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Abstract

Background: Orthopaedic research projects focusing on small displacements in a
small measurement volume require a radiation free, three dimensional motion
analysis system. A stereophotogrammetrical motion analysis system can track
wireless, small, light-weight markers attached to the objects. Thereby the disturbance
of the measured objects through the marker tracking can be kept at minimum. The
purpose of this study was to develop and evaluate a non-position fixed compact
motion analysis system configured for a small measurement volume and able to
zoom while tracking small round flat markers in respect to a fiducial marker which
was used for the camera pose estimation.

Methods: The system consisted of two web cameras and the fiducial marker placed
in front of them. The markers to track were black circles on a white background. The
algorithm to detect a centre of the projected circle on the image plane was
described and applied. In order to evaluate the accuracy (mean measurement error)
and precision (standard deviation of the measurement error) of the optical
measurement system, two experiments were performed: 1) inter-marker distance
measurement and 2) marker displacement measurement.

Results: The first experiment of the 10 mm distances measurement showed a total
accuracy of 0.0086 mm and precision of ± 0.1002 mm. In the second experiment,
translations from 0.5 mm to 5 mm were measured with total accuracy of 0.0038 mm
and precision of ± 0.0461 mm. The rotations of 2.25° amount were measured with
the entire accuracy of 0.058° and the precision was of ± 0.172°.

Conclusions: The description of the non-proprietary measurement device with very
good levels of accuracy and precision may provide opportunities for new, cost
effective applications of stereophotogrammetrical analysis in musculoskeletal research
projects, focusing on kinematics of small displacements in a small measurement
volume.

Bobrowitsch et al. BioMedical Engineering OnLine 2011, 10:12
http://www.biomedical-engineering-online.com/content/10/1/12

© 2011 Bobrowitsch et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:evgenij.bobrowitsch@yahoo.de
mailto:evgenij.bobrowitsch@yahoo.de
http://creativecommons.org/licenses/by/2.0


Background
“Three-dimensional (3D) measurements play a vital role in a diversity of industries and

disciplines, ranging from the manufacturing and process sectors to healthcare” [1].

Orthopaedic research often focuses on qualitative and quantitative measurements of an

object’s motion [2,3]. An image based 3D motion analysis system can track wireless,

small, light-weight markers attached to the surface of an object. Measurement of strain

on the ligaments or spatial changes of small bones can be determined with a high

accuracy. Malicky et al. used a stereoradiogrammetry to measure the strain on the gle-

nohumeral capsule by means of spherical markers [4]. Video-based 3D motion analysis

systems based on black [5] or retroreflective [6] spherical markers were developed for

tracking objects in small (less than 1 m3) measurement volume. In contrast to gait ana-

lysis tracking systems configured for large measurement volume [7], “motion analysis

configured for registration within small volumes allows measurement of minuscule dis-

placements with great accuracy” [6].

A possibility to optimize the motion system accuracy was successfully tested by

Mössner and co-workers [8]. They used zoom, tilt and pan of theirs cameras to track

athletes movement during down hill skiing. The zoom was used to overcome the lim-

ited camera resolution. The tilt and pan enabled the object tracking in the field of view

of the stationary camera while zooming. In order to perform this task, at least 6 con-

trol points [9] had to be visible in each camera frame. This required the Direct Linear

Transformation (DLT) method [10,11] while determining the intrinsic and extrinsic

parameters of a fully projective camera. Due to the known intrinsic parameters, the

camera lens distortion can be minimized. This improves the object’s spatial informa-

tion derivated from the captured image. In order to reconstruct 3D positions of mar-

kers captured by two or more cameras, the extrinsic parameters of each camera have

to be known. These extrinsic parameters describe the geometrical relation between the

camera and the captured calibration body. The calibration body is not required during

subsequent motion tracking when all cameras remain at the same fixed relative to one

another position [5,6]. Otherwise, when experiment conditions require a flexible cam-

era positioning and the camera’s intrinsic parameters were determined (the camera

was pre-calibrated), we can determine the extrinsic parameters for each camera using

at least 3 [12] or 4 [13] control points. This process is also called “camera pose

estimation”.

