various subtypes, and the etiology and pathogenesis of

patients vary between subtypes [3–5]. Rather than treating patients uniformly, it is more rea-

sonable to classify them into subgroups and develop different specific treatments for different

subgroups.
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Recently, many studies have indicated that the gut microbiome plays an important role in

the origin and development of disease through the gut-brain axis [6–9]. Because of the advan-

tages of high efficiency and low cost, the abundance of microbial genes in gut samples is popu-

larly measured by 16S rRNA high-throughput sequencing [10]. The analysis pipeline [11]

classifies the sequenced reads into operational taxonomic units (OTUs) and measures their

abundance by the binned read coverage. Annotating the OTU sequences at different taxo-

nomic levels yields the microbial compositions and their abundance at different levels. Consid-

ering the microbial evolution and taxonomy accuracy of 16S rRNA sequencing, the analysis at

the genus level is of great interest, where the OTU abundance of each sample is represented as

a high-dimensional vector. Through advances in sequencing technology, we can detect the

large-scale microbiome inside human bodies. Their abundance varies within a vast range,

from couples to millions. After normalization to make the total composition of each sample

one, a large proportion of extremely small values appears in the vector; many zeros may even

be included when the compositional data of different samples are summarized in an OTU

table.

The clustering of microbial samples based on their compositions reveals the heterogeneity

of patients in terms of the gut microbiome. The clustered subgroups are characterized as enter-

otypes, which attract researchers’ attention when they appear [12–14]. To classify the samples

into subgroups according to their compositional profiles, the dissimilarity between samples

needs to be measured, which is termed beta diversity in the microbial community. The defini-

tion of beta diversity was first introduced by ecologists, together with alpha and gamma diver-

sity, to measure the diversity between samples, within samples and of the total population [15,

16]. Since then, many different types of definitions of beta diversity have emerged from differ-

ent perspectives [17]. Because the aim is to quantify the dissimilarity between two composi-

tional vectors, mathematical metrics that measure the difference between two multivariate

variables can be employed and can provide a variety of definitions of beta diversity with differ-

ent conceptual and sampling properties [18]. The R package phyloseq [19] includes 41 such

measures, and philentropy [20] covers 46. These include not only the commonly used

Euclidean and Jensen-Shannon divergence but also diversity measures for presence-absence

data [21] as well as the UniFrac distance utilizing phylogenetic information [22]. Recently, sci-

entists have made efforts to refine the definition of beta diversity in both mathematical and

conceptual terms [23]. Although there are fruitful choices for beta diversity and valuable dis-

cussions on their concepts, different measures may yield significantly different clusters in prac-

tical data analysis [24]. It is confusing for users to make one selection from the clusters

resulted from different beta diversity measures, even with indices such as the Caliński-Hara-

basz statistic, silhouette coefficient, and prediction strength, to evaluate the clustering perfor-

mance, since different indices may give different recommendations [13, 24].

Numerical evaluation based on simulations can provide an objective comparison of the per-

formance of different beta diversity measures. However, previous works have mainly focused

on the analysis of low-dimensional data [25–27]. In this paper, we set up three simulation

experiments to mimic microbial compositions in order to investigate the performance of

different beta diversity measures in clustering high-dimensional compositional data. By com-

parison with the truth, we can infer in what situations the beta diversity can have better perfor-

mance in order to guide the choice of beta diversity in practical data analysis. Note that in this

study, we focus on the measures defined in terms of the abundance rather than the presence-

absence data. Presence-absence data may be more sensitive to rare compositions. However, it

is risky to consider only the presence or absence of high-dimensional microbial data with

many extremely small compositional elements, since OTUs at extremely low abundance may

appear, possibly due to sequencing errors or annotation errors. Neither UniFrac nor weighted
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UniFrac are considered in this comparison analysis because we simulate and make inferences

based on the OTU table, which does not carry phylogenetic tree information.

