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Real‑time prediction of formation 
pressure gradient while drilling
Ahmed Abdelaal, Salaheldin Elkatatny* & Abdulazeez Abdulraheem

Accurate real‑time pore pressure prediction is crucial especially in drilling operations technically and 
economically. Its prediction will save costs, time and even the right decisions can be taken before 
problems occur. The available correlations for pore pressure prediction depend on logging data, 
formation characteristics, and combination of logging and drilling parameters. The objective of this 
work is to apply artificial neural networks (ANN) and adaptive neuro‑fuzzy inference system (ANFIS) to 
introduce two models to estimate the formation pressure gradient in real‑time through the available 
drilling data. The used parameters include rate of penetration (ROP), mud flow rate (Q), standpipe 
pressure (SPP), and rotary speed (RS). A data set obtained from some vertical wells was utilized to 
develop the predictive model. A different set of data was utilized for validating the proposed artificial 
intelligence (AI) models. Both models forecasted the output with a good correlation coefficient (R) for 
training and testing. Moreover, the average absolute percentage error (AAPE) did not exceed 2.1%. 
For validation stage, the developed models estimated the pressure gradient with a good accuracy. 
This study proves the reliability of the proposed models to estimate the pressure gradient while 
drilling using drilling data. Moreover, an ANN‑based correlation is provided and can be directly used by 
introducing the optimized weights and biases, whenever the drilling parameters are available, instead 
of running the ANN model.

List of symbols
Pg  Pressure gradient
ANN  Artificial neural network
ANFIS  Adaptive network-based fuzzy interference system
R  Correlation coefficient
AAPE  Average absolute percentage error
AI  Artificial intelligence
FIS  Fuzzy inference system
R2  Coefficient of determination
MSE  Mean squared error
WOB  Weight on bit
RPM  Rotating speed in revolutions per minute
ROP  Rate of penetration
GPM  Gallon per minute
SPP  Standpipe pressure
T  Torque
fitnet  Function fitting neural network
newfit  Create fitting network
newcf  Create cascade-forward backpropagation network
newelm  Create Elman backpropagation network
newlrn  Layer-recurrent network
newdtdnn  Create distributed time delay neural network
newff  Create feedforward backpropagation network
newpr  Create pattern recognition network
newfftd  Create feedforward input-delay backpropagation network
trainbr  Bayesian regularization
trainoss  One step secant backpropagation
trainlm  Levenberg–Marquardt backpropagation
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trainbfg  BFGS quasi-Newton backpropagation
traingdx  Gradient descent with momentum and adaptive learning rule backpropagation
tansig  Hyperbolic tangent sigmoid transfer function
logsig  Log-sigmoid transfer function
hardlims  Hard-limit transfer function
purelin  Linear transfer function
softmax  Softmax transfer function
tribas  Triangular basis transfer function
satlin  Saturating linear transfer function
netinv  Inverse transfer function
radbas  Radial basis transfer function
b1  Input layer biases
b2  Output layer bias
w1  Weights linking inputs and hidden layer
w2  Weights linking output and hidden layer

Subscripts
i  Index of each neuron in the hidden layer
n  Normalized value

Formation pressure is exerted by the fluids within the rock pore space. At certain depth, the normal gradient 
originates from the saltwater column weight extended from the surface to the point of interest. The deviation 
from the normal trend can be described as abnormal which can be either subnormal or  overpressure1. Normal 
pressure is not constant, and it depends on the amounts of dissolved salts, fluid types, gas presences and tem-
perature gradient. Supernormal or overpressure is the formation pressure exceeding the normal hydrostatic 
pressure while subnormal pressure is the one that is lower than the normal pressure. Supernormal is created by 
normal pressure in addition to an extra pressure source. The excess pressure may be attributed to different reasons 
which may be geological, mechanical, geochemical and  combined2. Abnormal pressure zones may lead to severe 
technical and economic issues such as kicks and blowouts. Subnormal pressure may lead to loss of circulation 
and differential pipe sticking resulting in setting additional casing strings (higher drilling costs)2. Accurate real-
time formation pressure estimation may provide enhanced well path and casing design, better wellbore stability 
analysis, effective mud program and reduced overall drilling  costs3,4.

