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Aberrant immune gene expression has been shown to have close correlations with the
occurrence and progression of esophageal cancer (EC). We aimed to generate a
prognostic signature based on immune-related genes (IRGs) capable of predicting
prognosis, immune checkpoint gene (ICG) expressions, and half-inhibitory
concentration (IC50) for chemotherapy agents for EC patients. Transcriptome, clinical,
and mutation data on tumorous and paratumorous tissues from EC patients were
collected from The Cancer Genome Atlas (TCGA) database. Then, we performed
differential analysis to identify IRGs differentially expressed in EC. Their biofunctions
and related pathways were explored using Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. These gene
expression profiling data were merged with survival information and subjected to
univariate Cox regression to select prognostic genes, which were then included in a
Lasso-Cox model for signature generation (risk score calculation). Patients were divided
into the high- and low-risk groups using the median risk score as a cutoff. The accuracy of
the signature in overall survival prediction was assessed, so were its performances in
predicting ICG expressions and IC50 for chemotherapy and targeted therapy agents and
immune cell landscape characterization. Fifteen prognostic IRGs were identified, seven of
which were optimal for risk score calculation. As expected, high-risk patients had worse
overall survival than low-risk individuals. Significant differences were found in tumor
staging, immune cell infiltration degree, frequency of tumor mutations, tumor mutation
burden (TMB), and immune checkpoint gene expressions between high- vs. low-risk
patients. Further, high-risk patients exhibited high predicted IC50 for paclitaxel, cisplatin,
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doxorubicin, and erlotinib compared to low-risk patients. The seven-IRG-based signature
can independently and accurately predict overall survival and tumor progression,
characterize the tumor immune microenvironment (TIME) and estimate ICG
expressions and IC50 for antitumor therapies. It shows the potential of guiding
personalized treatment for EC patients.
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INTRODUCTION

EC is the seventh most common cancer and the sixth leading
cause of death from cancer across the world [1]. Current
treatment strategies can vary among stages or cancer types,
with endoscopic resection optimal to most early tumors,
surgical resection followed by chemotherapy, radiotherapy, or
targeted therapy (single or combined) beneficial to locally
advanced tumors, but non-surgical treatment, particularly
systemic chemotherapy, suitable for metastatic cases [2].
However, the prognosis remains constant in EC patients
undergoing antitumor treatment, though diverse and being
improved [2]. EC is often diagnosed when it develops to
middle or advanced stages and when a 5-year survival rate
decreases to lower than 20% [3]. Even so, immunotherapy,
particularly immune checkpoint inhibitors (ICIs), has received
much attention over the last few years. It has been proven
effective in and is recommended for the management of
malignant melanoma, non-small cell lung cancer, and clear
cell renal cell carcinoma, with significantly improved patient
prognosis [4]. For EC treatment, ICIs, alone or combined with
chemoradiotherapy, have gradually moved up to the first-line
treatment and exerted impressive antitumor effects [5, 6].
However, not all patients can benefit from this treatment,
despite some patients who have shown better overall or
progression-free survival, which is a concern for
immunotherapy application. Therefore, biomarkers for
systemic prediction of prognosis and immunotherapy efficacy
for EC patients are urgently needed [7].

Tumor occurrence and progression are often determined by
malignant behaviors, such as tumor cell proliferation and
invasion, which are related to the tumor microenvironment
(TME), especially the tumor immune microenvironment
(TIME) that contains immune suppressor cells helpful to
immune escape [8]. Immune checkpoint molecules,
particularly programmed death receptor 1 (PD-1) and
programmed cell death-ligand 1 (PD-L1), have been proven to
be more frequently present in tumor cells and tumor-infiltrating
immune cells to disturb antitumor immune response [9]. Their
involvement in cell differentiation in EC cells, tumor staging,
immunotherapy efficacy, and patient prognosis have been
extensively reported [10-13]. Immune cell infiltration patterns
characterized by these molecules can be associated with
tumorigenesis, progression, and lymph node metastasis, and
subsequently impaired efficacy of immunotherapy and
prognosis [14-16]. Further, high TMB is positively correlated
with overall survival (OS) after ICIs treatment in various cancer

types [17], which may predict the efficacy of ICIs more accurately
than PD-L1 [18].