Ansar and Daniilidis [13] and Lepetit et al. [14] showed in comparison to different

pose estimation methods, a very good accuracy and robustness of the orthogonal itera-

tions algorithm developed by Lu et al. [15]. The orthogonal iterations algorithm

searches for an optimal orthogonal projection of the control points presented as a per-

spective projection on the image plane. The orthogonality constraint is enforced by

using singular value decomposition, not from specific parameterization of rotations, e.

g., Euler angles [15] typical for DLT methods.

A big calibration body used for the camera calibration in DLT methods can be

replaced with a small fiducial marker when the cameras were pre-calibrated. Fiducial

markers are artificial landmarks added to a scene to facilitate locating point correspon-

dences between images, or between images and a known model [16]. In our study, the

fiducial marker was defined as an aggregate of coplanar control points used for the

camera pose estimation. Coplanar reference objects are especially easy to manufacture
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and measure [17]. In addition, a control point detection based on a detection of the

centre of a circular target is advantageous because the circle is centrosymmetric and

the detection of the circle centre is not sensitive to the thresholding error [18]. Never-

theless most of 3D tracking systems are based on the use of spherical markers because

their circular image is almost independent of the viewing direction [19] of the camera.

In contrast to this, the perspective projection of a circle marker on the image-plane

has an elliptical form with exception if the image-plane is parallel to the circle-plane.

The ellipse centre differs from the centre of the projected circle depending on the

angle and displacement between the circle surface and the image-plane. This effect is

known as eccentricity [20]. In order to avoid the systematic geometric image measure-

ment error because of the eccentricity, its correction is required [18,20,21].

Using the combination of all advantageous aspects of the different techniques men-

tioned above, the purpose of this study was to develop and evaluate a non-position fixed

motion analysis system configured for a small measurement volume. The system was used

zoom to track small round flat markers with respect to the fiducial marker consisting of

four coplanar circles. Additionally, a unique solution to find the circle’s centre projecting

on the image had to be developed and applied. This 3D motion analysis system was speci-

fically configured to measure spatial changes of small bones in the foot region.

Methods
Tracking Devise and Image Acquisition

Two web cameras (Logitech®, Webcam Pro 9000) were used to acquire static pictures

with a resolution of 1600 × 1200 pixels. A camera holder was constructed to allow the

camera’s viewing axis to cross with an angle of 40° on the object of interest. The plas-

tic fiducial marker consisted of four black circles (ø 5 mm) on a white background and

was placed on a 27 cm long pin between the cameras (Figure 1). The black circles on

Figure 1 Stereophotogrammetrical tracking device. The plastic fiducial marker (left), consisted of four
black circles on a white background, was placed on the pin between the two web cameras.
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the fiducial marker were mounted with an accuracy of 0.005 mm. The unique arrange-

ment of the four black circles is similar to what was used to build a reference marker

in the previous study [22]. The markers to track were single black circles (ø 1 or 2

mm) printed (HP Laserjet 1300, resolution of 1200 × 1200 dpi) on a white background.

Both cameras were pre-calibrated with a fixed focus and camera zoom factor of 2.2

using an internet available tool [23]. A 6.5 × 6.5 cm calibration board was printed by

laser printer as a black-white checkerboard presenting a grid of 144 control points.

The calibration board was captured inside of a field of view of each camera in 18 dif-

ferent positions fulfilling a volume where the markers to track and the fiducial marker

had to be captured. Thus the intrinsic parameters were determined in order to pre-

calibrate each camera [23]. Due to the 90° tilted cameras (Figure 1), the measurement

volume (approximately 0.1 × 0.1 × 0.1 m) was behind and above the fiducial marker

which was placed in the middle of the lower part of each camera field of view.

The image acquisition tool was programmed with MATLAB (The MathWorks Inc.,

Natick, MA, USA). This tool allowed the real time streaming view from both cameras.