Formation pressure estimation can be either quantitative or qualitative. Most of these techniques depend 
on comparing the normal trend lines with the observed ones graphically to pick the anomalous changes that 
may refer to abnormal pressure zones. The existing techniques in the literature utilized well logs, strata proper-
ties and drilling parameters. Hottman and  Johnson5 were the first to estimate the pore pressure based on shale 
logging data by constructing cross plots that relate the pressure gradient to resistivity ratio or sonic travel time 
difference between the observed and the normal trend. Matthews and  Kelly6 utilized a semi-log scale for Hott-
man and Johnson correlation.  Pennebaker7 replaced the sonic travel time difference utilized by Hottman and 
 Johnson5 with the sonic travel time ratio. The author estimated the pore pressure from an X–Y cross plot like 
the one belongs to Hottman and Johnson. This technique used a single trendline for a certain rock type globally, 
but this may not be true for all rock types.  Eaton8 confirmed that formation pressure and overburden pressure 
gradients affect log-derived properties. As a result, the Hottman and Johnson correlations should be expanded 
to include overburden stress effect.  Eaton8 proposed an empirical model based on sonic data to predict the pres-
sure gradient in shale formations.

Gardner et al.9 analysed the data used by Hottman and Johnson and introduced another way to estimate the 
formation pressure by involving the overburden pressure.  Bowers10 mentioned that a power relationship exists 
between effective stress and sonic velocity. The author estimated the formation pressure using sonic data after 
rearranging the power equation and replacing the effective stress with 

(

αV − porepressure
)

 . Shell introduced 
another sonic-based prediction technique called Tau model by introducing a “Tau” parameter in the equation 
of the effective  stress11,12. Foster and  Whalen13 were the first to use the equivalent depth method, a vertical 
method, to estimate the formation pressure from electrical logging. Moreover,  Ham14 utilized the equivalent 
depth approach with sonic, resistivity and density to predict the formation pressure and drilling fluid weight 
needed in Gulf Coast wells.  Eaton15,16 introduced empirical models based on resistivity or conductivity to estimate 
the pressure gradient in shale using well logging. This method can be fairly used in the sedimentary basins where 
under-compaction is the main source of  overpressure17,18. Based on the drawbacks of the solo usage of ROP 
as an indicator of pore pressure, ROP should be corrected or normalized to consider the variation in different 
drilling parameters.  Bingham19 proposed the D exponent as an attempt to correct the ROP for the variations in 
weight on bit (WOB), RS and well diameter. Jorden and  Shirley20 proposed a modification to Bingham approach 
by introducing another term called  dexp. Rehm and  McClendon21 adjusted Jorden and Shirley  dexp by including 
the effect of drilling fluid density change. Quantitatively, formation pressure can be estimated using  dc values 
by Eaton method and ratio method.  Eaton15 and Contreras et al.22 observed that the corrected  dexp graph is very 
analogous to the resistivity graph. Therefore, Eaton developed a prediction model for formation pressure gradi-
ent using estimated dc, normal  dc value, and the gradients of overburden and normal formation pressures. The 
ratio method was proposed as a simple technique to estimate the pore pressure from d exponent or resistivity 
or sonic data without overburden  pressure1.
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Artificial intelligence. AI is an engineering science that uses high computational capabilities to develop 
computer programs to solve problems by mimicking human brain  intelligence23,24. AI has different techniques 
such as ANN, ANFIS, functional networks, and support vector machine that show robust performance and 
high accuracy for classification and  prediction25. AI is extensively utilized in different branches of engineering, 
medicine, economics, and  military26. AI has been broadly applied in oil and gas industry because it has not only 
the capability to solve complicated issues, but it also represents them with a high  accuracy27. Intelligent models 
were developed for various targets such as estimating the equivalent circulation density in real-time28–30, pore 
pressure estimation while  drilling31,32, porosity  prediction33, resistivity  prediction34, predicting mud rheologi-
cal  properties35–39, predicting the unconfined compressive  strength40, estimating the oil recovery  factor41, bulk 
density log  prediction42,43, well  planning44, lithology  classification45, fracture density  estimation46, estimating the 
static elastic  moduli47,48, Poisson’s ratio  prediction49–51, and prediction of formation  tops52.

