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Wheelchair-mounted robotic arms support people with upper extremity

disabilities with various activities of daily living (ADL). However, the associated

cost and the power consumption of responsive and adaptive assistive robotic

arms contribute to the fact that such systems are in limited use. Neuromorphic

spiking neural networks can be used for a real-time machine learning-

driven control of robots, providing an energy efficient framework for adaptive

control. In this work, we demonstrate a neuromorphic adaptive control

of a wheelchair-mounted robotic arm deployed on Intel’s Loihi chip. Our

algorithm design uses neuromorphically represented and integrated velocity

readings to derive the arm’s current state. The proposed controller provides

the robotic arm with adaptive signals, guiding its motion while accounting

for kinematic changes in real-time. We pilot-tested the device with an

able-bodied participant to evaluate its accuracy while performing ADL-

related trajectories. We further demonstrated the capacity of the controller

to compensate for unexpected inertia-generating payloads using online

learning. Videotaped recordings of ADL tasks performed by the robot were

viewed by caregivers; data summarizing their feedback on the user experience

and the potential benefit of the system is reported.
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Introduction

Over the past few decades, robotic arms have been
demonstrated to be immensely valuable for a broad spectrum
of applications, ranging from space debris mitigation (Nishida
et al., 2009) and the exploration of celestial bodies (Brooks et al.,
2022) to fruit harvesting (Font et al., 2014) and robot-assisted
surgeries (Naziri et al., 2019). The development of assistive smart
robots was initiated four decades ago (Udupa et al., 2021). Since
then, it has been established as one of the essential frontiers
in neurorehabilitation, enhancing the sense of independence
and well-being in people with disabilities. Assistive robots such
as robotic walkers, exoskeletons (wearable robots), prostheses,
powered wheelchairs, and wheelchair-mounted robotic arms,
provide structure, support, and energy to enable independent
function and activities of daily living (ADL) by people with
physical disabilities (Argall, 2018). Particularly, wheelchair-
mounted robotic arms were shown to support people with upper
extremity disabilities with various ADL such as picking an object
from a shelf or holding a cup, increasing the users’ sense of
independence (Maheu et al., 2011). However, the associated cost
of assistive robotic arms contributes to the fact that such systems
are not commonly found. Furthermore, as wheelchair-mounted
robotic arms feed on the chair’s battery, power efficiency can
become an important concern. Therefore, the development of
a wheelchair-mounted robotic arm, with an energy efficient
adaptive control, can become an important step forward in
rehabilitation robotics.

A conventional robot controller, such as a proportional,
integral, derivative (PID) controller, applies correction signals
based on the system’s error’s proportional, integral, and
derivative terms (Ang et al., 2005). PID integrates three error
modalities to provide the desired actuation, such that the
system will approach a target position. While conventional—
PID driven–computational motion planning has been shown
to handle intricate maneuvers in challenging convoluted
environments, when compared with biological control, they fall
short in terms of energy efficiency, robustness, versatility, and
adaptivity to changing conditions (DeWolf et al., 2016; DeWolf,
2021; Volinski et al., 2022).

One of the ways biological motor control circuits efficiently
handle stochastic conditions is by efficiently implementing an
adaptive control scheme. Adaptive motor control is long known
to be mediated by projection neurons involving the basal
ganglia and the neocortex, providing vision and proprioception-
driven real-time error-correcting adaptive signals with which a
dynamic motor control could be efficiently realized (Graybiel
et al., 1994). Failure to generate these error-correcting
signals can manifest as Parkinson’s (Burget et al., 2015)
or Huntington’s (Smith et al., 2000) brain disorders. While
adaptive control could be implemented in conventional neural
computational frameworks (Cong and Liang, 2009), spiking
neuronal architectures were shown to provide increased

performance with lower energy consumption (DeWolf et al.,
2020). A typical spiking neural network (SNN) comprises
densely connected, spike-generating neuron weighted fabric
through which spikes are propagated, thus closely emulating
biological neural networks (Tsur, 2021). SNNs were recently
used to neuromorphically implement PID (Rasmus et al., 2020;
Zaidel et al., 2021).