When the fiducial marker was placed near to the tracked objects, two static images

from both cameras were simultaneously acquired under optimal light conditions (150

Watt, Ministudio 606, Multiblitz Dr. ing. D. A. Mannesmann GMBH & CO KG, Köln,

Germany) described in a manual of the used cameras.

Determination of the circle centre projected onto the image-plane

The black circle on the white background was used to locate the fiducial as well as the

object-surface markers. Edge detection between the black and white areas was per-

formed by means of a gray value threshold. On this edge, an ellipse Πi(ci, ai, bi, ai) was

fitted, where i was denoted as “initial”. The centre ci corresponded only approximately

to the centre of the projected circle, when the ellipse axes ratio ai/bi was not equal

to one.

When considering the cone with the basis Πi on the image plane and the top in the

perspective projection centre O, r
v was defined as the unit vector of the bisecting line

of this cone from O to Πi. We rotated the cone about O till the cone bisecting line

coincided with the image Z-axis. The rotation matrix R n( , )

 described this rotation,

where

n was the unit vector derived from the cross product of


v with the image

Z-axes and b was the angle between them. The intersection of the rotated cone with

the image XY-plane was an ellipse Π(c,a,b,a) (Figure 2). If a = b the ellipse Π was a

circle and the normal vector of the circle-plane was the same as the image Z-axis. The

angle g between the circle-plane and the image XY-plane was in this case equal to zero.

In the case if  the sin ( ) ( ),a b
a

b

a

d
< = ± − +g 1 1

2

2

2

2
(1)

where d was the distance from O to the image XY-plane. The rotation of the minor

axis r
a about the ellipse long axis r

b with the amount of ± g yielded two vectors which

were useful to find the two sections AB’ and BA’ whose middle lay on the rays passed

through O and the centres of the real imaged cr and imaginary ci circles (Figure 2).

The reversed rotation with the transposed (t) matrix R nt( , )

 yielded the searched

rays passed trough O and the centres of the real imaged and the imaginary circles. The

selection criterion for the fiducial marker was that the four real imaged circles were
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coplanar and their imaginary circles were not coplanar. Furthermore, during recon-

struction of the 3D marker position from the left and right images, two normal vectors

for each imaged circle were found (

nr and


ni, Figure 2, where r was denoted as ‘real’

and i - as ‘imaginary”). The real imaged circle normal vectors from the left (l) image

nrl and from the right (r) image


nrr coincided. The imaginary circle normal vectors


nil and


nir did not coincide.

Determination of the 3D position and scaling factor of the fiducial marker

To calculate the relative 3D position of the fiducial marker to the camera, the perspec-

tive projection of the four black circles centres (ri in Eq. 2, 1 ≤ i ≤ 4) of the fiducial

marker, called from now on as the fiducial quadrangle, had to be converted into ortho-

gonal projections on the same image-plane (pi in Eq. 3). It was assumed that the

Figure 2 Schematic diagram of the circle centre determination. Elliptical projection Π of the real
imaged circle Kr and imaginary circle Ki on the XY-image plane with correspondent centres in cr and ci,
|AB| = 2a, |CD| = 2b, ∠ABA’ = ∠BAB’ = g, the distance between the projection centre O and the XY-plane is
equal to d. The bisecting line of the cone with the basis Π on the XY-plane and the top in the perspective
projection centre O coincided with the Z-axis. See the text for explanation.
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image-plane passed through the cross point of the two diagonals of the fiducial quad-

rangle.

r E t ei i i= +


, (2)

p E h ei i i= +


, (3)

where E is the principal point of the image, 1 ≤ i ≤ 4,

e is the unit vector, t and h are

the lengths of the corresponding vectors. The four orthogonal projection points of the

fiducial quadrangle tops (pi) lay on the rays from E to ri. The cross point divided the

diagonals of the fiducial quadrangle under known length ratios used to calculate the pi.