AI‑based formation pressure prediction. Few studies applied different AI techniques to estimate the 
formation pressure. Li et al.53 utilized ANN to estimate the formation pressure in the Saertu and Xingshugang oil 
fields in Daqing. The authors included input parameters like sonic transit time, gamma ray (GR), natural poten-
tial, and pipe pressure. Hu et al.54 employed ANN to estimate the pore pressure. The authors included inputs 
such as depth, density, sonic transit time, and GR. Keshavarzi and  Jahanbakhshi55 applied neural networks to 
estimate the gradient in Asmari field. The inputs included porosity, permeability, density, and depth. Aliouane 
et al.56 introduced ANN model to estimate the formation pressure from well logs in shale gas reservoir. Rashidi 
and  Asadi57 proposed ANN model to estimate the formation pressure utilizing mechanical specific energy and 
drilling efficiency. Ahmed et al.58 utilized ANN to create a prediction model for formation pressure using seven 
inputs containing a combination of well logs and drilling data. Ahmed et al.59 compared five machine learning 
techniques to predict the formation pressure with the same input parameters utilized in Ahmed et al.58 work.

The provided models in the literature used some logging data, which may not be available while drilling as 
logging while drilling (LWD) is not used in all wells. Even if the LWD is present in the drill string, it is placed tens 
of feet above the bit that does not reflect the instantaneous response of the formations being penetrated in real-
time. Other models used some reservoir properties derived from either logging data or lab measurements that 
limit their usage while drilling. The motivation is to develop a way to forecast the formation pressure gradient in 
real-time while drilling by using available drilling data only without combining them with other data that are not 
available in all wells. By doing so, we are maximizing the benefits of the available drilling data without involving 
higher costs to predict a crucial parameter that enhances the drilling operations technically and economically. 
The goal of this study is to use ANNs and ANFIS to propose two models for formation pressure gradient predic-
tion in real-time using the available drilling data without additional costs. Moreover, an ANN based correlation 
is provided to use it directly to estimate the gradient. Unlike the developed empirical equations, the models in 
this study do not need a normal pressure trend to estimate the gradient.

Methodology 
The methodology started with data collection followed by data cleaning and filtration. Then, data analysis was 
performed to get more insights about the data sets. After that, data were randomly divided while ensuring that 
the data sets are representative. The next stage was to select initial model parameters for the first runs. The 
parameters were updated, and the process was repeated until getting the best results. Once the optimum results 
came out, the model hyperparameters were extracted. Finally, the models were validated by blind holdout dataset 
that was not involved in developing the predictive models. Figure 1 briefly shows the methodology conducted 
in this work to develop the AI models.

Data processing and analysis 
Data description. A set of data containing around 3145 points was provided from vertical sections in the 
same area. The set of data included the drilling data, the formation pressure and depth. The drilling data were 
utilized as inputs to feed the model to predict the formation pressure gradient as an output. These drilling data 
included hydraulic data like Q, and SPP, and mechanical data such as: RS, ROP, torque (T), and WOB. These 
drilling data can be recorded either at surface or downhole while drilling and are influenced by strata being 
penetrated and their fluid content. Statistical analysis was performed on the field data, and it showed that the 
data covered a broad range of the inputs and the output as presented in Table 1. For instance, the data had a good 
representation of the formation pressure gradient as it covers subnormal, normal and supernormal gradient 
values. Table 2 shows a sample of the field data utilized in this study. The relationship between each variable and 
the other variables was tested in terms of R as shown in Fig. 2. Moreover, cross-plots of each drilling parameter 
with pore pressure gradient were constructed as shown in Fig. 3.

Data processing . In AI, the quality of data is as significant as the prediction quality. As a result, the data 
set was cleaned by eliminating the unrepresentative values such as −999 values, and NAN (not a number). 
Then, the outliers which are the observations located outside the overall pattern of a distribution should be 
removed because they may cause serious problems in statistical  analysis60. Outliers may exist owing to human 
and/or instrument error. Outlier detection can be conducted by many ways such as Z-Score (removing values 
located away from the mean by more than a certain number of standard deviations) and a box-and-whisker 
plot (removing values located beyond the upper and the lower limits determined by dividing the data into four 
quartiles)61. The quality and the reliability of the inputs were checked by various techniques like comparing the 
recorded variables with the ranges of the equipment and with the similar variables in the offset wells within the 
field. Moreover, the output was compared to the formation pressure gradient values produced by known trends 
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of the gradient of the strata in the selected area. The check showed a good matching between the recorded and 
produced pressures indicating the reliability of the measurements.