We choose 13 beta diversity measures that are popularly used in microbial studies and com-

pare their performance in clustering high-dimensional compositional data. The paper is struc-

tured as follows: In the Methods section, we present the definition of each type of beta

diversity under investigation. Three simulation experiments are introduced in the Results sec-

tion to evaluate the clustering performance of the different beta diversity measures. The analy-

sis of two real datasets is subsequently given. A Discussion section is presented at the end.

Methods

Denoting by xi = (xi1, � � �, xim)0 the m compositions of the ith subject in the population x1, . . .,

xN, the compositional constraints xik� 0 and
Pm

k¼1
xik ¼ 1 hold for i = 1, 2, . . ., N. Given a pre-

specified number of clusters G, a clustering algorithm, such as the partitioning around

medoids method (PAM) [28], is used to classify the population into G groups according to the

dissimilarity matrix D = (dij)N×N, where dij, termed the beta diversity, quantifies the dissimilar-

ity between the compositional vectors of two distinct samples xi and xj. Based on different dis-

similarity measures, beta diversity can be defined by different formulations, as listed in

Table 1.

The most commonly used metrics, Euclidean β1 and Manhattan β2 [20], are actually the L2

or L1 norm developed in real space. The Bray-Curtis β3 [19], also called Canberra [20], metric

Table 1. Definitions of different beta diversity measures.

Category Notation Name Expression

Euclidean-based measures β1 Euclidean
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1
ðxik � xjkÞ

2
q

β8 Angular

arccos
Pm

k¼1
xikxjk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1
x2
ik

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1
x2
jk

q

0

@

1

A

β9 Horn-Morisita
1 �

2
Pm

k¼1
xikxjkPm

k¼1
x2
ikþ
Pm

k¼1
x2
jk

Manhattan-based measures β2 Manhattan
Pm

k¼1
jxik � xjkj

β3 Bray-Curtis
Pm

k¼1
jxik � xjk jPm

k¼1
ðxikþxjkÞ

β4 Jaccard
1 �

Pm

k¼1
minðxik ;xjkÞPm

k¼1
maxðxik ;xjkÞ

KL-based measures β5 J-divergence
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxikxjÞ þ DðxjkxiÞ

q

β6 JSD 1

2
D xik

xiþxj
2

� �
þ D xjk

xiþxj
2

� �h i

β7 rJSD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
D xik

xiþxj
2

� �
þ D xjk

xiþxj
2

� �h ir

hypersphere-based measures β10 Bhattacharyya arccosð
Pm

k¼1

ffiffiffiffiffixik
p ffiffiffiffiffixjk
p
Þ

β11 Hellinger
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1
ð
ffiffiffiffiffixik
p

�
ffiffiffiffiffixjk
p
Þ

2
q

Aitchison-based measures β12 Manhattan-ilr
Pm

k¼1
jrik � rjkj

β13 Euclidean-ilr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1
ðrik � rjkÞ

2
q

DðxikxjÞ ¼
Pm

k¼1
xiklnðxik=xjkÞ indicates the Kullback-Leibler divergence.

lxi
¼
Pm

k¼1
x2

ik=ð
Pm

k¼1
xikÞ

2
¼
Pm

k¼1
x2

ik.

ri = (ri1, � � �, rim)0 = ilr(xi).

https://doi.org/10.1371/journal.pone.0246893.t001
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gives a 1/2 multiplied dissimilarity matrix of Manhattan since β3 = β2/2 due to
Pm

k¼1
xik ¼

Pm
k¼1

xjk ¼ 1. It yields the same clustering result as Manhattan and will not be cal-

culated in the comparison analysis. The Jaccard β4 [19], or Tanimoto [20], metric is a mono-

tone function of Manhattan β2, i.e., β4 = 2β2/(2 + β2). Due to these close relationships between

Manhattan, Bray-Curtis and Jaccard, we denote them as Manhattan-based measures in

Table 1.