Neuromorphic control algorithms acquire some of the
advantages of biological motor control. They have been
shown to outperform PID-based implementation of the
required nonlinear adaptation, particularly in handling high
DoF systems (DeWolf, 2021). Neuromorphic adaptive control
utilizes online learning with spiking neural networks to account
for unexpected environment perturbations. For example,
neuromorphic adaptation was recently implemented using
an adaptive version of the spike-timing-dependent plasticity
(STDP) learning rule, demonstrating adaptation with state-
of-the-art power consumption (Gautam and Kohno, 2021).
Adaptive robotic control was previously demonstrated in
various settings. For example, a neuromorphic vision-based
adaptive controller was recently designed to control an
unmanned aerial vehicle moving at high speed (Vitale et al.,
2021). The authors propose a neuromorphic controller with
event-based visual feedback computed on a neuromorphic chip
(Loihi). This control system was shown to outperform the state-
of-the-art high-speed event-driven controller.

A prominent method for the design and neuromorphic
systems is the Neural Engineering Framework (NEF) (Eliasmith
and Anderson, 2003). NEF is a theoretical framework,
which was implemented as Nengo, a “neural compiler,”
allowing the translation of high-level neural descriptions to
functional large-scale SNNs (Bekolay et al., 2014). NEF was
utilized to design a wide range of SNN-driven applications,
ranging from robotic control (Zaidel et al., 2021) and visual
processing (Yun and Wong, 2021) to perception (Eliasmith
and Stewart, 2012) and pattern recognition (Wang et al.,
2017). NEF was shown to be incredibly versatile, as a
version of it was compiled to work on both analog and
digital neuromorphic circuitry (Voelker, 2015; Hazan and
Tsur, 2021). Power comparison between neuromorphic NEF-
driven implementation of adaptive control to conventional
CPU and GPU-based implementation, demonstrated increased
power efficiency while preserving similar latency performance
(DeWolf et al., 2020).

In this work, we demonstrate a neuromorphic adaptive
control of a wheelchair-mounted robotic arm deployed on Intel’s
Loihi chip. We used proprioceptive feedback provided by an
affordable accelerometer in conjunction with a neuromorphic
integrator to continuously provide the system with the robot’s
current state in real-time. Similar to biological adaptive control,
these readings are used to provide the controller with motion
guidance and adaptive signals, allowing it to account for
kinematic changes in real-time.
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Materials and methods

In this work, we propose a NEF-driven SNN, deployed
on Intel’s Loihi neuromorphic chip for adaptive control
of a wheelchair-mounted robotic arm (Figure 1A). We
used accelerometer-generated velocity readings as feedback,
feeding them into a neuromorphic integrator to continuously
provide the system with the robot’s current state in real-time
(Figure 1B). Continuous state estimation allows the system to
adaptively control the trajectory of a robotic arm. Our NEF-
defined SNN-driven integrator is a dynamical system with
which incoming velocity readings are integrated to monitor
the system’s state (position). The robotic system, the Loihi
board, and the NEF are described in sections “Robotic system,”
“Neuromorphic hardware,” and “The neural engineering
framework,” respectively. The neuromorphic integration for
state estimation is described in section “Neuromorphic
integration for state estimation.” Position estimation was
used by the controller to guide the arm’s trajectory using
online learning. Underlying the proposed online learning is
the prescribed error sensitivity (PES) learning rule. PES is a
biologically plausible supervised learning rule that modifies a
connection’s weight in a SNN such that an error signal is
minimized (Voelker, 2015). This neuromorphic online learning-
driven control scheme allows the robotic system to continuously
generate adaptive signals during motion, using them to correct
its posture as it reaches its targets efficiently. PES is described
in section “Prescribed error sensitivity.” We used the system to
adaptively respond to kinematic changes (lifting heavy objects).
The adaptive control is described in section “Adaptive control.”