Let denote M0(x0i,y0i,z0i) as the known coordinates of the fiducial quadrangle with

the coordinates origin in the diagonals cross point. The orthogonal projection of M0

onto the image-plane can be described as M1(x1i,y1i,z1i):

M kRM t1 0= + , (4)

Where k is a scaling factor, R is a rotation matrix and t(xt,yt,zt) is a translation vector.

The z-components of M1 were unknown. Therefore the equation (4) was simplified for

the known x and y components and the following equation was derived:

s A q= \ , (5)
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and “\” is backslash or matrix

left division. If A were a square matrix, A\q would be roughly the same as A-1q. But in

our case A is an m-by-n (m = 8 and n = 4) matrix with m ≠ n and q is a column vec-

tor with m components, then s = A\q is the solution in the least squares sense to the

under- or over-determined system of equations As = q.

In order to calculate the scaling factor k, the elements of the vector s were rear-

ranged into a 2 by 2 matrix S. After the singular value decomposition (svd) [15,24] of

matrix S the largest singular value of S was equal to the scaling factor k:

k svd S= max( ( )) (6)

Moreover, the four elements of the matrix S divided by the factor k are the four ele-

ments of the matrix R:

R
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In order to reconstruct the matrix R, the property of a unit matrix was used where

the sum of the squared column or row elements is equal to one. The signs in the third

column and row of R were reconstructed by means of another property where deter-

minant of R is equal to one. Now only two right orthogonal matrixes remained which

corresponded to the two possible 3D positions of the fiducial quadrangle. In order to

choose the matrix R which described the real imaged position of the fiducial quadran-

gle, the property of the perspective projection to converge to the perspective projection

centre O(0,0,0) was used. The lines had to converge to O when they passed through

the four points of the fiducial marker pi(xpi,ypi,zpi) and their perspective projection ri
(xri,yri,d), where d was the distance from O to the image XY-plane and the coordinates

of pi were calculated as in the equation (4).

3D reconstruction of markers

The 3D position of the fiducial marker regarding the camera coordinate system was

determined by means of the described above rotation matrix R, the scaling factor k and

the translation vector t. The two cameras were used to simultaneously acquire two

images of the same scene. After rigid body transformation of O j
c and the perspective

projections of markers m jn
c into the fiducial marker coordinate system, the 3D positions

of markers with respect to the fiducial marker were reconstructed. The single 3D marker

position mn
f was the estimated intersection point of the two rays from the perspective

projection centre O j
f to the corresponding marker perspective projection m jn

f [25],

where 1 ≤ j ≤ 2, n was an integer between 1 and the number of markers, c was denoted

as “camera coordinate system” and f was denoted as “fiducial marker coordinate system”.

Evaluation experiments

Experiment 1: Inter-marker distance measurement

In order to evaluate the accuracy (agreement between the measured and reference

values) and precision (closeness of measurement values to each other under similar

experimental conditions [26]) of the presented measurement system an 8 × 8 grid of

black circles was printed on a white surface and adhered to a 10 × 10 cm plate. The

test distance between adjacent circles centres in horizontal and vertical directions

amounted to 10 mm. Two grids with circles of 1 and 2 mm diameter were prepared to

perform the following tests:

Test A - Translating Camera The plate with the grid of circles was initially captured

in close proximity and above the fiducial marker. The test object Zobj axis was perpen-

dicular to the plate surface and parallel to the pin between the cameras. Xobj axis was

directed horizontally and Yobj axis - vertically (Figure 3). After that, the cameras were

moved seven times farther away from the circles grid in step of approximately 1 cm

along the Zobj axis while in each camera position the scene was captured. The test was

repeated five times.

Test B - Rotating Plate The grid of circles was captured eight times after the plate

was rotated about Xobj axis. The rotation angles were approximately -60, -45, -30, -15,

15, 30, 45 and 60°. The test was repeated five times.