The Kullback-Leibler (KL) divergence [29] reflects the difference between two probability

measures. Its discrete version can be directly applied to measure the dispersion between two

compositional vectors, yielding the J-divergence β5 [27] and the widely used Jensen-Shannon

divergence (JSD) [20] in Table 1. The JSD does not satisfy the triangle inequality and is not a

mathematical distance, but its square root, rJSD b7 ¼
ffiffiffiffiffi
b6

p
[30], is, so rJSD is usually alterna-

tively employed in the literature on enterotype studies [12, 13]. These three beta diversities are

referred to as KL-based measures in Table 1. According to the expression of J-divergence

b5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxik � xjkÞðln xik � ln xjkÞ

q
, it measures not only the absolute difference between two

compositions but also those with log transformations. Since the compositions are restricted to

small values between 0 and 1, the incorporation of the logarithm may offer J-divergence more

power in quantifying compositional changes compared to the measures developed at the origi-

nal scale, such as Euclidean, Manhattan and Jaccard. Both the JSD and rJSD also acquire this

advantage by utilizing the logarithm through the KL divergence. In contrast to the J-diver-

gence, the JSD and rJSD use (xi + xj)/2 instead of xi and xj themselves as the reference distribu-

tion in the calculation of the KL divergence. This strategy makes them slightly less sensitive to

small differences between xi and xj compared with the J-divergence. In data analysis, composi-

tional changes in different elements are presented at varying magnitudes. Emphasizing the

smaller changes may be either helpful or harmful for clustering, and this depends on the rela-

tive magnitude of the between-cluster signals and the within-cluster noises, as shown later in

the simulations. Based on the formulas in Table 1, the J-divergence does not allow zero compo-

sitions in xik or xjk, and neither do the JSD or rJSD when both of them are zero. In our analysis,

we use the R package philentropy [20] for computation, where x/0 is replaced by x/� and

xln(0) by xln(�) and � = 1e-5.

The compositional vectors of m dimensions vary within the m − 1 dimensional simplex

space [25]; for instance, when m = 3, the vectors are a triangle formed by three vertexes, (1, 0,

0)0, (0, 1, 0)0 and (0, 0, 1)0, with its interior. Considering the limiting variation of compositional

vectors in the radii, the angle contained by two vectors with a center at 0, Angular β8 [27],

reflects the dispersion between their compositions to a great extent. Note that Euclidean β1 is

the chord length between two compositional vectors corresponding to the angle β8. In addi-

tion, Horn-Morisita β9 [19], abbreviated to Horn, which is also called Dice of Drost [20], is

related to Angular by b9 ¼ 1 � 2 cos b8

ffiffiffiffiffiffiffiffiffiffiffiffiP
kx2

ik

p ffiffiffiffiffiffiffiffiffiffiffiffiP
kx2

jk

q
=ð
P

kx
2
ik þ

P
kx

2
jkÞ and Euclidean via

b9 ¼ b
2

1
=ð
P

kx
2
ik þ

P
kx

2
jkÞ. These connections may make them have similar clustering results.

We denote them as Euclidean-based measures in Table 1. According to their formulas, these

measures differ from each other when the variances of the within-sample compositions
P

kx
2
ik

and
P

kx
2
jk vary, whereas

P
kx

2
ik and

P
kx

2
jk are the squared radii of the compared compositional

vectors.

It is arbitrary to take the radius out of consideration or account for it in certain manners as

Horn does in measuring the dissimilarity in the simplex space. The mapping from xi to
ffiffiffiffixi
p

,

i = 1, 2, . . ., N, yields a projection of the simplex space onto a unit hypersphere with the same

radius and derives the beta diversity measures defined by the angle in the hypersphere space,
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named β10 by Bhattacharyya [27], and the chord length, the Hellinger β11 [27]. They are more

reasonable in dealing with the effect of the radii than Angular and Horn, referred to as hyper-

sphere-based measures in Table 1. In addition, square-root mapping leads them to favor the

differentials between compositions at a low abundance.