Compared to a single cancer-related gene with limited
predictive power, a multigene signature has more significant
implications in this regard. In this study, we generated a
prognostic risk model comprising seven IRGs based on
differentially expressed IRGs in EC, validated its performances
in overall survival prediction, and assessed its correlations with
prognostic clinicopathological and immune features.

MATERIALS AND METHODS

Data Acquisition
RNA-seq, clinical, and tumor mutation data on 171 tissue
samples (160 tumorous and 11 paratumorous tissues) from EC
patients were collected from the Cancer Genome Atlas-Genomic
Data Commons (TCGA-GDC; https://portal.gdc.cancer.gov/),
among which incomplete clinical data were improved by the
University of California Santa Cruz (UCSC) the Cancer Genome
Atlas (TCGA) browser (https://xenabrowser.net/datapages/).
Data from EC patients, including 77esophageal
adenocarcinoma (EAC) cases and 76esophageal squamous cell
carcinoma (ESCC) cases, were obtained from this database. Log2
transformed expression scores of each gene were averaged, and
samples with an invalid expression score of 0 were removed.
Standardized RNA transcription expression profiles were
obtained. Furthermore, samples with a follow-up of fewer than
30 days or incomplete follow-up records that may affect
subsequent analyses were excluded. The list of IRGs for EC
was retrieved from the Immunology Database Information
Portal (https://www.immport.org/resources). The raw data for
all included EC cases are summarized in Supplementary File S1.

Differential Analysis of Immune-Related
Genes
The LIMMA package in the R was utilized to carry out differential
analysis for differentially expressed genes (DEGs) in EC vs.
paratumorous tissues (log2 fold-change [FC] > 1.0 and false
discovery rate [FDR] < 0.05) [19]. The volcano plot for these
genes was drawn with GGPLOT2 package in R [20]. DEGs and
IRGs were intersected to obtain differentially expressed IRGs
(DEIs) and their expression data, which were visualized in the
Venn plot and heatmap with VENN and pheatmap R-package
[21]. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis were performed to
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identify biofunctions and pathways related to DEIs with
clusterProfiler package in R (p < 0.05) [22], and the results
were plotted with GGPLOT2 R-package [20].

Establishment and Validation of the
Prognostic Signature
All patients (each case contains complete data of RNA-seq and
survival information) were randomly categorized into the
training (n = 104) and test cohorts (n = 50) for signature
generation and validation, respectively. DEIs expression
information with survival data was integrated and imported to
univariate Cox regression to screen prognostic genes (p < 0.05).
These genes were included in a Lasso-Cox model for cross-
validation with a random stimulation of 1,000 times. Genes
with a low correlation to prognosis were excluded to prevent
over-fitting, and the gene group with the smallest error was
considered optimal for signature generation. The risk score
was calculated with glmnet R-package [23]. The median risk
score of the training cohort was used as a cutoff for risk
stratification (high- and low-risk groups in the training, test,
and combined cohorts). Besides, clinicopathological
characteristics were compared between the training and test
cohorts to ensure no differences between them (p < 0.05). For
validation, we compared the overall survival (OS) of high- and
low-risk EC patients using Kaplan-Meier (KM) survival analysis
and receiver operating characteristic (ROC) curves with
survminer and timeROC R-package [24]. The accuracy of the
signature was determined by the area under ROC curve (AUC)
values. Clinical data (age, gender, tumor differentiation,
histological grading and subtype, and TNM staging) with risk
scores were merged. Risk curves were plotted with pheatmap
R-package to identify high-risk DEIs associated with worse OS.
We also performed KM survival analyses of patients with EAC
and ESCC pathological subtypes. Furthermore, patients with
complete information on clinical characteristics were selected
to assess the independence of the risk score in prognosis
prediction. Differential analyses of the risk score between
subgroups of each clinicopathological parameter (age, gender,
tumor differentiation, TNM staging, and histological grading)
were performed using Wilcoxon rank-sum test with LIMMA
R-package to examine the effect of the signature on tumor
progression [19], and the results were visualized with
GGPLOT2 R-package [20].