Test C - Rotating Cameras Similar as in the test B but here the cameras were rotated

about Yobj axis. The rotation angles were approximately -60, -45, -30, -15, 15, 30, 45

and 60°. The test was repeated five times.
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Precision test of image processing

The image processing precision was determined by examining the variation of the 112

measured distances between adjacent circles centres in horizontal and vertical direc-

tions during the image processing. The 8 × 8 grid of circles was captured in five differ-

ent positions. Then every of five image-pairs was processed 10 times. The captured

positions were: one from the test A (the initial position), two from the test B (-30 and

30° rotation about Xobj) and two from the test C (-30 and 30° rotation about Yobj). The

variation in distances was calculated by means of the Root Mean Squares error as

shown in the following equation:

 =
× ×

−( )
=

=

=

=

=

=

∑∑∑1 2

1

10

1

112

1

5

l m n
d dkij ki

j

n

i

m

k

l

, (7)

where dki is the mean value of the i’s inter-marker distance on the grid of circles in

the k’s position measured 10 times (dkij).

System repeatability test

In this test the influence of the system rebooting on the 112 measured distances between

adjacent circles centres in horizontal and vertical directions was examined. A single

position of the grid of circles from the test A (the initial position) was captured 10

times. After acquisition of each capture the measurement system was shut down and

started again. Every time, the zoom and focus had to be adjusted to the default values

used during the pre-calibration. The variation in distances was calculated similarly to

the image processing precision test by means of the Root Mean Squares error (7).

Precision test on cadaveric specimen

In order to test how the background colours of the connective tissue influence the pre-

cision of marker detection, a human foot specimen was used. The foot was fresh

Figure 3 Top view of the camera setup. The Yobj axis is directed towards the reader.
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frozen and stored in a plastic bag at -20°C. The specimen (left, female, 79 years old,

without degenerative changes of the connective tissue) was thawed at room tempera-

ture for 24 hours. Then the first metatarsal bone was prepared free of the surrounding

tissue, proximally osteotomized and fixed with a locking screw plate. Nine markers

were attached by means of acrylic superglue on the parts of the first metatarsal bone.

The markers were 2 mm black circles on a white water resistant background (0.5 mm

thin pieces approximately of a 4 mm diameter, Figure 4).

Five different pictures of the specimen were acquired by means of the dual cameras

and then each was processed 10 times. The variation in all possible distances between

the nine markers (m C= =9
2 36 ) was calculated similarly to the image processing pre-

cision test by means of the Root Mean Squares error (7).

Experiment 2: marker displacement measurement

In this experiment two plastic plates were used to determine the translational and rota-

tional accuracy and precision when one plate was moved in respect to another static

plate. Each plate was equipped with four black circles (mounting accuracy 0.005 mm).

The circles were on the tops of a square whose side length amounted to15 mm. Two

plate types were manufactured for circle sizes of 1 and 2 mm diameter.

Rotation test In this test the Zobj axis of the stationary plate was perpendicular to the

plate surface and parallel to the pin between the cameras. In the zero position the

non-stationary plate was coplanar to the stationary plate and the circles on the corre-

sponded square sides were collinear. The non-stationary plate was rotated about Xobj ,

Yobj and Zobj axes by means of a headpiece on a milling unit (Deckel Maho Pfronten

GmbH, Germany) used for precise rotation with a step of 2.25 ± 0.025° trough the

range of 90° (± 45° from the zero position).

The magnitude of rotation between the stationary and non-stationary plates was cal-

culated by means of a detection of the rotation matrix describing the rotation between

the plates [27]. From the rotation matrix was calculated “the attitude vector”

a n=  [28], where n is the unit vector about which the scalar rotation a occurs.

Then “the attitude vector” was orthogonally decomposed onto the Xobj , Yobj and Zobj

axes [29] of the stationary plate.

Translation test In order to determine the accuracy and precision of translational

measurements the non-stationary plate was translated from the zero position along

each of the Xobj, Yobj and Zobj axes in amount of 0.5, 1 and 5 mm. The translations

were performed by means of the translational manipulator (ThorLabs Inc. Europe,

Karlsfeld, Germany). Its accuracy (0.005 mm) and precision (± 0.002 mm) was charac-

terized using laser interferometry in the previous study [30]. The test was repeated five

times.