Selection criteria of the inputs. The strata characteristics influence the drillability of the geological col-
umn because the properties control the impedance to drill through strata. The drilling data may by some means 
mirror the resistance faced while drilling different formations. Rotary speed and weight on bit can be adjusted 
based on the nature of the  formations62. Additionally, the generated cuttings during drilling have impacts on the 
pressures and rates of the pump required to ensure good hole cleaning. All the previous drilling parameters and 

Figure 1.  Flow chart of the methodology conducted in the study.

Table 1.  Data statistical Analysis.

Statistical
Parameter Q (gal/min) SPP (psi) RS (rpm) WOB (klb) T (klb.ft) ROP (ft/h) Pressure gradient (psi/ft)

Minimum 283.69 2000.54 65.92 5.21 2.87 3.02 0.36

Maximum 308.83 3140.57 148.96 20.73 5.82 65.08 0.58

Mean 299.52 2599.73 118.73 14.13 3.85 27.22 0.48

Standard deviation 4.53 377.66 22.05 2.38 0.38 9.43 0.08

Skewness −0.78 0.09 −0.86 −0.10 0.99 0.45 − 0.36

Kurtosis 3.55 1.28 2.47 4.44 4.84 3.60 1.36

Table 2.  A sample of the field data utilized to build the models.

Pump rate (PR) (gal/min) SPP (psi) RS (rpm) ROP (ft/h) Pressure gradient (psi/ft)

301.6 2049 70.04 19.27 0.376

301.6 2222 138.23 34.31 0.388

298.0 2271 139.52 24.51 0.477

298.0 2304 141.19 44.61 0.462

298.0 2333 145.67 47.19 0.489

290.8 2778 80.44 29.91 0.568
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the formation type play an important role in controlling penetration  rate63,64. Consequently, the drilling data 
can somehow reflect the drilled formations nature, and in turn, their formation pressures. ROP can be used as 
an indicator to identify supernormal layers while drilling. ROP was included to develop these models since it 
includes the effect of other drilling variables like WOB. Furthermore, RS was utilized to build the models since 
it indirectly contains the effect of the T. For the simplicity of the model, two mechanical variables (ROP and RS) 
were employed along with two hydraulic variables (SPP and Q).

Development of the pore pressure gradient models 
ANN model . After checking the quality of the selected dataset. The obtained data had been divided into two 
groups with 3:1 ratio for training and testing. The ANN model hyperparameters, including different combina-
tions of various available options for ANN hyperparameters, were optimized by testing many scenarios per each 
parameter. The different options for each ANN parameter and the optimum options are listed in Table 3. The R, 
coefficient of determination  (R2) and AAPE were computed by Eqs. (1), (2) and (3) as presented in Supplemen-

Figure 2.  R-values between each input and the formation pressure gradient along with a table containing the 
R-values between each two variables.
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Figure 3.  Cross-plots of pressure gradient versus different drilling parameters.
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tary Appendix 1. The hyperparameters providing the highest R,  R2 and the minimum error (RMSE, MSE and 
AAPE) had been selected. It was found that the optimum number of neurons is 10 occupying only one hidden 
layer. The model was built using newcf network with Levenberg–Marquardt algorithm (trainlm) as a training 
function to obtain the optimum weights and biases using 0.12 learning rate. Log-sigmoidal-type (logsig) activa-
tion function was used as a transfer function connecting the input and the hidden layer and a linear-type (pure-
lin) activation function linked the hidden and output layers. Figure 4 shows a typical structure of the proposed 
ANN model.

The proposed ANN model consists of three layers. The first layer contains the inputs; the second layer contains 
the neurons with their weights and biases and the third layer is the output layer. The input parameters for the 
model were Q, ROP, SPP and RS. The ANN model predicted the formation pressure gradient with high R of 0.981 
and 0.973 for training and testing respectively. Moreover, the RMSE ranges between 0.015 to 0.018 and AAPE 
does not exceed 2.22% for training and testing. The obtained results for training and testing are summarized in 
Table 4. The error (predicted—actual) histogram shows that most predicted values have very small error ranging 
between − 0.02 to 0.02 psi/ft as shown in Fig. 5. The network training performance was monitored against mean 
squared error as shown in Fig. 6 with the best validation at epoch 48. Figure 7 presents the cross plots of the 
estimated versus the recorded target values showing the points coinciding with the 45° line. The recorded and 
predicted target values were graphed on the same plot to observe the variations through the chosen intervals, as 
presented in Fig. 8, indicating high estimation accuracy.