Tumor Immune Microenvironment and
Tumor Mutation Burden Analyses
For TIME characterization, we analyzed the infiltration degree
and pattern of 22 immune cell subpopulations with Cell-type
Identification By Estimating Relative Subsets Of RNATranscripts
(CIBERSORT) [25]. Transcriptomic expression scores were
converted into immune cell infiltration information (p < 0.05)
for more specific comparisons of immune cell infiltration
differences between high-vs. low-risk groups, and the results
were visualized with GGPLOT2 R-package [20]. EC mutation
data were analyzed to yield TMB and the frequency of gene

mutations for subsequent analyses. The former was combined
with survival data of high- and low-risk patients for difference
analysis with GGPLOT2 R-package [20]. The waterfall plot was
generated with Maftools R-package to compare differences in
gene mutation frequency between high- vs. low-risk patients [26].
Survival differences between high vs. low TMB were compared
using KM survival analysis with R-package survivminer
package in R.

Immune Checkpoint Gene Expressions and
IC50 for Chemotherapy Agents
Immune checkpoint molecules, including inhibitory and
stimulatory immune checkpoint molecules, are defined as
ligand-receptor pairs that exert inhibitory or stimulatory
effects on immune responses. We compared expressions of the
12 most common immune checkpoint genes (e.g., CD200,
CD200R, CD274 [encoding PD-L1], CD96, CTLA4, DNAM-1,
IDO1, LAG3, NKG2A, PDCD1 [encoding PD1], TIGIT, and
VISTA) between the high-vs. low-risk groups with R-package
LIMMA [19]. Gene expressions were visualized with R-package
GGPLOT2 [20]. Then, we predicted IC50 for three first-line
chemotherapy agents (paclitaxel, cisplatin, and doxorubicin)
and the most commonly used targeted therapy agent erlotinib
between the two risk groups with LIMMA and pRophetic
R-package [19].

Statistical Analysis
All statistical analyses were carried out in R (version 4.0.2). The
utilized R-package including LIMMA, GGPLOT2, clusterProfiler,
glmnet, survivminer, timeROC, pheatmap, ggpubr, Maftools,
pRophetic, and VENN [19-26]. The Log-rank test was applied
for survival analysis, the Wilcoxon rank-sum test was employed
for differential analysis. A two-tailed p-value of <0.05 was
considered statistically significant.

RESULTS

Differentially Expressed Immune-Related
Genes
The differential analysis of normalized transcriptomic expression
data on 160 EC and 11 paratumorous tissue samples showed
2,693 DEGs associated with EC. Their distribution between EC
vs. paratumorous tissues was visualized in the volcano plot
(Figure 1A). In the Venn plot, 275 DEIs (Figure 1B) were
identified after intersection of DEGs with 1,793 IRGs,
including 109 down-regulated genes and 166 up-regulated
ones. The thermogram revealed that expression levels of these
DEIs were markedly different in EC vs. normal tissues
(Figure 1C). As for mechanisms for DEIs in EC, biological
process (BP) terms were mostly enriched in leukocyte
chemotaxis, migration, regulation of chemotaxis, and
chemokine-mediated signaling pathways. The top three terms
of cellular components (CC) comprised lateral plasma
membrane, extracellular matrix, and secretory granule cavity.
The molecular function (MF) of these DEIs mainly focused on
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FIGURE 1 | Differentially expressed immune-related genes (IRGs) in EC. (A) The Volcano plot shows IRG expressions in EC. Green dots represent down-regulated
genes, red dots stand for up-regulated genes, and black dots indicate nondifferential expressed genes (nonDEGs). (B) The Venn diagram shows the distribution of DEGs
and IRGs in EC. (C) The heatmap depicts IRG expressions in EC and paratumorous tissues. Blue blocks suggest low gene expression, and red blocks refer to high gene
expression.

FIGURE 2 | Enrichment analyses of differentially expressed IRGs in EC. (A,B) GO terms and (C,D) KEGG pathways enriched in differentially expressed IRGs. In
panels (A,C), the abscissas of bubble diagrams denote the proportion of genes, and bubble size indicates the number of enriched genes. The color from blue to red
represents an increasing significance level. In panels (B,D), the abscissas of the histograms denote the number of genes. The color from blue to red indicates an
increasing significance level.
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receptor-ligand binding activity, receptor signal activator activity,
cytokine, growth factor, and chemokine activity (Figures 2A,B).
These genes primarily were associated with cytokine-receptor
interaction, chemokine signaling pathway, and the MAPK
signaling pathway. Therefore, the 275 DEIs were correlated
with immune function, as supported by the above GO terms
and KEGG pathways (Figures 2C,D).

