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Abstract

Background & aims

To evaluate accuracy and reliability of three-dimensional ultrasound (3D US) for response

evaluation of hepatic metastasis from colorectal cancer (CRC) using a personalized 3D-

printed tumor model.

Methods

Twenty patients with liver metastasis from CRC who underwent baseline and after chemo-

therapy CT, were retrospectively included. Personalized 3D-printed tumor models using CT

were fabricated. Two radiologists measured volume of each 3D printing model using 3D US.

With CT as a reference, we compared difference between CT and US tumor volume. The

response evaluation was based on Response Evaluation Criteria in Solid Tumors (RECIST)

criteria.

Results

3D US tumor volume showed no significant difference from CT volume (7.18 ± 5.44 mL,

8.31 ± 6.32 mL vs 7.42 ± 5.76 mL in CT, p>0.05). 3D US provided a high correlation coeffi-

cient with CT (r = 0.953, r = 0.97) as well as a high inter-observer intraclass correlation

(0.978; 0.958–0.988). Regarding response, 3D US was in agreement with CT in 17 and 18

out of 20 patients for observer 1 and 2 with excellent agreement (κ = 0.961).

Conclusions

3D US tumor volume using a personalized 3D-printed model is an accurate and reliable

method for the response evaluation in comparison with CT tumor volume.
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Introduction

Colorectal carcinoma (CRC) is one of the most common cancers and liver is the predominant

site of metastases and is the initial site in 30% of the distant metastases [1]. In unresectable,

metastatic colorectal carcinoma, the first-line palliative chemotherapy consists of combination

chemotherapy with 5- fluorouracil (5-FU), leucovorin (LV), and oxaliplatin (FOLFOX) and

5-FU/LV/irinotecan (FOLFIRI) [2]. Evaluation of the liver metastases after chemotherapy is

important in order to guide subsequent treatment and to make possible more effective salvage

treatment that prolongs the patient survival [3]. Currently, the revised Response Evaluation

Criteria in Solid Tumors (RECIST) guidelines (version 1.1) are most widely used to assess the

response to treatment for solid tumors, based on measurement of the longest diameter of the

target lesions [4]. However, there are several problems in unidimensional measurement, such

as the difficulty in determining the diameter of irregular and conglomerate masses, discrepan-

cies in the scan planes leading to measurement error, and inter-observer variability [5, 6].

Quantification of the tumor burden using CT and MRI has become an issue in place of uni-

or bidimensional measurement [7–9]. 3D measurement has advantages such as, more accurate

assessment of tumor change, and superior measurement of an irregular mass [5]. With the

recent advances in three-dimensional ultrasound (3D US) and its various clinical applications

of volumetric measurement, oncologic measurement using 3D US has also been recom-

mended [10–13]. Compared with CT or MR, US is more readily available and has no radiation

hazard. Therefore, in cancer patients who require frequent follow-up examinations, 3D US

can be a useful and successful method for monitoring their treatment response. However,

many studies regarding volume measurement using 3D US were experimental or in vitro
phantom studies due to the limited sonographic window using a 3D transducer and associated

with varying patient anatomy and position as well as their respiratory motion [10, 12, 14–18].

With the technological revolution of 3D printing in the medical field, 3D visualization of

human anatomy and variable pathologic conditions and the creation of 3D-printed physical

models became accessible in the diagnostic practices [19–23]. Furthermore, 3D modeling tech-

nology can produce patient-tailored tumor models utilizing CT information. In this study, for

the first time we developed 3D printing hepatic tumor models from patients’ CT data which

are adequate for US evaluation. The purpose of this study is to evaluate the accuracy and reli-

ability of 3D US for the evaluation of hepatic metastasis from CRC using 3D printing, patient-

tailored tumor models obtained from CT images.