The arm trajectories were designed to reach three key target
points, which were shown to be important to ADL tasks
(Routhier et al., 2014; Beaudoin et al., 2018): lifting an object
from higher and lower grounds as well as serving a user with a
cup of water.

Robotic system

In this work, we used a six degrees of freedom robotic arm
comprised of nine servo actuators (seven Dynamixel’s XM540-
W270 actuators and two Dynamixel’s XM430-W350 actuators;
two sets of two actuators were assigned to modulate two joints
to increase capacity load). The XM540 actuators were used to
actuate the arm’s joints and are characterized by a stall torque
of 10.6 Nm (at 12 v input). The XM430 actuators were used
to manipulate the end-effector (grasping) and are characterized
by a stall torque of 4.1 Nm (at 12 v input). Each actuator can
handle a 40 N radial load and features a Cortex-M3 embedded
controller. To retrieve the joint’s current state (angular rotation),
each actuator was coupled with a contactless 12-bit absolute
encoder. Actuators were manufactured by ROBOTIS. The arm
chassis was assembled from ridged and lightweight T-slot
extruded aluminum rods, aluminum brackets, industrial-grade
slewing bearings, and a 3D-printed gripper by Interbotix.
Control was deployed on Intel’s Loihi neuromorphic chip and
communicated to the robotic system using a TTL half-duplex
asynchronous serial communication, handled by Dynamixel’s
U2D2 control board. Overall, the arm design provides an 82 cm
reach, a 1.64 m span, 1 mm accuracy, and a 750-gr payload.

FIGURE 1

Acceleration-mediated adaptive control of a wheelchair mounted robotic arm. (A) The complete system where the accelerator is embedded
within the stereo camera, which is mounter on the arm’s end-effector; demonstrated by Yuval Zaidel (author; published with permission);
(B) control framework schematic: accelerometer-driven velocity readings are neuromorphically integrated with spiking neurons, allowing the
derivation of the arm’s position. The arm’s position is compared to its desired state providing error correcting adaptive signals. Adaptive signals
are introduced to the controller for accurate final positioning.
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We mounted a Stereo Labs’ ZED stereo camera on the arm’s
end-effector and used its embedded accelerometer for velocity
readings. Manual control was established through a Bluetooth-
connected PlayStation’s DualShock4 controller. The robotic arm
was mounted on an electric wheelchair by the technical team of
ALYNnovation, the innovation center of ALYN hospital.

Neuromorphic hardware

Neuromorphic control was implemented in Nengo (Bekolay
et al., 2014) and deployed on Intel’s neuromorphic research
chip Loihi (Davies et al., 2018) using the nengo_loihi library
(Lin et al., 2018). The nengo_loihi library provides an API
for both an emulator and a Loihi-specific Intel’s NxSDK-based
compiler, allowing model deployment on the board itself. We
used Intel’s Kapoho Bay, a USB-based neuromorphic processor,
which incorporates 2 Loihi chips. Each Loihi chip features x86
cores (for spike routing and monitoring) and 128 neuron-cores,
each supporting 1,024 neurons. The Kapoho Bay has overall
256 neuromorphic cores with 262,144 neurons and 260,000,000
synapses.

The neural engineering framework

The Neural Engineering Framework is a theoretical
framework for neuromorphic encoding, decoding, and
transforming high-dimensional mathematical constructs with
ensembles of spiking neurons (Eliasmith and Anderson, 2003).
With NEF, high-level descriptions of functional neural circuits
can be translated down to the level of the interconnected
weighted fabric of spiking neurons. With NEF, an ensemble of
neurons distributively encode mathematical constructs, where
each neuron is characterized by a response dynamic (tuning
curve). A spike train δi of neuron i in response to a stimulus x is
defined as:

δi (x) = Gi

[
αiei + Jbi

]
, (1)

where Gi is a spiking neuron model (e.g., leaky integrate and
fire), αi is a gain factor, ei is the neuron’s encoding vector
(preferred stimulus), and Jbi is a background current. The
encoded stimulus x can be linearly decoded as x̂ using:

x̂ =
N∑
i

ai(x)di, (2)

where N is the number of neurons, di is a linear decoder that was
optimized to reconstruct x using least-squares optimization, and
ai(x) is the postsynaptic response of neuron i to x defined as:

ai (x) =
∑

hi ∗ δi(t − tj (x)), (3)

wherehi is the synaptic response function (an exponential
function, inspired by the neurotransmitter-dynamic at the
synapse), δi(t − tj (x)) is the spike train produced by neuron i

in response to stimulus x with spike times indexed by j, and ∗

refers to mathematical convolution.
Spikes propagate from one ensemble to another through

weighted synaptic connections (decoding weights df ) realizing
a mathematical transformation f (x). The decoders df can be
optimized to define a desired f (x) and formulated as a weight
matrix wij(x):

wij = di ⊗ ej, (4)

where⊗ is the outer product operation; i is the neuron index in
spike source ensemble A and di are the corresponding decoders;
j is the neuron index in the target ensemble B and ej are the
correspocnding encoders. di and ej are optimized to transform x
(neuromorphically represented by A) to f (x) (neuromorphically
represented by B).

The noise characteristics of NEF-based representation is
based on the decoder-induced static noise, and it is proportional
to 1/N2 where N is the number of neurons. Synaptic
time constants also constrain neuromorphic implementations.
Reducing these time constants inhibits the integration dynamic.
A detailed description of neuromorphic integration with NEF is
given in (Tsur, 2021).

Neuromorphic integration for state
estimation

Dynamic behavior can be realized by combining NEF’s
neuromorphic representation and the transformation of
numerical entities through the recurrent connection of
neuronal ensembles. NEF can therefore be used to resolve the
general dynamic form:

∂x
∂t
= Ax (t)+ Bu(t) (5)

where u(t) is input from some neural ensemble, A and B can
be resolved from A′ = τA + I and B′ = τB, respectively,
where A′ is the recurred connection, B′ is the input scaling
factor, I is the identity vector, and τ is the synapse’s time constant
(Tsur and Rivlin-Etzion, 2020). Here, we used this dynamical
system to implement a neuromorphic integrator, where velocity
measurements are integrated to monitor the arm’s end-effector
position. A neuromorphic integrator can use a velocity input
signal v to derive a position x using x =

∫
v, or by solving

∂x
∂t = v. In terms of Eq. 5, here, A = 0 and B = 1, resulting
in A′ = τ · 0+I = 1 (a simple recurrent connection) and
B′ = τ · 1 = τ (multiplying the velocity readings by τ).

Prescribed error sensitivity

Neuromorphic transformation is governed by synaptic
weights, which connect one neuron ensemble to another. While
these weights can be calculated in build-time, they can also
be modulated or learned in real-time. Real-time learning is
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of particular interest in various areas of machine learning
and robotics, as it allows the incorporation of unknown
environmental perturbations in the robot’s motion planning.
Real-time learning can be implemented with NEF using the
PES learning rule, a biologically plausible supervised learning
rule, which strives to modulate connections’ decoders d to
minimize an error signal e. Here, the error signal is calculated
as the difference between the robot’s desired position x and its
approximated representation x̂, while applying weight update
4d with the rule:

4d = λeδ (6)

where λ is the learning rate, and δ is the neuron’s spiking rate.
Note that e goes to 0 exponentially with rate γ, when a− λ||δ||2

(denoted γ) is larger than −1. PES is described at length in
(Voelker, 2015).

Adaptive control

Our torque u –based robot control is governed by:

u = JTMxux − KvMq̇ (7)

where JT is the Jacobian matrix, which approximates the
relationship between control forces in task space and actuation
in joint space in real-time (“Jacobian on-the-fly”); Mx is the
inertia matrix (in task space) with which the controller accounts
for the inertia generated by the arm’s own movement; ux is
the force (torque) vector in task space; and KvMq̇ is a velocity
error term calculated by estimating the lifted body’s inertia.
u is calculated iteratively, as the value of ux is recalculated
along with the arm trajectory as the arm’s end-effector gets
closer to its target by comparing the desired position and the
arm’s current position, as determined by our neuromorphic
velocity integrator. This iterative calculation is halted when the
arm is within some accuracy threshold or when ux is small
enough (here, 0.5 mm).

