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ABSTRACT Non-enterica subspecies of Salmonella enterica are associated with cold-
blood animals. We report the complete genomes of six S. enterica strains (one S. enterica
subsp. arizonae strain, four S. enterica subsp. salamae strains, and one S. enterica subsp.
diarizonae strain) isolated from Spanish poultry houses. This will increase our knowledge
of these non-enterica subspecies.

Here, we report the complete genomes of four strains of Salmonella enterica subsp. sal-
amae, one strain of S. enterica subsp. arizonae, and one strain of S. enterica subsp. dia-

rizonae, all of which were isolated from poultry houses between 2012 and 2015. Strains
were isolated from environmental samples from Spanish poultry farms following standard
ISO 6579:2002/AMD 1:2007 (1). Briefly, boot swabs or sponges were incubated with
225 ml of buffered peptone water (Merck Millipore, Germany) for 18 h at 37°C. Then, 100
ml was transferred to modified Rappaport-Vassiliadis semisolid agar (Becton Dickinson, Le
Pont de Claix, France) and incubated for 48 h at 41.5°C. Suspect samples were spread on
XLD agar (Oxoid, Hampshire, UK) and SM-ID2 medium (bioMérieux, Marcy-l'�Etoile, France)
and incubated for 24 h at 37°C. Typical colonies were purified on nutrient agar (PanReac,
Barcelona, Spain). API 20E (bioMérieux) and Salmonella Microlatex (Microgen Bioproducts,
Camberley, UK) kits were used to confirm the Salmonella genus. Isolated strains were sero-
typed according to the Kauffman-White-Le Minor scheme by using standard antisera (Bio-
Rad, Marnes-la-Coquette, France). Samples were stored in tryptic soy broth (TSB) (Oxoid)
with 20% glycerol at –20°C until further use.

For DNA isolation, strains were growth in TSB (Oxoid) for 18 h at 37°C. One milliliter
of TSB was collected and centrifuged at 16,000 � g for 10 min. The supernatant was
discarded, and DNA was isolated from the pellet using the PureLink genomic DNA min-
ikit (Invitrogen, Thermo Fisher Scientific, Carlsbad, CA) according to the manufacturer’s
protocol. DNA was prepared with the rapid barcoding kit (SQK-RBK004; Oxford
Nanopore Technologies [ONT], Oxford, UK), loaded into a R9.4.1 FLO-MIN106 flow cell
(FAO81877; ONT), and sequenced using the MinION system (ONT). Raw data were col-
lected with MinKNOW v4.2.8 software (ONT) and saved in Fast5 files. Guppy v5.0.11
(ONT) in high-accuracy mode was used for base calling, demultiplexing, and barcode
trimming. Generated Fastq files were uploaded to the Galaxy Europe platform (https://
usegalaxy.eu) (2), and Unicycler v0.4.8 (3) was used to create the assembly. Thus, reads
were assembled with Miniasm (4) and polished with Racon v1.4.7 (5). Makeblastdb
v2.9.0 and TBLASTN v2.9.0 tools (6) were used to rotate the genome starting with the
dnaA or rpaA gene in the forward strand. Finally, a second polishing round was carried
out with Medaka v1.3.2 (https://github.com/nanoporetech/medaka) (ONT) to obtain
the final consensus sequence. One final contig was obtained for each strain.

The final assembly was annotated with the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) v5.2 (7). Then, SISTR v1.1.1 (8) was used to compare the in silico serotyping
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with conventional antiserum serotyping. Antimicrobial resistance genes were searched
with ResFinder v4.1 (9) (https://cge.cbs.dtu.dk/services/ResFinder). Salmonella pathogenic-
ity islands (SPIs) were determined with SPIFinder 2.0 (10) (https://cge.cbs.dtu.dk/services/
SPIFinder), modifying the parameter for threshold minimum identity to 90%. The presence
of phages in bacterial assemblies was determined by using the web server PHASTER in
July 2021 (https://phaster.ca) (11). Default parameters were used except where indicated.
Results of these analyses are shown in Table 1. The genomes obtained in this study will be
useful to gain a deeper understanding of the pathogenic potential of these non-enterica
subspecies.

Data availability. Raw reads and assembled genomes were deposited in GenBank
under BioProject accession number PRJNA681856. The GenBank accession numbers for the
individual strains are CP078142.1 (LHICA D1), CP079713.1 (LHICA AZ23), CP079839.1 (LHICA
E3), CP079836.1 (LHICA SA1), CP079837.1 (LHICA SA2), and CP079838.1 (LHICA SA3).
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