Signature Generation
In univariate Cox regression analysis, 15 of 275 IRGs markedly
correlated with patient survival were confirmed. The forest plot
displayed correlation patterns of the 15 IRGs with survival time
(Figure 3A). Ultimately, seven prognostic IRGs (APLN,
CACYBP, FABP3, GPER1, JAG2, SFTPA1, and XCR1) were
selected by the Lasso-Cox model (Figures 3B,C; Table 1), of
which APLN, CACYBP, FABP3, and SFTPA1 had a hazard ratio
(HR) of >1 and were considered high-risk genes of patient overall
survival, often associated with a poor prognosis. The remanent
three genes (GPER1, JAG2, and XCR1) had an HR of less than 1,
indicating that their overexpression was correlated with longer
overall survival. Based on expression scores and risk coefficients
of the seven hub genes, the risk score of each patient was
calculated as follows: rick score = (0.24466 × APLN) +

(0.64372 × CACYBP) + (0.52781 × FABP3) + (−0.61487 ×
GPER1) + (−0.44301 × JAG2) + (0.51644 × SFTPA1) +
(−0.76193 × XCR1). Each coefficient numerically represents
the hazard weight of gene expression of a differentially
expressed gene. In addition, there were no differences in
clinicopathological characteristics between the training vs. test
cohorts (Table 2), indicating that the gene group can be used for
subsequent analysis.

Validation of the Prognostic Signature
In the training (p < 0.001), test (p = 0.037), and combined (p <
0.001) cohorts, high-risk patients showed worse overall survival
than low-risk patients, with the corresponding AUCs of 0.816,
0.673, and 0.785 (Figures 4A–C), indicating satisfactory
sensitivity and specificity of the prognostic signature.
Compared to gender (p = 0.536) and stage (p = 0.679), the
risk model revealed greater diagnostic efficiency but did not
show better prediction when it was integrated into a
clinicopathological-genomic nomogram with gender and stage.
High-risk EC patients showed an increased risk score worse
overall survival, along with upregulation of four high-risk
genes and downregulation of three low-risk genes compared to
low-risk patients, comparable in the training and test cohorts
(Figures 4A–C). Moreover, subgroup analysis of different
pathological subtypes of EC revealed that the OS time of EAC
and ESCC patients with high-risk score was shorter than that of
patients with low-risk score, and the difference was much more
significant in the cases of EAC compared to ESCC (p<0.001 vs.
p = 0.043) (Figures 5A,B). Besides, 120 EC patients had complete
clinical information (age, gender, histological grading,
histological subtypes, and clinical staging). In univariate Cox
regression, gender (p = 0.041), clinical staging (p < 0.001), and
risk score (p < 0.001) were prognostic markers in EC, of which
gender was excluded in multivariate Cox regression (Table 3).
Therefore, clinical staging (p < 0.001) and risk score (p < 0.0001)
could act as independent prognostic factors of EC from other

FIGURE 3 | A seven-IRG-based prognostic signature. (A) The forest plot reveals 15 prognostic IRGs identified using univariate Cox regression and their correlation
pattern with overall survival time. (B) Survival cross-validated partial log-likelihood deviance for assessment of the fit of the Coxmodel. (C) Evaluation of the change in risk
(HR trajectory) using Lasso regression. The abscissa and ordinate represent log-transformed (or independent) variables and coefficients of independent variables,
respectively.

TABLE 1 | Multivariate Cox regression analysis of seven IRGs associated with
overall survival of patients with EC.

Gene ID Coef HR HR 95%
low

HR 95%
high

p-value

SFTPA1 0.51644 1.67605 1.23509 2.27443 0.00091
FABP3 0.52781 1.69521 1.17262 2.45072 0.00500
CACYBP 0.64372 1.90356 0.93207 3.88762 0.07725
XCR1 −0.76193 0.46677 0.26349 0.82686 0.00901
APLN 0.24466 1.27718 0.95850 1.70183 0.09481
JAG2 −0.44301 0.64210 0.46236 0.89171 0.00819
GPER1 −0.61486 0.54071 0.33372 0.87610 0.01252

Coef: regression coefficient; HR: hazard ratio.
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clinical characteristics. All these findings suggested that the
seven-IRG-based prognostic signature could accurately predict
the prognosis of EC patients.