Statistical analysis

The error value was calculated as a difference between the reference value and the

measured value. All collected error values were examined with Jarque Bera test to ver-

ify that the data was normally distributed. Regarding this test, many of the error values

sets were significant (p < 0.05) non normally distributed. Therefore non parametric

statistical methods were applied. The accuracy of the presented measurement system

was represented by means of the mean and median error [31]. The precision was cal-

culated as a standard deviation [31] or as Root Mean Squares error (7).
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The median error was presented due to the applied non parametric methods. The

comparison of medians was performed by means of Kruskal Wallis test. The variance

of the error values was compared by means of the Levene’s test. All statistics were per-

formed using MATLAB (The MathWorks Inc., Natick, MA, USA). The values of sig-

nificant difference or significant sameness [32] were set at p < 0.05 and p > 0.95

respectively.

Figure 4 Marker test on the cadaveric foot specimen. The single right camera picture. The nine
markers were attached on the first metatarsal bone fragments fixing with a locking screw plate after a
proximal osteotomy. The fiducial marker was placed in the middle of the lower image part.
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Results
Experiment 1: detection of Inter-marker distance

Tests A, B and C - 10 mm distance detection

Results in this experiment section for the accuracy and precision were excellent for

both marker sizes (Table 1). The total accuracy and precision (mean (median) ± stan-

dard deviation) amounted for 1 mm markers 0.009 (-0.002) ± 0.1002 mm and for

2 mm markers 0.008 (-0.004) ± 0.1003 mm. Levene’s test showed that the variances of

1 mm and 2 mm markers during the tests A, B and C were significantly the same (p =

0.956). For both marker sizes, variance of distance detection errors occurred during

the test B were significantly higher (p < 0.001 for 1 mm and p = 0.002 for 2 mm mar-

kers) as during the test C and A. Kruskal Wallis tests showed that the medians for

2 mm markers were significantly different (p < 0.001) between the tests A, B and C.

The medians for 1 mm markers were significantly different (p < 0.001) between the

test A and B, otherwise the p values were very small (0.05 < p < 0.08).

Image processing precision and repeatability tests

The image processing precision test revealed the Root Mean Squares error for 1 and 2 mm

Markers at the level of 0.0044 and 0.0051 mm, respectively. Levene’s multiple-sample test

showed a significantly (p < 0.001) higher variance of mean distance deviation for 2 mm

Markers in comparison to 1 mm.

The system repeatability test detected the Root Mean Squares error for both marker

sizes at the level of 0.013 mm. Levene’s test showed that the variance of the distance

detection errors for both marker sizes was significant (p = 0.98) the same.

The image processing precision test on the foot specimen showed the Root Mean

Squares error at the level of 0.0035 mm.

Experiment 2: measurement of displacement

Rotation test

Results in this experiment section for the accuracy and precision were very good for

both marker sizes (Table 2). The total accuracy and precision (mean (median) ± stan-

dard deviation) amounted for 1 mm markers 0.054 (0.027) ± 0.190° and for 2 mm mar-

kers 0.062 (0.028) ± 0.154°. No significant differences in variance (p = 0.259) between 1

and 2 mm markers were observed regarding the Levene’s test. Regarding Kruskal

Wallis test the accuracy of the rotation about the Zobj was significant better as about

Xobj and Yobj axes with p = 0.004 and p < 0.001 for 1 and 2 mm markers respectively.

The better precision of the rotation about the Zobj showed also Levene’s test with p =

0.012 and p < 0.001 for 1 and 2 mm markers respectively.