New empirical correlation for formation pressure gradient. The weights and biases were extracted from the opti-
mized ANN model as listed in in Table 5 to provide an empirical equation for predicting the pore pressure gra-
dient from the available drilling parameters. The developed equation in the normalized form is given by Eq. (1) 

Table 3.  Parameters optimization process.

Parameter Options/range Optimum option

Hidden layers number 1 to 4 1

Neurons number per each layer 1 to 40 10

Learning rate 0.01 to 0.9 0.12

Network fitnet–newfit–newlm–newff–newpr–newfftd–newdtdnn–newelm–newnarx–newcf (newcf)

Training function trainlm–trainbr–traincgb–traincg–trainrp–trainb–trainbr–trainbfg–traincgf–
traincgp–traingdx–trainoss–trainr–trainscg (trainlm)

Transfer function logsig–satlin–softmax–hardlim–purelin–compet–hardlims–poslin–satlins–radbas–
tansig–tribas (logsig)

Figure 4.  Schematic of the structure of the developed ANN.
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and may be utilized after normalization stage of the input parameters to be in the range of −1 to 1 as given by 
Eq. (2).

where Pgn is the normalized Pg, N is the neurons number, i.e. 10, w1i is the weight associated with each feature 
between the input and the hidden layer, w2i is the weight associated with each feature between the hidden and 
the output layer, b1i is the bias attached to each neuron in the hidden layer, b2 is bias of the output layer.

(1)

Pgn =

[

N
∑

i=1

w2i

(

1

1+ exp
(

−
(

PRn ∗ w1i,1 + SPPn ∗ w11,2 + RSn + w1i,3 + ROPn ∗ w1i,4 + b1,i
))

)]

+b2

Table 4.  Training and testing results for ANN model.

Parameter Training Testing

R 0.98 0.97

R2 0.96 0.95

AAPE (%) 1.90 2.21

RMSE (psi) 0.015 0.018

Figure 5.  Error histogram of the developed ANN model.
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Figure 6.  Training performance in terms of MSE showing the best validation at epoch 48.
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where, Yinor is the normalized value of variable Y  , Yi is the value of variable Y  at point i, Yimin is the minimum value 
of variable Y  , Yimax is the maximum value of variable Y  . The minimum and maximum values for each parameter 
that were used in data normalization are shown in Table 6.

Steps to estimate the pressure gradient using the ANN‑based correlation. 

1. Normalize the input drilling parameters into PRn, SPPn, RSnandROPn using Eq. (2) and statistical data in 
Table 6.

2. Calculate the normalized value of the output Pgn using Eq. (1) and the optimum weights and biases listed in 
Table 5. The input data should be ordered as follows: pump rate (GPM), SPP (psi), rotary speed (RPM) and 
ROP (ft/h), with the same units.

3. The obtained Pgn is denormalized to an actual Pg value by Eq. (3):

where, Pgn is the normalized Pg estimated by the developed correlation, Pg is the actual value (psi/ft).

ANFIS model. ANFIS application in petroleum engineering showed a high reliability as a predictive  tool65. 
Genfis 1 that uses grid partitioning and Genfis 2 that uses subtractive clustering were both tested to obtain the 
model. Genfis 2 provided better results compared to Genfis 1 consequently, the ANFIS model was created by 
the subtractive clustering technique. The optimization process included using different combinations of cluster 
radius size and number of iterations. The model was built using the Sugeno–Fis type with a cluster radius of 0.2 
and 400 iterations resulting in the best results. The ANFIS model predicted the target with high R of 0.98 and 
0.97 for training and testing. Moreover, the RMSE was around 0.02 psi/ft and AAPE does not exceed 2.1% for 
training and testing. The obtained results for training and testing are summarized in Table 7. Figure 9 presents 
the cross plots of the predicted versus recorded target values showing the points coinciding with the 45° line. 
The recorded and estimated values were graphed on the same plot to observe the variations along the chosen 
intervals, as presented in Fig. 10, indicating high prediction accuracy.