Materials and methods

Patient selection and study protocol

This retrospective study was approved by our institutional review board in Seoul National

University Hospital, and informed consent was waived. From January 2014 to July 2014, 94

patients were pathologically confirmed CRC with liver metastasis. The exclusion criteria

included patients who underwent surgical resection or target therapy (n = 21), who were

unavailable for evaluation of the baseline or follow-up CT (n = 7), and in whom the size of the

target lesion was less than 1 cm or more than 5 cm (n = 46). Finally, 20 patients (17 men and

three women, mean age, 58.4 years ± 9.5) who underwent cytotoxic chemotherapy including

FOLFOX or FOLFIRI and who also underwent baseline and follow-up CT, were included in

our study. Baseline demographic characteristics of patients with response group and non-

response group are shown in S1 Table. Fig 1 shows a flowchart of the study population and the

study protocol.

3D US for response evaluation using a personalized 3D-printed tumor model
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CT examination

CT examinations were performed using the following CT scanners: Discovery CT750 HD

(64-channel scanner, GE Healthcare, Milwaukee, WI, USA, n = 4), Brilliance 64 (64-channel

scanner, Philips Healthcare, Cleveland, OH, USA, n = 10), Sensation 16 (16-channel scanner,

Siemens Medical Solutions, Erlangen, Germany, n = 5), and LightSpeed Ultra (8-channel scan-

ner, GE Healthcare, Milwaukee, WI, USA, n = 1). For 8-, 16-, and 64-detector CT examina-

tions, detector collimations of 1.25, 0.75, and 0.625 mm, respectively, were used. A section

thickness of 3.0–3.2 mm with a 2.5 to 3-mm reconstruction interval, a field of view of 300–370

mm, a gantry rotation time of 0.5 s, an effective amperage setting of 150–200 mAs, and a peak

voltage of 120 kVp were used for all of the CT scanners. All patients underwent dual-phase CT

during the arterial and portal venous phases. For dynamic phase imaging, a fixed dose of 1.5

ml of nonionic contrast material (iopromide [370 mg of iodine permilimeter], Ultravist 370;

Schering, Berlin, Germany) per kilogram of body weight (555 mgI/kg) was injected at a rate of

2.0–4.0 mL/sec using a power injector (Multilevel CT; Medrad, Indianola, PA, USA).

Response evaluation

The overall response was determined using the revised RECIST guidelines (version 1.1) [4].

Two radiologists (000, 000) evaluated in consensus the baseline CT and post-chemotherapy

CT images after the fourth cycle. According to the RECIST guidelines, patients with complete

response (CR) and partial response (PR) were categorized into the response group and patients

with stable disease (SD) and progressive disease (PD) were categorized into the non-response

group. Among the target tumor lesions in the patients of both the response and non-response

groups, in order to construct a 3D printing phantom and obtain an appropriate acoustic win-

dow on 3D US, tumors less than 1 cm and more than 5 cm in diameter were excluded in this

study. A total of 40 target lesions from each pre- and post-chemotherapy CT scan of 20 patients

including 10 patients from response group and 10 patients from non-response were selected.

3D-printing hepatic tumor model

One radiologist (000) measured the regions of interest (ROI) of the representative target mass.

PC-based, in-house software (MISSTA—medical imaging solution for segmentation and

Fig 1. Study flowchart of patient selection and phantom construction.

https://doi.org/10.1371/journal.pone.0182596.g001
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texture analysis) reconstructed the 3-dimensional, volume-rendering model and automatically

calculated its volume using the input of ROI information. ROIs were delineated around the

boundary of the tumor in each axial images. In order to minimize measurement errors, we

used the mean value of three measurements obtained on different days. In-house software

(MISSTA) was used for lesion segmentation with automated quantification of the tumor vol-

ume implemented using a dedicated C++ language with MFC (Microsoft Foundation Classes,

Microsoft, Redmond, WA, USA).

For fabricating a 3D-printing, hepatic tumor model, we initially segmented the tumor vol-

ume and made a phantom mold from the CT data, after which the volume files were converted

to stereolithography files of mesh structures. The STL files were when transformed into a

printable code format. A total of 40 tumor phantom molds of 20 patients at a 1:1 scale were

produced using the MakerBot Replicator 2X 3D printer (Makerbot, New York, NY, US). After

finishing these steps, the silicone material mixed with graphite powder for echogenicity was

cast into the tumor phantom mold. Fig 2 shows a flowchart of the 3D-printing hepatic tumor

model.