Translation test

The stereophotogrammetrical system delivered very good results for translational accu-

racy and precision (Table 3). The total accuracy and precision (mean (median) ±

Table 1 Detection of the 10 mm inter marker distance

Marker Test A error (Zobj) Test B error (Xobj) Test C error (Yobj)

ø1 mm 0.011 (0.002) ± 0.094 0.009 (-0.007) ± 0.110 0.007 (-0.002) ± 0.096

ø2 mm 0.023 (0.013) ± 0.098 0.007 (-0.014) ± 0.103 -0.006 (-0.02) ± 0.098

Results of the measurement system accuracy and precision evaluation represented by mean (median) error ± standard
deviation in mm. In order to show about or along which axis the test was performed the test object axes were indicated
in the parentheses in the first row.
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standard deviation) across the translational test were 0.008 (0.005) ± 0.053 mm for 1

mm markers and -0.001 (-0.002) ± 0.038 mm for 2 mm markers. The Levene’s test

revealed significantly (p = 0.002) higher variance of the measurements errors with 1

mm markers versus 2 mm markers. The variance of 5 mm translation errors for both

marker sizes was significantly higher (p = 0.0004) than the error variance of the smal-

ler 0.5 and 1 mm translations. The error variance of the translations along the Zobj

axis was significantly higher (p < 0.001) as along the Xobj and Yobj axes.

Discussion
This study demonstrated that the 3D stereophotogrammetrical system based on the

tracking of flat round markers can accurately measure the distances and movements

within a small measurement volume. The algorithms to detect the centre of the pro-

jected circle and to estimate the camera pose using the fiducial marker were presented.

The evaluation tests were designed in order to test the measurement accuracy and pre-

cision of distances and movements expected during the tracking of markers fixed on

small bones or ligaments. Despite the fact that the presented system processes only

static images, in comparison to similar systems using proprietary vendor-specific hard-

ware, the presented system is a very small fraction of the cost. Future goals include the

possibility of making the presented measurement system able to extract the tracked

markers from a video stream.

The developed algorithm of the detection of the projected circle centre functioned

with a single projected circle while other algorithms require for the detection for

example concentric circles [33] or coplanar circles [18,20,21]. On the other hand, the

presented algorithm of the projected circle centre detection required the principal

point and principal distance to be known from the pre-calibration. The quality of the

pre-calibration could play a determinant role in the accuracy and precision [34] of the

presented measurement system, when the measurement conditions were optimal. This

played an important role during the camera pose estimation using the fiducial marker

where the pose estimation was optimized by means of the direct transformation of the

fiducial marker perspective projection into its orthogonal projection, the least squares

Table 2 Rotation test

Marker Rotation error Xobj Rotation error Yobj Rotation error Zobj

ø1 mm 0.08 (0.08) ± 0.159 0.082 (0.123) ± 0.281 0.001 (-0.006) ± 0.035

ø2 mm 0.105(0.092) ± 0.160 0.080 (0.098) ± 0.192 0.000 (-0.008) ± 0.062

Results of the measurement system evaluation: accuracy and precision represented by mean (median) error ± standard
deviation in degree.

Table 3 Translation test

Marker Transl. mm Translation error Xobj Translation error Yobj Translation error Zobj

0.5 -0.001(-0.003) ± 0.014 0.024(0.019) ± 0.031 0.009(0.006) ± 0.058

ø1 mm 1 -0.006(-0.007) ± 0.017 0.033(0.037) ± 0.030 -0.011(0.001) ± 0.062

5 -0.027(-0.026) ± 0.014 0.032(0.046) ± 0.091 0.021(0.023) ± 0.065

0.5 -0.002(-0.006) ± 0.016 0.014(0.011) ± 0.021 -0.019(-0.026) ± 0.032

ø2 mm 1 -0.003(-0.004) ± 0.012 0.008(0.01) ± 0.013 0.003(-0.0003) ± 0.057

5 -0.045(-0.045) ± 0.011 -0.013(-0.016) ± 0.034 0.052(0.046) ± 0.041

Results of the measurement system evaluation: accuracy and precision represented by mean (median) error ± standard
deviation in mm.
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algorithm using to solve the equation 5 and the reconstruction of the rotation matrix

using the orthogonal matrix constrains.