DeWolf et al. (2016) proposed a NEF-driven adaptive
control algorithm, which they named the recurrent error-
driven adaptive control hierarchy (REACH) model. REACH
is powered by PES and open-sourced by Applied Brain
Research Inc. The model has been demonstrated to control a
planar three-link, nonlinear arm through intricate trajectories.
REACH can support adaptive control, efficiently responding to
environmental changes, such as a sudden force field (e.g., lifting
a cup full of water instead of an empty one) or changes in the
mechanical characteristics of the robotic arm (e.g., joints’ tear).

REACH adaptive control is governed by:

u = JTMxux − KvMq̇+ uadapt (8)

where uadapt is the adaptive error correction signal. uadapt is
calculated using PES, as described above. We used PES to
estimate uadapt by comparing the desired position and the arm’s

current position, as determined by our neuromorphic velocity
integrator. A full description of REACH is available in DeWolf
et al. (2016).

Results

Motion guidance

We defined a few ADL-related key target points in space,
through which we guided the robotic arm’s trajectory. Motion
guidance was divided into two parts. In the first part, motion is
automatic, and the arm is actuated toward a predefined target
point (e.g., table). In the second part, to accurately approach
an object (e.g., a cup on the table), the arm is manually
controlled by the user using a wireless remote controller
(Figure 2). We defined two ADL tasks: drinking from a cup
and “pick and serve.” We initiate the robot at its resting mode
for both scenarios, raising it to a home position afterward
(Figure 1). In the drinking scenario, the arm approaches the
table automatically, with its end effector oriented in a cup-
holding position. The user uses his remote control to carefully
approach the cup with the arm, finally activating the gripper
to hold it. Once gripped, the arm automatically positions
itself by the head of the user in a drinking-oriented posture.
The user can now control the arm manually, getting the cup
closer to his mouth. Once done, the controller automatically
returns the cup back on the table. In the pick and serve task,
the arm automatically positions itself by the high shelf in a
gripping-oriented posture. The user manually controls the arm
to approach and grip the object. Once grasped, the arm serves
the object to the user’s hands. The arm can then either return
the object back on the shelf or go back to its home position.

The arm’s trajectory during both tasks is shown in Figure 2.
Both manual and automatic motion guidance (autopilot)
controls are fed with the neuromorphically derived robot
position (Figure 2, top right). The arm trajectory shown
in Figure 2 demonstrates an accurate transversal through
each of the target points. A video with an overlayed raster
plot (demonstrating spiking activity) and annotated stages is
available as a Supplementary Video 1.

We further evaluated our system in various configurations
by measuring error’s (distance from target) convergence and
distribution, as well as the number of steps required to reach
a target. Results were obtained from 100 randomly positioned
target points. We evaluated two neural architectures to track
the arm’s position in each of its three axes (x, y, and z): (1)
three unidimensional neuromorphic integrators and (2) one
3D integrator. In both cases, neurons’ tunning curves were
randomly distributed. Each case was also evaluated with a
different number of neurons per dimension (100, 1,000, and
5,000) and with various values of synaptic constants (tau = 0.01,
0.1, and 1 s). Results are shown in Figure 3. As expected, when
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FIGURE 2

(A) Screenshots from the various stages of the robotic assisted activities of daily living (ADL) demonstration. A video is available as a
Supplementary Information; demonstrated by Yuval Zaidel (author; published with permission); (B) motion guidance of a wheelchair mountet
robotic arm using both manual control and automatic motion guidance (auto pilot) to reach several ADL-related key points.