Clinical Implications of the Prognostic
Signature
We performed differential analyses of the risk score between
clinicopathological subgroups to assess clinical correlations of the
signature. The results showed that the risk score increased with
EC clinical stage (p = 0.0096). High-risk patients had further
tumor progression concerning metastasis (p = 0.0059) and
metastatic lymph nodes (p = 0.0088) compared to low-risk
patients (Figures 5C–I). Moreover, subgroup analyses showed
that EAC patients had a higher risk score than ESCC patients (p <
0.001, Figure 5J).

Mutation Prediction and Immune Cell
Landscape Characterization
Most frequently, mutations were identified in CSMD3, MUC16,
SYNE1, TP53, and TTN in both risk groups, which were primarily
missense mutations. In intergroup comparisons, high-risk
patients had a higher frequency of these mutations except for
CSMD3 (Figures 6A,B) and increased TMB (p = 0.012,
Figure 6C) compared to low-risk patients. According to the
median TMB, all patients were assigned to the high or low
TMB group to assess the discrimination ability of TMB in
survival prediction. However, no significance in OS was
observed between the two groups (p = 0.092) (Figure 6D).

As for differences in the TIME, high-risk patients exhibited
impaired naive B cell and resting mast cell infiltration compared

to low-risk patients. Rather, the degree of activated mast cell and
neutrophil infiltration was remarkably enhanced in the high- vs.
low-risk group (Figure 6E).

Immune Checkpoint Gene Expressions and
IC50 for Chemotherapy Agents
We compared expressions of 12 common immune checkpoint
genes (CD200, CD200R, CD274, CD96, CTLA4, DNAM-1, IDO1,
LAG3,NKG2A, PDCD1, TIGIT, and VISTA) between the two risk
groups. All gene expressions were upregulated in the low- vs.
high-risk groups (Figures 7A–L). The predicted IC50 for the three
common chemotherapy agents (paclitaxel, cisplatin, and
doxorubicin) and the targeted therapy agent erlotinib was also
compared between the two groups. High-risk patients
unanimously exhibited higher predicted IC50 for the four
agents compared to low-risk patients (Figures 7M–P).

DISCUSSION

EC is considered most aggressive among gastrointestinal
malignancies, which has a 5-year survival rate of 15–25%
across the world [27, 28], with median overall survival of only
13 months [29]. EC patients may have cachexia, early satiety,
dysphagia, aspiration, apastia, and other symptoms that
pronouncedly diminish quality of life. Currently,
immunotherapy comprised of immune checkpoint inhibitors,
peptide vaccines, and adoptive T cell immunotherapy has
received increasing attention [7], though it cannot substitute
for conventional treatment like surgery, radiotherapy, and
chemotherapy [30]. Its efficacy has been proven for some

TABLE 2 | Clinicopathological features of EC patients.

Features Subgroups Training cohort Test cohort Combination cohort p-value

Age >65 years 39 (37.5%) 19 (38%) 58 (37.66%) 1
≤65 years 65 (62.5%) 31 (62%) 96 (62.34%)

Gender Female 16 (15.38%) 7 (14%) 23 (14.94%) 1
Male 88 (84.62%) 43 (86%) 131 (85.06%)

Grade G1-2 52 (50%) 26 (52%) 78 (50.65%) 1
G3 28 (26.92%) 14 (28%) 42 (27.27%)
Unknown 24 (23.08%) 10 (20%) 34 (22.08%)

Stage Stage I–II 54 (51.92%) 27 (54%) 81 (52.6%) 0.7381
Stage III-IV 39 (37.5%) 16 (32%) 55 (35.71%)
Unknown 11 (10.58%) 7 (14%) 18 (11.69%)

T T1-2 40 (38.46%) 22 (44%) 62 (40.26%) 0.4876
T3-4 55 (52.88%) 21 (42%) 76 (49.35%)
Unknown 9 (8.65%) 7 (14%) 16 (10.39%)

M M0 79 (75.96%) 37 (74%) 116 (75.32%) 0.9899
M1 6 (5.77%) 2 (4%) 8 (5.19%)
Unknown 19 (18.27%) 11 (22%) 30 (19.48%)

N N0 42 (40.38%) 19 (38%) 61 (39.61%) 1
N1-3 52 (50%) 24 (48%) 76 (49.35%)
Unknown 10 (9.62%) 7 (14%) 17 (11.04%)

histology Adenocarcinoma 51 (49.04%) 26 (52%) 77 (50%) 0.753
Squamous carcinoma 52 (0.96%) 24 (48%) 76 (49.35%)
Serous Neoplasms 1 (50%) 0 (0%) 1 (0.65%)