The remaining inaccuracies of the camera pre-calibration could explain the reduction

of precision when lager distances were measured. This could be corroborated by the

smaller image processing precision (± 0.005 mm) in comparison to the precision ran-

ged from ± 0.011 to ± 0.11 mm while the distances and movements were measured.

The system repeatability (± 0.013 mm) also influenced the distance and movement

measurements precision because of small discrepancies occurred during the system

adjusting the zoom and focus values. Lujan et al. also reported that “lager translations/

rotations reduced kinematic accuracy” [5].

In the presented study, the precision was calculated as the standard deviation or as

the Root Mean Squares error (equation 7) because of the calculation similarity. There-

fore these two parameters had to be more comparable than the mean standard devia-

tion [6] or the two standard deviations [5], which were used instead of the Root Mean

Squares error in the related studies [5,6].

The accuracy values were very close to zero and ranged from -0.045 to 0.052 mm for

translations and from -0.008 to 0.105° for rotations. The presented system showed

comparable results in accuracy for the similar displacements measurements in the

study of Lujan et al. (0.034 mm for the translations and 0.132° for the rotations) [5]

and in the study of Everaert et al. the accuracy ranged from 0 to 0.05 mm [6].

The measurement with the flat round markers was limited by the angle l between

the normal vector to the marker plane and the camera view axis (0°≤l<90°). When

this angle became too close to 90°, there were difficulties to fit the ellipse of the pro-

jected circle because the ellipse became too slim. Therefore the axes ratio of the ellipse

could be a criterion of the critical value of the angle l. This axes ratio criterion was

set at 0.2 (correspond approximately to l = 78.5°). Therefore the angle range between

the Zobj and the pin with the fiducial marker, what was mounted between the cameras,

was set at ± 60° (Figure 1 and 3, test B and C).

It has been stated that: “The accuracy of the target location deteriorates if the number of

edge pixels compared to central pixels increases, because of the uncertain grey values of

the edge” [19]. This phenomenon occurred when the marker size became smaller [5] and

the angle l for the flat round markers, bigger. Due to using the zoom and good camera

resolution, the marker size of 1 or 2 mm diameter showed in the tests A, B and C the sig-

nificant agreement in precision. “Zoom lenses are used extensively in computer vision to

overcome the limited resolution” [35]. Both cameras of the presented system were cali-

brated for the fixed zoom and focus settings because Wiley and Wong admitted in their

study that: “There were significant changes in the distortion characteristics with changes

in the focal setting. However, the pattern of change for a given camera-lens combination

was very systematic and stable over time” [35], what was confirmed through the good pre-

cision values (± 0.013 mm) of the repeatability test.

The black circle on the white background - this is advantageous for the edge detection

colour combination remained during the test on the cadaveric foot specimen. Therefore

the colours of connective tissues surrounding the markers did not deteriorate the preci-

sion of the presented measurement system. Nevertheless the use of flat round retrore-

flective markers may be more advantageous because the maker size reduction.
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The measurement of the displacements in the second experiment showed typical dis-

tribution of the measurement errors for this camera setup [5,31]. Regarding this distri-

bution the presented measurement system performed the best translation

measurement in the XYobj-plane and the best rotation measurement, when rotations

occurred about the Zobj axes.

Conclusions
The study demonstrated that the handy 3D stereophotogrammetrical system based on

the tracking of the flat round markers within a small measurement volume with

respect to the fiducial marker can accurately measure the distances and movements.

The evaluation experiments of the 10 mm distances measurement showed the total

accuracy of 0.0086 mm (mean error) and the precision of ± 0.1002 mm (standard

deviation). The translations from 0.5 mm to 5 mm were measured with the total accu-

racy of 0.0038 mm and the precision of ± 0.0461 mm. The rotations of 2.25° amount

were measured with the entire accuracy of 0.058° and the precision of ± 0.172°. These

levels of accuracy and precision may provide opportunities for new applications of

stereophotogrammetrical analysis in orthopaedic research projects, focusing on small

displacements in a small measurement volume.
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