Models validation. The proposed ANN and ANFIS models were validated using a blind holdout data set 
that were not involved in developing the models. A data set (92 points) from the same field was collected to 
feed the models and compare the recorded versus the estimated pressure gradient values. The models provided 
continuous profiles of the target using the profiles of the drilling data. Both ANN and ANFIS predicted the 
target with high R of about 0.99 between the recorded and estimated target values for validation. Additionally, 
the RMSE was around 0.01 psi/ft and AAPE did not exceed 1.63% for the two models. Figure 11 presents the 
cross plots of the predicted versus recorded target values showing the points coinciding with the 45° line. The 
proposed models performed reasonably well when tested using testing and validation data sets that were not 
included in the training stage.

(2)Yinor = 2

(

Yi − Yimin

Yimax − Yimin

)

− 1

(3)Pg = 0.11(Pgn + 1)+ 0.36

Figure 7.  Cross-plots of the estimated versus recorded target values (A) training, and (B) testing (ANN model).
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Figure 8.  Formation pressure gradient profiles (A) training, and (B) testing (ANN model).

Table 5.  Extracted weights and biases for the empirical correlation.

Neuron index (i)

w1

w2 b1 b2w1i,1 w1i,2 w1i,3 w1i,4

1 2.5805 −0.1332 −1.5521 2.4388 1.8362 −1.6164 3.5914

2 1.1140 0.3965 −2.0108 2.0790 −1.6815 −2.5735

3 5.8387 31.5162 5.8181 6.0894 12.2992 0.9777

4 6.6950 1.9846 6.4276 2.3458 −3.4529 0.4803

5 0.8564 1.9802 −0.1041 2.1931 −1.7299 3.2192

6 −6.2878 −4.4130 4.7209 1.6685 −6.8253 5.0057

7 7.2797 15.3465 − 0.6331 −1.6916 4.0337 −2.1368

8 −3.2785 −10.7832 1.4624 0.7178 −3.0489 −3.1494

9 −6.7507 −4.1005 2.3319 1.9685 −4.9894 −4.8898

10 −1.6419 −1.7707 −0.8873 −2.5208 −2.2377 −3.4025
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Conclusion 
In this work, a novel way for estimating the formation pressure gradient using AI while drilling using the avail-
able surface drilling data was introduced. Unlike the developed empirical models in the literature, the developed 
models do not need a normal trend to predict the formation pressure. The developed models can be merged 
with any automatic drilling system to estimate the pressure gradient while drilling at low costs. Moreover, it may 
decrease the non-productive time by minimizing the time-consuming drilling issues by forecasting and minimiz-
ing them before they might occur. This tool may improve the drilling operations technically and economically 
during drilling and pre-drilling design to take the right decisions and to avoid possible issues like kick, blowout, 
and circulation losses. The results of this work can be listed as follows:

• The optimum parameters of the ANN model are one hidden layer containing 10 neurons, newcf network with 
Levenberg–Marquardt algorithm (trainlm) as a training function with 0.12 learning rate, and a log-sigmoidal 
as a transfer function.

• The optimum parameters of the ANFIS model based on subtractive clustering are cluster radius of 0.2, and 
400 iterations.

• The proposed models can predict the pore pressure gradient with reasonable accuracy as indicated by R 
around 0.975, and RMSE around 0.018 psi.

• The ANN-based correlation can be directly utilized by introducing the optimum weights and biases, whenever 
the drilling parameters are available, instead of running the ANN model.

Table 6.  Values used for data normalization.

Statistical parameter Q (gal/min) SPP (psi) RS (rpm) ROP (ft/h) Pg (psi/ft)

Minimum 283.69 2000.54 65.92 3.02 0.36

Maximum 308.83 3140.57 148.96 65.08 0.58

Table 7.  Training and testing results for ANFIS model.

Parameter Training Testing

R 0.98 0.97

R2 0.96 0.95

AAPE (%) 1.86 2.09

RMSE (psi) 0.016 0.018

Figure 9.  Cross-plots of the ANFIS model (A) training, and (B) testing.
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Figure 10.  Formation pressure gradient profiles (A) training, and (B) testing (ANFIS model).

Figure 11.  Cross-plots for validation stage (A) ANN, and (B) ANFIS.
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