Tumor volume measurement using 3D-US

Two radiologists (000, 000) independently performed the scanning using an US unit (Aplio

500; Toshiba Medical, Otawara, Japan) equipped with PVT-375BT, a 3.5 MHz curved 2D-

transducer, and a PVT-375MV, 3.5 MHz mechanical convex 3D-transducer with the following

parameters: a dynamic range of 65; a gain of 85; a frame rate of 25 fps; and a depth of 10 cm in

a 2D-transducer, a dynamic range of 65; a gain of 89; a frame rate of 30 fps; and a depth of 9

cm in a 3D-transducer. After each phantom was fixed with a fine thread in the center of a con-

tainer filled with distilled water, the volume transducers were dipped in the water and placed

Fig 2. Study process flowsheet. A) Screenshot of the in-house program of segmentation and 3-dimensional

volume-rendering reconstruction of the tumor. B) A personalized 3D-printed phantom tumor model

constructed by the software and 3D printer. We had irereguler shaped 3D-printed phantom tumor model using

the baseline CT and post-chemotherapy CT images in both response and non-response groups. C)

Experimental setting for sonographic volume measurement of the phantom using 3D-transducer scanning

through an automated sweeping movement. D) Volume measurement of the phantom. Manual outlining of the

boundaries of the tumor phantom at 8 images of transverse (upper left) or longitudinal (upper right) plane.

Then, boundaries at coronal plane (lower left) and 3D reconstructed image and its volume (lower right) were

automatically generated by the built-in software of the ultrasound unit.

https://doi.org/10.1371/journal.pone.0182596.g002
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over 2 cm above the phantom. On 2D US, the phantom was imaged using the maximum trans-

verse plane. The radiologist then adjusted the size and position of the volume of interest (VOI)

so as to contain the phantom. During an automated sweeping movement through a predeter-

mined sweeping angle of 75˚, the radiologist held the transducer in order to avoid any move-

ment. Volumetric measurement of each phantom was performed on the US unit using the

analysis software. The software allowed simultaneous display on the monitor in three, differ-

ent, 2D perpendicular planes. One 2D plane was selected, and a rotation axis that passed

through the center of the tumor to be measured was set on the 2D image. The outer boundary

of a tumor was manually drawn on the 2D image, after which the volume data were rotated on

the rotation axis by 22.5˚ in order to produce the next 2D image. Because each rotation step

was 22.5˚, each measurement required eight rotation steps, manual drawing of the boundaries

on 2D images was performed a total of eight times (Fig 2). In addition to the tumor volume

measurement on US, we estimated the volume of the phantom using the ellipsoid volume for-

mula, V ¼ 4

3
p r1r2r3, where r1, r2 and r3 are half the diameters on each of the x, y, z planes as

seen on 2D US. The reference volume of the phantom was automatically calculated and indi-

cated on the PC-based, in-house software (MISSTA) that was used for modelling 3D phantoms

with CT images. The actual volume of 3D-printed phantoms was measured using the water

displacement method and compared with the reference volume of CT images.

Statistical analysis

In order to evaluate the accuracy of the volume measurement, the mean difference and stan-

dard deviation were calculated. The limits of agreement and 95% confidence intervals were

determined using the methods described in a publication by Bland and Altman [24]. The

inter-observer reliability was evaluated using the intraclass correlation coefficient (ICC) and

the limits of agreement. An ICC > 0.7 was considered to indicate an excellent correlation.

Comparison of the 3D US volume analysis and the RECIST guidelines for determining the

patient response to treatment was performed using kappa statistics. The kappa value of the

inter-observer agreement was assigned as follows: less than 0.20, poor; 0.21–0.40, fair; 0.41–

0.60, moderate; 0.61–0.80, good; and more than 0.81, excellent. A p value less than 0.05 was

considered to indicate a statistically significant difference. Statistical analyses were performed

using the Statistical Package for Social Science (SPSS version 19.0 for Microsoft Windows) and

Medcalc (version 16.2.1, Medcalc Software, Mariakerke, Belgium) statistical software.