The log transformations proposed by Aitchison [25] set up the foundations for composition

modelling, where alr(xi) = (ln(xi1/xim), . . ., ln(xi,m−1/xim))0 maps the m-dimensional simplex

space Sm to the (m − 1)-dimensional real space Rm−1; clr(xi) = (ln(xi1/g(xi)), . . ., ln(xim/g(xi)))
0

with gðxiÞ ¼ ð
Qm

k¼1
xikÞ

1=m
converts Sm to a hyperplane in real space Um = {(u1, . . ., um): u1 +

. . . + um = 0}; and ilr(x) = V0clr(x) projects Sm to Rm−1, where V0 is the transport of the m × (m
− 1) matrix V, whose columns form an orthonormal basis of Um [31]. The dissimilarity mea-

sures developed in real space, such as Euclidean and Manhatten, can be applied to the trans-

formed data and serve as the beta diversity for compositional vectors. We note that none of

these three transformations is compatible with zero compositions. The R package composi-

tions [32] calculates clr and ilr by omitting zeros for the transformation and then patching

them back in. Considering the close relationship between clr and ilr, we use only ilr for data

transformation and then apply the Manhattan and Euclidean distance to calculate the beta

diversity on the transformed data; these are denoted as Aitchison-based measures in Table 1.

Results

Simulations

To investigate the performance of different beta diversity measures in clustering the popula-

tion into subgroups, we set up three simulation experiments to mimic the microbial composi-

tional data. Throughout the simulations, we set m = 500 and G = 2 clusters, each with N = 100

samples. Using each type of beta diversity presented in Table 1, we obtain a distance matrix

and then apply the PAM for clustering analysis. The adjusted Rand index (ARI) [33] is used

for the assessment of the clustering accuracy. Each experiment is repeated 500 times, and the

average ARI is calculated for the evaluation.

Experiment 1. In the first experiment, we generate the compositional vectors using the

log-normal distribution, as stated in Lu et al. [34]. Denoting by LN(μ, S) the multivariate log-

normal distribution with mean μ and covariance matrix S, the random vector z = (z1, . . ., zm)0,

which is generated from LN(μ, S), is converted to a compositional vector via x ¼ z=
Pm

i¼1
zi.

We set μ = μg in cluster g, g = 1, 2, and S = (0.5|i−j|)m×m is the same in both clusters. The ele-

ments in μ1 are assigned randomly using the normal distribution N(μ, σ) with mean μ and

standard deviation σ, and μ2 is constructed by manipulating μ1. Specifically, the first 50 ele-

ments (10% of the total) of μ1 are generated independently from N(9, 1), the next 50 (10%)

from N(6, 1) and the remaning 400 (80%) from N(3, 1), resulting in compositions of cluster 1

at three levels of abundance, which are high at approximately 1e-2, median at approximately

4e-4 and low at approximately 2e-5. To explore how the compositional changes affect the clus-

tering results using different beta diversity measures, we randomly select 10% of the μ1 ele-

ments at different abundance levels and add perturbations to construct μ2. Perturbing the

high-level μ1 elements by N(0, 1), the median by N(0, 3) and the low level by N(0, 5), we obtain

three simulation scenarios, 1.1, 1.2 and 1.3.

The average ARIs obtained using different beta diversities in Table 1 are presented in Fig

1(A). It is shown that the measures in the same category perform similarly in terms of cluster-

ing and differ from those in the other categories. As stated in Section 2, the measures in the

same category have a close relationship, which is why they yield very similar clustering results.