T: tumor; M: metastasis; N: node.
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refractory EC subtypes [31]. For far too long, we have not yet
identified an excellent biomarker for predicting immunotherapy
response and OS, which emphasizes the need for future studies
into exploring such biomarkers for EC. The prediction power of
any single tumor marker is insufficient for tumors, whose
microenvironment is jointly regulated by multiple genes.
Although some studies have reported IRG signatures in EC
[32,33], the current study performed extra analyses, including
immune checkpoint biomarker expressions and IC50 prediction.
Compared to previous reports, our study offers more feasible
findings for clinical application, which can be directly used as
recommendations for EC treatment. The seven-IRG-based
prognostic signature exhibits good accuracy in predicting
overall survival (with AUC ranging from 0.673 to 0.816),

stages of cancer progression, and characterization of immune
cell infiltration pattern. The signature also shows good
performance in characterizing expression patterns of immune
checkpoint genes and predicting IC50 values. The discrimination
power allows physicians to select the optimal treatment strategies
to hopefully extend the survival of EC patients.

The immune microenvironment is critical for tumor
occurrence and progression. In the present study, we identified
275 DEIs based on gene expression data from 171 tissue samples
of EC patients from TCGA. These genes are primarily involved in
the activities of cytokines, chemokines, and growth factors, and
their recognition and binding to protein targets, closely related to
tumor growth, proliferation, or immunity. 15 of 275 prognostic
DEIs were included in a Lasso-Cox model for optimal gene

FIGURE 4 | Validation of the prognostic signature. The power of the prognostic signature in predicting the overall survival of patients in (A) the test, (B) training, and
(C) combined cohorts using Kaplan-Meier survival analysis, ROC curves, and risk curves. In risk curves, the abscissas represent the number of EC patients, and the
ordinates, from top to bottom, indicate gene expressions, risk score, and survival time.
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signature selection using 2/3 of all patients as a training cohort. A
prognostic signature based on seven IRGs (APLN, CACYBP,
FABP3, GPER1, JAG2, SFTPA1, and XCR1) was determined,
and its efficacy in overall survival prediction was validated
using the remanent 1/3 of patients assigned to the test cohort.

Among others, the chemokine receptor XCR1 showed the highest
specific gravity in the IRGs model (coef = −0.76193). It was
reported that XCR1 was exclusively expressed on CD8+ DCs and
can stimulate CD8+T cells to proliferate, thus enhancing the
immune system [34]. XCR1 downregulation has been shown to

FIGURE 5 |Differential expression analyses of the prognostic signature with clinicopathological characteristics of EC patients. Risk score-based survival analysis in
EAC and ESCC cases (A,B). The seven-IRG-based prognostic signature is correlated with (C) age, (D) gender, (E) pathological grading, (F) tumor staging, (G) tumor
size, (H) distant metastasis, (I) lymph node metastasis, and (J) histological subtype. EAC, Esophageal adenocarcinoma; ESCC, Esophageal squamous cell carcinoma.

TABLE 3 | Univariate and multivariate Cox regression for independence of riskScore and clinicopathological features in prognosis prediction.

Features Univariate Cox regression Multivariate Cox regression

HR HR 95% low HR 95% high p HR HR 95% low HR 95% high p

Age 1.005 0.979 1.031 0.716
Gender (male vs. female) 7.980 1.094 58.217 0.041 4.382 0.585 32.826 0.150
Grade (I/II vs. III/IV) 1.334 0.813 2.187 0.254
Stage (I vs. II/III) 2.768 1.779 4.305 <0.001 2.398 1.519 3.786 <0.001
riskScore (high vs.low) 1.167 1.100 1.238 <0.001 1.139 1.072 1.210 <0.001
Histology (EAC vs. ESCC) 0.779 0.407 1.492 0.452