Results

The lesion diameters ranged from 10.6 to 33.8 mm (mean 21.8 ± 6.5 mm). In the response

group, the mean diameter decreased from 26.9 ± 5.3 mm to 16.1 ± 3.2 mm after chemotherapy.

In the non-response group, the mean diameter changed from 21.5 ± 6.7 mm to 22.8 ± 5.9 mm

after chemotherapy. There was no technical failure in creating the personalized 3D printed

tumor model.

Accuracy and reliability of volumetric US

The reference volume from CT images was 7.42 ± 5.76 mL (mean ± SD) and the volume of 3D

printed phantoms using the water displacement method was 7.44 ± 5.80 mL (mean ± SD)

without significant difference (p>0.05). The tumor volume measurement by observers 1 and 2

using 3D US were 7.18 ± 5.44 mL and 8.31 ± 6.32 mL, respectively, without significant differ-

ence from the tumor volume from CT (p>0.05). The tumor volume measurement on 3D US

showed better correlation with CT tumor volume than the estimated tumor volume on 2D US,

without a significant difference. The correlation coefficients (r) were 0.953, 0.97, and 0.945 for

3D US for response evaluation using a personalized 3D-printed tumor model
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3D US measurement by observers 1 and 2, and the estimated volume. In addition, the mean

difference and the limits of agreement were less in the measured volume than in the estimated

volume (Fig 3). Table 1 summarizes the comparison of the measured volume using 3D US and

the estimated volume from 2D US with CT tumor volume. Regarding the reliability of the vol-

ume measurement on 3D US, an excellent reliability correlation was observed (ICC = 0.978,

95% CI, 0.958–0.988).

Treatment response evaluation

Table 2 summarizes the changes in diameters of the tumor on CT and 3D US, and correspond-

ing response evaluation according to the unidimensional and volumetric RECIST criteria.

The average change in the unidimensional diameter on pre- and post-chemotherapy CT was

33.27%, whereas the percentage change in CT volume was 64.0%. In the response group, an

average of a 43.49% was decreased in diameter, whereas a 71.42% was decreased in volume. In

the non-response group, an average of a 10.15% was increased in diameter, while there was a

22.33% increase in volume.

For therapeutic response assessment using volumetric measurement, unidimensional

RECIST criteria was extrapolated to volume criteria. We used the formula V ¼ 4

3
p r3 where r

is half the diameters for extrapolation of unidimensional criteria to the volumetric criteria.

Therefore, PR represented a greater than 65% reduction in volume (1–0.73ffi 0.65), PD

Fig 3. Comparison of measured volume using three-dimensional ultrasound and estimated volume from 2D diameters V ¼ p

6
abc

� �

with the true volume of tumor phantoms. A-C) Plots of difference between the volume measurement and estimation against the true

volume. The 95% limits of agreement (mean difference ± 1.96 SD) calculated using the Bland and Altman method were indicated as dashed

line.

https://doi.org/10.1371/journal.pone.0182596.g003

Table 1. Comparison of measured volume using three-dimensional ultrasound and estimated volume from 2D diameters V ¼ 4

3
p r1r2r3

� �
with the

true volume of tumor phantoms.

Measured Volume

(observer 1)

Measured Volume

(observer 2)

Estimated volume from 2D

diameters

V ¼ 4

3
p r1r2r3

� �

Mean volumea 7.18 ± 5.44 8.31 ± 6.32 9.10 ± 8.47

Mean difference from reference volume (95% CI) -0.24 (-0.79 to 0.32) 0.89 (0.38 to 1.40) 1.69 (0.55 to 2.82)

SD of differences between measured volume and reference

volume

1.75 1.58 3.56

Upper limit of agreement 3.19 (2.23 to 4.15) 3.99 (3.12 to 4.86) 8.66 (6.70 to 10.62)

Lower limit of agreement -3.66 (-4.63 to

-2.70)

-2.21 (-3.08 to

1.34)