Among these beta diversities, the Aitchison-based measures seem unstable, and the average

ARIs may be either the best or the worst compared to the others in different scenarios.
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Fig 1. (A): The average ARIs obtained in simulation experiments 1-3, where the solid, dashed and dotted lines indicate scenarios x.1-x.3, respectively. (B): The dashed

and dotted lines represent the cubic smoothing spline of -log(Abundance), where Abundance indicates the average abundance of two clusters along all the
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The implemented perturbations cause compositional changes between clusters. To investi-

gate how the clusters are separated in the analyzed data, we randomly select a representative

dataset from each scenario, indicated as datasets 1.1, 1.2 and 1.3, and illustrate the composi-

tions of each cluster along all the elements in the first column in Fig 1(B). The abundances of

the two clusters are very close to each other. To better visualize the compositional difference

between each pair of clusters, we present their absolute mean difference along all the elements

in Fig 1(B). Note that the significance of the differential between two clusters, rather than the

absolute difference value, reveals the between-cluster dispersion and determines the clustering

results. We highlight the elements with significant p-values in the Wilcoxon signed-rank test

in Fig 1(B). From dataset 1.1 to 1.3, it is shown that the significant between-cluster differences

move from the high-abundance to the median-abundance and then to the low-abundance ele-

ments, while their corresponding absolute mean differences decrease.

Other than the Aitchison-based measures, the performance of the various beta diversities is

determined by their ability to capture different levels of compositional changes between the

clusters. As seen in Fig 1(B), all the compositional changes are actually of very small magni-

tudes. The logarithm implemented by the KL-based measures helps reflect the tiny numerical

changes, as does the square root that the hypersphere-based measures utilize, which leads

them to achieve higher ARIs than the Manhattan- and Euclidean-based measures. Although

measures within the same category perform similarly in many situations, it is notable that they

may present quite different ARIs; for instance, the J-divergence gives a higher ARI than the

JSD and rJSD, and the Euclidean distance yields a significantly lower ARI than the Angular

and Horn. Nevertheless, no matter how the ARIs vary within the categories, the KL- and

hypersphere-based measures can always produce the top ARIs compared with the others.

Experiment 2. The multivariate Dirichlet distribution is a natural choice to generate com-

positional vectors. In the second experiment, we simulate the clusters according to the multi-

variate Dirichlet distribution D(α), where α is a positive parameter of length m and α = αg in

the gth cluster, g = 1, 2. The first 50 elements(10% of the total) of α1 are generated indepen-

dently from the chi-square distribution χ2(10) with 10 degrees of freedom, the following 50

(10%) are from χ2(1) and the remaining 400 (80%) are from χ2(0.1). These correspond to three

levels of abundance in cluster 1, which are high around 2e-2, median around 3e-4, and low;

over 85% are less than 1e-10, including zero values. Similar to Experiment 1, α2 is set up by

manipulating α1. The random perturbations of χ2(2), χ2(1) or χ2(1/2) are superposed on 50

high-, median-, or low-abundance elements, resulting in scenarios 2.1, 2.2 and 2.3, respec-

tively. The average ARIs obtained in the three scenarios and three representative datasets 2.1,

2.2 and 2.3 are illustrated in the second column in Fig 1.

The average ARIs of the KL- and hypersphere-based beta diversity are significantly higher

than those of the Manhattan- and Euclidean-based beta diversity in scenarios 2.2 and 2.3; how-

ever, in scenario 2.1, the former did not show such an advantage. As presented by the repre-

sentative datasets, the significant differences between the clusters in scenarios 2.1-2.3 are

mainly located in high-, median- and low-abundance elements, respectively. Considering the

superiority of the KL- and hypersphere-based measures in quantifying the differentials at

smaller values, it is not surprising that they present higher ARIs in scenarios 2.2 and 2.3.

Unlike the simulated data in experiment 1, many more abundances that are extremely low

were generated in this experiment. When the significant between-cluster differences are

elements. The dots represent -log(Delta), where Delta is the absolute mean difference between two clusters along all the elements, × indicates the coordinates with

p-values of the Wilcoxon signed-rank test between two clusters that are smaller than 0.001, and � indicates the coordinates with p-values between 0.001 and 0.01.

https://doi.org/10.1371/journal.pone.0246893.g001
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located in those elements, using KL- or hypersphere-based beta diversity would improve the

clustering. However, if the significant differences are not located in them but some higher

abundance such as in scenario 2.1, the KL- or hypersphere-based measures will magnify the

noises from those extremely low-abundance elements as well, and this may degrade the clus-

tering. The vanishing superiority of ARIs using the KL- and hypersphere-based measures in

scenario 2.1 confirms this finding. The Aitchison-based measures do not show competitive

ARIs in any scenario of this experiment.