HR: hazard ratio. EAC: Esophageal adenocarcinoma. ESCC: esophageal squamous cell carcinoma.
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FIGURE 6 |Mutation prediction and immune cell landscape characterization in EC. (A,B)Waterfall plots show the frequency of genemutations in high- and low-risk
patients. The abscissas represent the number of patients, and the ordinates denote the name of mutated genes. Different colors of blocks represent different mutation
types. (C) Differences in TMB between the high- and low-risk groups. (D) Kaplan-Meier survival analysis reveals no significant difference in overall survival between high
versus low TMB patients. (E) Immune infiltration patterns between high- and low-risk patients. The abscissa and the ordinate represent the type and proportion of
immune cells.
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stimulate the immune system to exert the antitumor activity,
which is critical to alter the immune cell landscape in the TME
that delays tumor progression [35]. It is expected to serve as a
novel target of immunotherapy [36]. Calcyclin-binding protein
(CACYBP) is universally considered most harmful, with its major
function of participating in the connection between actin and
tubulin to facilitate cytoskeleton formation [37] and in cell
differentiation and proliferation in neuroblastoma NB2a cells
via activation of the ERK1/2 pathway [38]. As highlighted in
current studies, CACYBP promotes tumor occurrence and
progression in various tumors via anti-apoptotic activity in
cancer cells and inhibiting the cell cycle [39-41]. Fatty acid
binding proteins 3 (FABP3) facilitates fatty acid transport, cell
growth, cellular signaling, and gene transcription. Moreover, in

non-small cell lung cancer and gastrointestinal stromal tumors,
FABP3 overexpression is notably correlated with tumor size and
lymph node metastasis of advanced tumors and with remarkably
shorter survival of patients [42, 43]. It was therefore revealed that
FABP3 is of strong prognostic significance. G protein-coupled
estrogen receptor 1 (GPER1) has been reported to be involved in
cell cycle regulation, endoplasmic reticulum stress, proliferation,
apoptosis, and immune response [44]. GPER1 silencing inhibits
gastric cancer cell proliferation, migration, and invasion via
inhibiting PI3K/Akt-mediated epithelial-mesenchymal
transition [45]. A six-IRGs (AMBP, C6, ITLN1, MADCAM1,
PRLR, and TSPAN2) based prognostic model in ESCC also
obtained comparable predictive efficacy to our model [46].
The above genes are critical for EC progression, which can be

FIGURE 7 | Immune checkpoint gene expressions and IC50 for chemotherapy and targeted therapy agents in EC. Expression levels of immune checkpoint genes
(A) PDCD1, (B) CD274, (C) CTLA4, (D) TIGIT, (E) IDO1, (F) LAG3, (G) VISTA, (H) CD200, (I) CD200R, (J) DNAM-1, (K) CD96, and (L) NKG2A. Sensitivity to
chemotherapy agents (M) paclitaxel, (N) cisplatin, and (O) doxorubicin and to the targeted therapy agent (P) erlotinib in high- and low-risk EC patients.
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considered to be oncogenes or tumor-suppressor genes. These
gene studies may involve the key realm of EC development and
management, but more studies are required for validation. The
functions of genes mentioned above in tumor cells demonstrate
that the signature is expected to predict the prognosis and
progression stages of EC patients and hopefully offer
opportunities to identify new therapeutic targets of EC to
improve treatment. Overall, the signature is a biomarker
associated with tumor immunity and growth inhibition.

We also assessed the prediction ability of the prognostic
signature and ascertained its excellent accuracy in predicting
the overall survival and death risk of EC patients and
independent discrimination power from other clinical
indicators. Further, it shows significant correlations with these
clinical indicators. These findings suggest that the signature
shows the potential of predicting how fast EC progresses
based on especially clinical stages and lymph node and distant
metastasis. High-risk patients need effective treatment in a more
timely manner. Therefore, it can be involved in the early
screening of high-risk EC patients for improved prognosis.
Besides, in analyses of different pathological subtypes of EC,
we found that EAC patients exhibited a higher risk score than
ESCC patients, and the difference of the survival analysis was also
found to be much more significant in the cases of EAC compared
to ESCC. This finding indicates that the calculated risk score may
be an important indicator in predicting the OS of EC cases, and
the seven genes included in the signature can be important roles,
probably in regulating the histological evolution of EAC, offering
the prospect of identifying new targets for EAC treatment and
prognosis prediction. Besides, its ability to predict somatic
mutations has been assessed. The signature well predicted
mutation probabilities between high- and low-risk EC patients,
especially those of TP53, TTN, andMUC16 genes. TP53mutations
are most common in malignant tumors and associated with
enhanced invasiveness and worse prognosis of patients [47, 48].
TP53mutations may stimulate tumor cell proliferation and tumor
growth via abnormal p53/TGF-β signaling activity, potentially
explaining rapid tumor progression and poor prognosis in high-
risk patients. These predicted genemutationsmay offer new targets
for drug development or a new treatment strategy for patients at
increased risk for tumor progression.