-5.29 (-7.25 to 3.33)

a The mean reference volume was 7.42 ± 5.76 mL

https://doi.org/10.1371/journal.pone.0182596.t001
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represented a greater than 73% increase in tumor volume (1.23ffi 1.73), and SD indicated less

than a 65% reduction to less than a 73% increase in tumor volume [25]. After applying the vol-

umetric criteria, two patients with PR in the response group changed to SD, and one patient

with SD in the no-response group changed to PD based on the CT volume. Overall, disagree-

ment in three patients according to the RECIST criteria and change to the no-response group

in two patients were observed after volumetric response evaluation. Compared to the response

evaluation based on the CT volume, the response evaluation based on 3D US was concordant

in 17 out of 20 patients for observer 1 and in 18 out of 20 patients for observer 2. In terms of

the response versus the non-response group, the CT volume and the 3D US volume measure-

ment were identical in 19 of the 20 patients for both observers with excellent inter-observer

agreement (κ = 0.961).

Discussion

We found that using CT tumor volume as a reference standard, volumetric 3D US with a per-

sonalized 3D-printed tumor model from CT showed no statistically difference (7.18 ± 5.44 mL

for observer 1 and 8.31 ± 6.32 mL for observer 2 vs 7.42 ± 5.76 mL on CT, p>0.05). In addi-

tion, 3D US provided a high correlation coefficient with CT volume (r = 0.953, observer 1;

r = 0.97, observer 2) and a high inter-observer reliability (ICC = 0.978, 0.958–0.988). Regarding

the response assessment, the percentage change in CT volume was greater than the percentage

change in diameter on both pre- and post-chemotherapy (64.0% vs 33.27%). 3D US was in

agreement with the CT volume in 17 of the 20 patients for observer 1 and in 18 of the 20

patients for observer 2 and with excellent inter-observer agreement (κ = 0.961).

Previous studies regarding the volumetric 3D US used manually made phantoms, such as

pieces of ham, or tissue phantoms made using pieces of chicken or pork [10, 16, 17]. In this

study, we first reconstructed the hepatic tumor applying a personalized 3D-printed tumor

model from CT images. Our study results showed that 3D US has no statistically significant

difference compared to CT tumor volume, and thus providing a high value of correlation coef-

ficient as well as high inter-reader agreement. These results are concordant with the results of

previous studies [10, 16, 17, 26, 27]. The absolute measurement error in Park’s study was 2.6

mL ± 0.2 mL (mean ± SD) using an US phantom made of ham with high agreement between

observers [10]. Xu et al. demonstrated that the volume measurement error of 3D US was 0.3%

± 3.3% in regular phantoms, -0.4% ± 3.7% in irregular phantoms, and 0.9% ± 11.3% in liver

tumor compared with -5.3 ± 9.4%, 13.6 ± 28.0%, and 15.3 ± 37.3%, respectively, for 2D US

[16]. In their in vivo study conducted using 68 liver tumors, 31 liver tumors was unsuccessfully

measured for various reasons including tumor rupture or bleeding, and inability to separate a

tumor from liver tissue. In contrast, using 3D-printing technology, we could reconstruct per-

sonalized hepatic tumor phantoms using each patient’s CT data and, therefore, ascertain the

true volume of a tumor without surgical resection. Furthermore, we could also evaluate the

change in the volume of a hepatic tumor after treatment. With the technological revolution of

3D printing in the medical field, 3D visualization of anatomy and pathologic conditions and

creation of 3D-printed physical models became accessible in the diagnostic imaging practices

[19–23]. In many cases, the 3D modeling has been used for patients with complex disease or

anatomy in the preoperative setting. Recently, personalized or realistic experimental phantoms

were constructed for validation of new imaging techniques [28] [29]. In our study, we recon-

structed hepatic tumor models utilizing CT information to validate the 3D US quality and to

investigate the volumetric criteria in the chemotherapy patients. Therefore, compared with the

other phantom studies regarding 3D US, our patient-tailored, hepatic tumor models can simu-

late the real tumor morphology and changes according to the treatment.
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Although RECIST criteria are most widely used to assess the response to treatment for solid

tumors, its limitations associated with unidimensional measurement, such as difficulty in

determining the diameter of irregular or conglomerated lesions, have been a dilemma in the

clinical fields [5, 6]. Instead, volumetric response evaluation has gained much interest and

acceptance in place of uni- or bi-dimensional methods [7–9, 30, 31]. Volumetric measurement

has advantages regarding better quantification of the total tumor burden, more accurate

assessment of tumor change, and better measurement of irregular masses [5]. However, there

have been only a few studies regarding the accuracy and reliability of volumetric response eval-

uation, and there are currently no established volumetric criteria. In our study, compared to

the RECIST criteria, volumetric criteria based on the CT made a change in the response evalu-

ation in 15% (3/20) of the patients (PR to SD in two patients, SD to PD in one patient) and a

change in the group in 10% (2/20) of the patients, i.e. response group to no-response group.