Experiment 3. It is worth noting that the perturbations in the parameter μ of the log-nor-

mal distribution or α of the Dirichlet distribution have no straightforward relationship with

the compositional changes in xi. Due to the correlations within the sample compositions,

parameter perturbations at one level may also bring compositional changes at the other levels.

To minimize this impact on the conclusions, we set up a third experiment to simulate the data-

sets using the multinomial distribution Mul(N, P), where N is the total count, and P = (P1, . . .,

Pm)0, where Pi� 0 and
Pm

i¼1
Pi ¼ 1.

First, we estimate P and the distribution of N by the Monte Carlo method. A total of 10,000

compositional vector replicates are generated according to the simulation settings of cluster 1

in the first experiment, representing an empirical distribution F̂N of N, and a Monte Carlo esti-

mate P̂ for P, the first 10% of the elements of which are at high abundance around 1e-2, fol-

lowed by 10% median around 8e-4, and 80% low around 3e-5. Then, we let P1 ¼ P̂ and

generate the compositions in cluster 1 in three steps, first generating N from F̂N , then simulat-

ing the vector of counts from Mul(N, P1), and finally normalizing the counts as compositions

by dividing them by their summation. A subset of s elements in P1, denoted by Qs, is collected

and perturbed as Q0s ¼ Qs � �, where� is the addition operator in the simplex space [25] and

� is a random sample from D(γ � 1). Therefore, P2 is obtained by replacing Qs in P1 with Q0s
and is used to generate cluster 2. We randomly select s = 50 elements from those at high abun-

dance for the perturbation γ = 10, 000, median for γ = 1, 000, and low for γ = 10, resulting in

scenarios 3.1, 3.2 and 3.3, respectively. The average ARIs and three representative datasets 3.1,

3.2 and 3.3 are presented in the last column of Fig 1.

Similar to Experiment 2, when the compositional changes are intended to be at a high

abundance level in scenario 3.1, the KL- and hypersphere-based beta diversity may yield

smaller ARIs than the Manhattan- and Euclidean-based measures. As the compositional

changes move to lower levels in scenarios 3.2 and 3.3, the advantage of the KL- and hyper-

sphere-based measures becomes increasingly significant. In addtion, in scenarios 3.1 and 3.2,

the J-divergence provides smaller ARIs than the JSD and rJSD, as in scenario 2.1. Correspond-

ing to the discussion in Section 2 based on their definitions, these numerical results demon-

strate that the J-divergence entails a greater risk that the between-cluster signals are obscured

by the within-cluster variations from the lower abundance levels. Considering the highest

ARIs from the J-divergence in Experiment 1, it is implied that the J-divergence is more data-

dependent than the JSD and rJSD.

Conclusion. In addition to the Aitchison transformations, which are not applicable to the

high-dimensional compositional data analysis and show fluctuating results, the beta diversity

measures under investigation in this paper can be partitioned into two classes, the Manhattan-

or Euclidean-based measures and the KL- or hypersphere-based measures. Measures belong-

ing to the same class have similar clustering results. Comparatively, the former emphasizes

compositional changes at higher-abundance elements, while the latter favors differentials at a

lower abundance. Therefore, to cluster the high-dimensional compositional data, if the diver-

sity at high abundance is of interest, the measures in the former class are suggested. Among

them, the J-divergence is given the lowest priority due to its data dependency. Meanwhile, if

PLOS ONE Comparison of beta diversity measures for clustering analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0246893 February 18, 2021 8 / 14

https://doi.org/10.1371/journal.pone.0246893


the dispersion of rare compositions is involved, then the measures in the latter class are

recommended.