compared to a single high-dimensional ensemble, using three
unidimensional neuromorphic integrators is preferable as they
can more efficiently span the representation space (assuming
these dimensions are independent). Neurons’ tuning curves
are mainly governed by their intercepts—the input value from
which they respond with an increased firing rate—which defines
the neurons’ representational capacity, especially in higher
dimensions. For example, while a unidimensional neuron with
a 0.75 intersect (inputs are normalized between −1 and 1) will
fire spikes for 25% of the represented space, in 2D, this neuron
would fire for only 7.2% of that space. In higher dimensions,
the proportions become exponentially smaller, resulting in
many neurons which are either always active or completely
silent, thus, providing a poor representation (Zaidel et al.,
2021). In our case, we show that with fast synaptic constants
(τ < 0.1 ms) and a small number of neurons (N < 1, 000),
the noisy integration results in a highly distributed error
and slow to non-converging error. When a larger number
of neurons are allocated for representation, errors rapidly
converged to zero (∼150 ms), the required steps toward the
targets diminished, and the error distribution is remarkably low
(Figure 3). These results demonstrate the controller’s robustness
regarding noise. Noise was introduced here to the system as a
product of the neuromorphic representation error, which as was
described above, is inherited to neural representation in general
and, in particular, to NEF. The results outline the required
neuronal resources (number of neurons) needed to handle the
introduced noise in different control designs (1D/3D neuron
ensembles).

Adaptive control

We further evaluated our model with a PES-governed
adaptive control while manipulating a 2 kg payload (Figure 4).
We assessed the performance of both our naïve (Eq. 8) and
adaptive controller (Eq. 9) while reaching 100 randomly
positioned target points. Aided by acceleration-derived
positioning feedback, the adaptive controller outperformed
the naïve version, obtaining closer to the target point final
positioning (Figure 4B). We further illustrate reaching
four target points, with and without the adaptive signals,
demonstrating a superior final positioning while maintaining
similar trajectories (Figure 4C).

Participatory design

Despite the widespread agreement regarding the potential
benefits of robotic rehabilitation, the designed technologies, do
not often match the requirements of patients and caregivers.
This greatly impedes their adoption in healthcare (Arnrich et al.,
2010). A design approach that is driven by a “user-centered”
or “participatory design” viewpoint aims to counter this
limitation by identifying and incorporating the requirements
and end users’ needs at each stage of the design process
(Bergold and Thomas, 2012; Sivan et al., 2014; Eslami et al.,
2018). Questionnaires are among the tools that have been
developed to identify end-user requirements (Shah et al.,
2009). Here, we obtained design feedback from 10 care
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FIGURE 3

Control evaluation [error distribution and convergence, and episode length (steps to target)] with a neuromorphic integrator featuring 100,
1,000, and 5,000 neurons per dimension, three unidimensional integrators or one 3D integrator and three synaptic constants: 0.01, 0.1 and 1 s.
Results were obtained from reaching 100 randomly positioned target points.

stakeholders (occupational therapists, technology developers
and distributors, researchers, and administrators) who had
2–30 years of experience with a wide range of assistive
technologies (powered wheelchairs, computer-based access, and
communication devices). They rated their views on key user
experience questions that were posed via an online Google form
questionnaire. The exposure of 9 out of 10 of the participants
to robotic arms included using one with patients, seeing
demonstrations of its use, or reading reports in the literature.

They viewed two video clips demonstrating the robot arm
performing the same ADL tasks that have been described above.
Eighty percent of the responders agreed or strongly agreed that
its appearance is acceptable and that it is safe for use; no one
thought that it was not acceptable or not safe for use. The most

important issues for safe use of a robotic arm were reported
to be limiting its speed of movement (especially when near
the user’s “personal space”), easy access to a “panic” button
(to stop the robot immediately) and limiting the force that it
can exert. All respondents thought that a robot arm should
cost less than $2,500 with 90% preferring it to cost less than
$1,000. The respondents were asked to report the tasks that
they consider to be most important to be performed by a
robotic arm. All considered eating or drinking and work or
educational tasks (e.g., access to a computer) to be important or
very important. All but one respondent considered reaching for
items, self-care, and communication (e.g., access to alternative
communication devices) to be important or very important.
While not being a statistically validated survey, this feedback
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FIGURE 4

Adaptively controlled robotic arm, while manipulating a 2 kg payload, using acceleration-derived positioning feedback. (A) System’s schematic:
(B) error (distance from target) distribution, evaluated on 100 target points; (C) example of reaching four target points with and without adaptive
control.

showcase the importance of having affordable robotic arms for
wheelchair users.