Our discordance rate of 15% was similar to previous studies [3, 5]. Fang et al. demonstrated

that volumetric evaluation showed good agreement with RECIST (κ = 0.779) and the discor-

dance rate was 13.3% (6/45) [3]. In our study, two patients with PR determined by RECIST

were considered as SD by volumetric assessment. This could be explained in that although a

larger change in volume than in longitudinal diameter was observed in the study, the volumet-

ric criteria derived from extrapolation of unidimensional criteria had a much wider range for

stable disease, i.e. 65% reduction to 73% increase. Therefore, a new, validated, volumetric

guideline is needed rather than simple transformation using the volumetric formula of the

RECIST unidimensional criteria.

With the advances in 3D US technology, it has been reported that 3D US is accurate and

reliable for volume measurement in various fields [10, 32–35]. However, with regard to clinical

application, 3D US techniques are more difficult for the user to manipulate than conventional

US techniques due to bigger assemblies and longer time spending on the data acquisition and

image interpretation process [12]. Therefore, many studies have been experimental or in vitro
phantom studies because of the limited sonographic window using a 3D transducer [10, 12,

14–18]. Furthermore, small US window of intercostal and substernal view for the hepatic

tumors in the human subjects makes more difficult to cover the whole target lesion with a big

3D transducer. Due to such limitations of 3D US for application in hepatic metastasis of CRC

patients, we reconstructed the patients’ hepatic tumors using 3D printing method, and vali-

dated the accuracy and reliability of 3D US measurement. Therefore, future improvement of

scanning conditions of 3D US, including development of smaller probe for better sonic win-

dow, improvement of scanning speed, and simplification of manipulating method, will enable

us to use 3D US in the regular follow-up examinations after chemotherapy in the metastatic

CRC patients. Furthermore, if new volumetric criteria are established in the future, we can use

3D US as a follow-up tool in place of or complementary to CT for assessment of volumetric

treatment response in the patients undergoing chemotherapy.

Our study has several limitations. First, as we did not fully understand the acoustic charac-

teristics of the 3D-printed phantoms made up of silicone and graphite powder, measurement

error owing to the thick echogenicity at the interface between the phantom and water was

inevitable. Despite the high inter-observer agreement (ICC = 0.978) in 3D US measurement,

different individual measurement tendencies were observed. For optimal visualization of

phantoms on 3D US, further studies with in-depth knowledge of the acoustic characteristics of

the various materials used for 3D printing will be needed. Second, we did not evaluate intra-

observer variability, i.e. the variability of repeated volume measurement by the same observer.

The factors influencing measurement variability including depth of field of the image and seg-

mentation of the tumor in each plane are more affected by different observers, thus inter-

observer variability during regular follow-up US exams are more important issue in the clinical
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field rather than intra-observer variability. However, further study with evaluation of intra-

observer variability would be needed to validate the reliability of 3D US volumetry. Third,

although we simulated hepatic metastasis of CRC patients using 3D printing phantoms for

evaluation of 3D US volumetric measurement, for clinical application of 3D US we need fur-

ther study for validation of this technique in the patients with hepatic metastasis.

In conclusion, 3D US volumetric measurements applying a personalized, 3D-printed

tumor model using CT in patients with hepatic metastasis from CRC, constitute an accurate

and reliable method for the response evaluation compared with the tumor volume from CT.

With the advantages of accessibility, high cost-effectiveness, and no radiation hazard com-

pared with CT and MRI, 3D US would be useful in the volumetric treatment response evalua-

tion of cancer patients.
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