Real analysis

Autism dataset. This is the dataset that motivated this study. The gut samples of 278 chil-

dren were collected by the Third Affiliated Hospital of Sun Yat-sen University to explore the

microbial biomarkers for autism, including 209 autism patients and 69 healthy controls. Their

enterotypes are of primary interest, and we became aware of the difference between the clus-

tering results using different beta diversity measures during the exploration. We preprocessed

their 16S rRNA sequencing data according to the QIIME pipeline [35]. The microbial genome

annotation at the genus level yielded the compositions of 278 samples among 780 OTUs,

which are summarized in a data matrix and available in Table in S1 Table. The 50%, 75%, 90%,

and 95% quantiles of the compositional values are 5.2e-7, 4.4e-6, 6.2e-5, and 8.3e-4, respec-

tively. In particular, 87.5% of the elements of the OTU table are zeros, while only 1.7% are

higher than 0.01 and 3.5% are greater than 0.001. We used the beta diversity in Table 1 to clus-

ter the population into G = 2 to 10 subgroups and calculated the Caliński-Harabasz indices, sil-

houette coefficients and prediction strengths of these clustering results. These indices do not

significantly increase as G changes from 2 to 10. Therefore, we set G = 2 in the following clus-

tering analysis.

Using different beta diversities, the samples are rearranged into different clusters. To reflect

the variation among the clustering results from the different measures, we calculate their pair-

wise ARIs and present them as a heatmap in Fig 2. According to the hierarchical tree in the

heatmap, the Aitchson-based beta diversity yields significantly different clusters from the oth-

ers. The KL- and hypersphere-based measures perform similarly and differently from the

Manhattan- and Euclidean-based beta diversity. Among the group of KL- and hypersphere-

based measures, the J-divergence departs slightly from the others. The classification of the beta

diversity measures is consistent with that in the simulation, where two classes that favor com-

positional changes at low or high abundance are identified. We further investigated the signifi-

cantly different OTUs between the clusters that were obtained using different beta diversity

measures. The numbers of OTUs whose adjusted p-values with false discovery rate (FDR) con-

trol are smaller than 0.05 and their mean abundances are listed in Table 2. Except for the

Aitchison-based measures, the KL- and hypersphere-based beta diversity yielded the clusters

with the most OTUs with adjusted p-values less than 0.05. The additional acquired differential

OTUs are mainly located in the elements whose mean abundance is lower than 0.001, demon-

strating the superior capability of the KL- and hypersphere-based measures in determining the

compositional changes at low abundance levels.

Human gut metagenomes. Arumugam et al. [12] first proposed the concept of an entero-

type by clustering 33 fecal samples using rJSD into three subgroups according to 249 OTUs

annotated at the genus level (available online at: https://enterotype.embl.de/MetaHIT_

SangerSamples.genus.txt). They defined three enterotypes, which are named Bacteroides, Pre-
votella, and Ruminococcus and have sample sizes of 19, 6 and 8, respectively. We apply all the

beta diversity measures included in this paper to reanalyze the OTU table. The JSD and hyper-

sphere-based measures provide exactly the same clusters as rJSD. The J-divergence yields a

unique but quite similar clustering results to rJSD, only moving one sample in Ruminococcus
to Bacteroides, with an ARI between these two clustering results of 0.90. The Manhattan-

and Euclidean-based measures also obtain the same partitions. They move two samples from

Prevotella to Bacteroides, with an ARI of 0.82 compared to the clusters from rJSD. The

PLOS ONE Comparison of beta diversity measures for clustering analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0246893 February 18, 2021 9 / 14

https://enterotype.embl.de/MetaHIT_SangerSamples.genus.txt
https://enterotype.embl.de/MetaHIT_SangerSamples.genus.txt
https://doi.org/10.1371/journal.pone.0246893


Aitchison-based measures present very distinct clusters from rJSD, and the ARIs of their clus-

tering results with those of rJSD are only 0.02 and 0.15.