The seven-IRG-based signature also shows satisfactory efficacy in
predicting ICG expressions, TMB, and the immune cell landscape in
the TIME of EC patients, all of which are capable of sensitivity
assessment of immunotherapy. Among the 12 ICGs frequently
reported, PDCD1 (encoding PD-1) has been proven to facilitate
EC progression and distant metastasis [11]. Patients with CD274
(encoding PD-L1) upregulation or high TMB tend to benefit more
from immunotherapy therapy [12]. Although TMB has no effect on
EC prognosis, it allows us to exclude the prognostic effect of TMB
itself and turn our focus to the relationship between TMB and
immunotherapy—the signature may somewhat compromise
outcome in patients receiving immunotherapy. CTLA4- or IDO1-
positive immune cells are negatively correlated with the overall
survival of patients [49, 50]. Patients with VISTA-positive
immune cells often exhibit prolonged survival [51]. However,
those with CD274- and IDO1-double-positive immune cells have

shorter overall survival and decreased sensitivity to chemotherapy
agents [52]. The potential mechanisms of aberrant ICG expressions
for tumor progression are complex and have not yet been fully
explored. But PDCD1 and CD274 expressions as effective
biomarkers for predicting ICIs’ efficacy have been ascertained by
many [10-12,53]. In the present study, CTLA4, CD274, and PDCD1
expressions were upregulated in low-risk patients. Neutrophils are
most abundant in immune cells and a critical component of the
TME. Neutrophil infiltration into tumors may allow inflammation
to persist and fuel tumor progression and metastasis [54]. Mast cells
promote tumor growth and proliferation via immunosuppression,
angiogenesis, and tissue remodeling [55]. Consistently, our finding
shows that activated mast cell and neutrophil infiltration was
markedly enhanced in high- vs. low-risk patients, and naive
B cell and resting mast cell infiltration was reduced. This
indicates that the seven-IRG-based signature can characterize the
TIME of high-risk EC patients. Numerous evidence shows that
elevated PDCD1, CD274, and CTLA4 expressions are associated
with a poor prognosis, which is in contrast to our findings of
improved prognosis of low-risk patients who have the same gene
expression patterns. This can be explained by the positive correlation
of the infiltration of PDCD1-, CD274-, and CTLA4-overexpressed
immune cells responsible for antitumor immunity with survival
time. Studies have ascertained that PDCD1 and CD274 expressions
in tumor cells and tumor-infiltrating immune cells are associated
with improved prognosis, which supports our finding [56,57]. The
above results indicate that the seven-IRG-based prognostic signature
has good efficacy in predicting immune cell infiltration pattern,
somatic mutations, TMB, and ICG expression pattern in EC. Taken
together, it offers insight into the TIME of individual patients and
molecular evidence to optimize ICI strategy for EC patients [58].
However, immune checkpoint expressions are not identical to the
exact sensitivity to immunotherapy in patients, so its prediction for
ICI efficacy still needs validation by future clinical trials.

In the present study, high-risk patients selected using the
signature showed higher predicted IC50 for the chemotherapy
agents paclitaxel, cisplatin, and doxorubicin and the targeted
therapy agent erlotinib. Rather, low-risk patients had lower
predicted IC50 for these agents. These results are consistent with
a high frequency of TP53 mutations described above as TP53 has
significant associations with the unsatisfactory efficacy of
neoadjuvant therapy [59]. Therefore, we believe that this
signature can offer helpful feedback to improve efficacy. Thus,
the signature is promising in estimating the efficacy of
conventional chemotherapy or targeted therapy strategies.
Overall, low-risk patients identified by the signature hopefully
benefit more from immunotherapy and conventional
chemotherapy. As for high-risk patients, new therapeutic
strategies or a combination of multiple agents are required to
improve prognosis, which, however, calls for massive clinical
observations for validation.

CONCLUSION

The seven-IRG-based prognostic signature can independently predict
the prognosis, tumor progression, and immune infiltration pattern in
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the TIME of EC patients. It shows the potential to monitor the
efficacy of immunotherapy, chemotherapy, and targeted therapy for
personalized treatment for these patients.
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