Discussion

Biological motor control is uniquely responsive and
adaptive, allowing organisms to quickly respond to
environmental changes. Biological control uses visual and
proprioception cues to evaluate the body’s current state,
dynamically modulating motor commands, such that
environmental changes could be efficiently compensated.
While a conventional PID controller could consider kinematic
changes in the system, such as object manipulation of an
unknown dimension or weight, to accommodate new motions
and surroundings, it might entail extensive re-tuning of the
control parameters. Adaptive spiking neural networks were
demonstrated to handle such tasks with remarkable efficiency
(DeWolf, 2021).

NEF-driven adaptive control was previously extensively
evaluated. For example, DeWolf et al. (2020) compared
the power consumption of neuromorphic NEF-driven
implementation of adaptive control to conventional CPU
and GPU-based implementations. They found 4.6× and 43.2×
improved power consumption for execution over CPU and

GPU, respectively, while preserving similar latency performance
(PD: 2.91 ms, PID: 2.95 ms, adaptive on neuromorphic
hardware: 3.08 ms, adaptive on CPU: 3.13 ms, and adaptive
on GPU: 4.38 ms). In that research, however, the authors
used expensive vision-based proprioception. In this work,
we used proprioceptive feedback provided by an affordable
accelerometer in conjunction with a neuromorphic integrator
to continuously provide the system with the robot’s current
state in real-time. We further analyzed the performance with
various neuromorphic configurations and evaluated it in a
real-life case study. This capacity of smart motor control is
particularly interesting in a human collaborative-assistive
setting. As was shown in our participatory clinical survey,
particularly for wheelchair users, the system cost is a critical
factor, contributing to the fact that wheelchair-mounted
robotic arms are not commonly found. We demonstrate that
neuromorphic implementations of adaptive control may allow
the design of less expensive assistive robotic arms, allowing
them to exhibit high performance with relatively inexpensive
parts and high energy efficiency.

We show that by using a neuromorphic integrator to
monitor the state, or the position, of a wheelchair-mounted
robotic arm, the generated feedback to a controller can (1) guide
the arm’s trajectory and (2) provide adaptive error-correcting
signals when environmental conditions (e.g., payload). We
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evaluate the system by (1) addressing ADL-related arm
trajectories and (2) reaching hundreds of randomly positioned
target points. Our analysis shows that synaptic constants, the
number of neurons, and the neuronal architecture dramatically
constrain the controller performance. We show that low
dimensional representation (1D), long synaptic constants
(τ < 0.1 ms), and sufficient neural resources (N > 1, 000) are
required to provide robustness and fast convergence (∼150 ms;
sub 200 ms is required to avoid a latency bottleneck, considering
the robotic system response time).

Furthermore, we show that adaptive control is essential for
accurate navigation as reaching the desired target point would
require compensating for the payload-generated excessive
inertia forces. We show that while a naïve control model
which did not take payload into account could not reache
its target destinations, an adaptive controller which considers
feedback from neuromorphic positioning integrators could
compensate for this new environmental condition. Our
adaptive controller dynamically generated adaptive signals with
which the arm could modulate its dynamics, allowing it to
accurately reach its destinations. This capacity of smart motor
control is particularly interesting in human collaborative-
assistive settings.

To conclude, we provide neuromorphic design
guidelines for such an adaptive controller and demonstrate
its computational capacity. We plan to continue
incorporating an iterative participatory design approach
to test the robot with additional users and with
further constraints.
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