The consistency between the clusters from different beta diversity measures indicates that

the compositional changes in this dataset may be mainly located at a high abundance level.

Fig 2. Heatmap and values of the pairwise ARIs of clustering results using different beta diversity measures in the

autism dataset.

https://doi.org/10.1371/journal.pone.0246893.g002
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Compared to rJSD, the rearrangement of FR.AD.3 from Ruminococcus to Bacteroides by the J-

divergence yields more significantly different OTUs between clusters with low abundances,

such as Akkermansia and Gordonibacter, whose highest compositions are 0.09 and 0.003,

respectively. Moving two samples, DA.AD.4 and FR.AD.6, from Prevotella to Bacteroides by

the Manhattan- and Euclidean-based measures results in a number of OTUs whose adjusted

p-values with FDR control are smaller than 0.1, decreasing from 4 to 2. The compositions of 2

vanishing OTUs, Rhodospirillum and Escherichia/Shigella, are both at low abundances, less

than 2e-5 and 0.035, respectively. It is shown that the rJSD, JSD and hypersphere-based mea-

sures focus more on smaller compositional changes at lower abundances than the Manhattan-

and Euclidean-based measures, and the J-divergence may further enhance this trend.

Discussion

In this paper, we propose three simulation experiments to mimic high-dimensional composi-

tional clusters and investigate the performance of different beta diversity measures in cluster-

ing compositional samples into subgroups. The conclusions can be used to guide the choice of

beta diversity and explain the difference in the resulting clusters using different beta diversity

measures.

Through the simulations, we aim to determine how the beta diversity measures perform for

different settings of the clusters. The high-dimensional compositions are simulated using com-

mon statistical distributions, and ideal clusters with specific levels of compositional changes

are generated to simplify the data complexity for easy clarification of the conclusions. We con-

sidered only G = 2 for convenience in discussion. The findings are general and can be extended

to populations with more than two clusters since the dispersion in a more complicated popula-

tion is composed of compositional changes between any two of the clusters.

In addition to the PAM, there are many other clustering algorithms in statistics, such as K-

means and hierarchical clustering [28]. Because of its robustness and easy compatibility with the

distance matrices from different beta diversity measures, the PAM is popularly employed for

clustering analysis in microbial studies [12, 13], so we chose the PAM to cluster the samples in

this analysis. In addition, both the beta diversity and clustering algorithm may affect the cluster-

ing results. To eliminate the impact of different choices on the clustering algorithms and focus on

the performance of different beta diversity measures, we fixed the use of the PAM in this study.

Table 2. Numbers of OTUs whose adjusted p-values with FDR control are smaller than 0.05, and their frequencies at different abundance levels.

Total OTU mean abundance

>0.001 0.001*1e-5 <1e-5

Manhattan 23 14 9 0

Jaccard 23 14 9 0

J-divergence 29 18 11 0

JSD 35 19 15 1

rJSD 35 19 15 1

Euclidean 4 4 0 0

Angular 7 5 1 1

Horn 3 3 0 0

Bhattacharyya 33 18 15 0

Hellinger 33 18 15 0

Manhattan-ilr 84 5 42 37

Euclidean-ilr 82 16 39 27

https://doi.org/10.1371/journal.pone.0246893.t002
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For real applications, compositional changes may be located at multiple levels of abundance

simultaneously, and no single beta diversity measure can capture all the signals. Researchers

have to combine the results for comprehensive consideration or choose one according to their

needs, i.e., depending on whether the diversity at a high or low level of abundance is of more

interest. There are still many other measures not included in this comparison analysis. Their

performance can also be evaluated using the proposed simulation experiments or inferred by

exploring the connections of their defined formulas with those discussed here.
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S1 Table. Autism dataset. This is a tab-delimited file with relative abundances summarized at

the genus level.
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