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Abstract

Rodent models are essential to translational research in health and disease. Investigation in rodent 

brain function and organization at the systems level using resting-state functional magnetic 

resonance imaging (rsfMRI) has become increasingly popular. Due to this rapid progress, publicly 

shared rodent rsfMRI databases can be of particular interest and importance to the scientific 

community, as inspired by human neuroscience and psychiatric research that are substantially 

facilitated by open human neuroimaging datasets. However, such databases in rats are still rare. In 

this paper, we share an open rsfMRI database acquired in 90 rats with a well-established awake 

imaging paradigm that avoids anesthesia interference. Both raw and preprocessed data are made 

publicly available. Procedures in data preprocessing to remove artefacts induced by the scanner, 

head motion and non-neural physiological noise are described in details. We also showcase inter-

regional functional connectivity and functional networks obtained from the database.
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1. Introduction

Resting-state functional magnetic resonance imaging (rsfMRI) measures spontaneous brain 

activity in the absence of explicit external tasks or stimuli based on the blood-oxygenation-

level dependent (BOLD) contrast (Biswal et al., 1995). Due to its high spatial resolution and 

whole-brain coverage, this method has tremendously advanced our understanding of human 

brain networks in terms of the function (Greicius et al., 2003; Hampson et al., 2002; Lowe et 

al., 1998), organization (Fox et al., 2005; Wang et al., 2010), development and aging 

(Dosenbach et al., 2010; Fair et al., 2008), as well as genetic basis (Fu et al., 2015; Wiggins 

et al., 2012), and has provided a potential biomarker that can be used to track the progress of 

brain disorders, and evaluate the efficacy of treatment (Lee et al., 2013).

Compared to human research, studying rodent models using rsfMRI has unique advantages. 

First, environmental and genetic background are relatively uniform, making it easier to 

separate their influences on brain networks and function (Gorges et al., 2017). Second, fMRI 

can be combined with cutting-edge neuroscience techniques such as electrophysiology 

(Majeed et al., 2011; Pan et al., 2010; Sloan et al., 2010), optogenetics (Desai et al., 2011; 

Lee et al., 2010; Liang et al., 2015b), calcium signal recording (Liang et al., 2017; Schlegel 

et al., 2018) and Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) 

(Grayson et al., 2016), which can facilitate bridging wide-range information from the 

cellular to systems levels. Applying rsfMRI in transgenic rodent models can further link 

imaging discoveries to neural mechanisms at the genetic and molecular levels (Asaad and 

Lee, 2018). Third, rodent rsfMRI studies have high translational value. Using rsfMRI and 

other techniques, functional networks such as the thalamocortical and default mode 

networks (DMNs) have been identified in rodents that bear high anatomical resemblance as 

those in humans (Liang et al., 2013; Lu et al., 2012a,; Stafford et al., 2014). Topological 

organization such as small-worldness and rich-club organization is also well conserved in 

humans, non-human primates and rodents (Bullmore and Sporns, 2009; Liang et al., 2011; 

Ma et al., 2018a; van den Heuvel and Sporns, 2011). Taken together, rsfMRI provides a 

powerful tool in characterizing rodent models that complement human studies.

Despite these significant potentials, there is a large disparity in the number of publications 

between animal and human studies using rsfMRI. A major challenge is that anesthesia is 

often used in animal rsfMRI experiments to immobilize animals. It becomes increasingly 

clear that anesthesia changes physiological conditions (Tsukamoto et al., 2015), 

neurovascular coupling (Devor et al., 2007), brain metabolism (Hyder et al., 2002), and 

function of brain circuits and networks (Hamilton et al., 2017; Liang et al., 2011; Lu et al., 

2007; Ma et al., 2017). In addition, the effects of anesthesia vary across different anesthetic 

agents and dosages (Grandjean et al., 2014; Hamilton et al., 2017), making it difficult to 

integrate data from different labs using different anesthesia protocols. Therefore, to avoid 

these issues it is important to image animals at the awake state when studying brain function 

and network.

Since late 1990s, several labs, including ours, have established an awake animal rsfMRI 

paradigm that allows the brain function to be studied without the interference of anesthesia 

(Zhang et al., 2010; Bergmann et al., 2016; Chang et al., 2016; Yoshida et al., 2016; Lahti et 
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al., 1998; Ferris et al., 2006). In this paradigm, animals are acclimated to the MRI scanning 

environment to minimize their stress and motion during imaging (King et al., 2005). We 

have demonstrated that this acclimation procedure, unlike studies of chronic stress that use 

prolonged daily restraint, does not induce chronic stress, nor does it interact with other 

stressors (Dopfel et al., 2019; Liang et al., 2014). By utilizing this method, we have 

investigated spatiotemporal dynamics of individual neural circuits (Liang et al., 2013, 

2012a) and whole-brain networks (Liang et al., 2011; Liu and Zhang, 2019; Ma and Zhang, 

2018; Ma et al., 2018b, 2020). This method has also be employed to reveal changes in 

whole-brain connectivity architecture during brain development (Ma et al., 2018a), under 

anesthesia (Hamilton et al., 2017; Liang et al., 2015a, 2012b; Ma et al., 2017; Smith et al., 

2017), as well as neuroplastic changes induced by traumatic stress (Dopfel et al., 2019; 

Liang et al., 2014) and drugs (Crenshaw et al., 2015; Pérez et al., 2018; Roses et al., 2014). 

Moreover, the same approach has been applied to other species including mice, rabbits, 

monkeys and dogs (Berns et al., 2012; Goense and Logothetis, 2008; Schroeder et al., 2016; 

Desai et al., 2011; Yoshida et al., 2016). Taken together, these studies have demonstrated the 

validity and value of the awake fMRI approach.

Inspired by human neuroscience and psychiatric research that are substantially facilitated by 

open human neuroimaging datasets, here we share an open database, which contains 175 

rsfMRI scans from 90 rats acquired in the awake state, to the public. We provide both raw 

and preprocessed data. Some results obtained from routine analyses are demonstrated.

2. Methods and materials

2.1. Animals

Data were acquired in 90 adult male Long-Evans rats (300 g–500 g), part of which were 

used in previous publications (Dopfel et al., 2019; Liu and Zhang, 2019; Ma et al., 2018a; 

Ma and Zhang, 2018; Ma et al., 2018b). All rats were housed in Plexiglas cages (two per 

cage) with food and water provided ad libitum. A 12 h light: 12 h dark schedule and ambient 

temperature between 22 °C and 24 °C were maintained. All experiments were approved by 

the Institutional Animal Care and Use Committee (IACUC) of the Pennsylvania State 

University.

2.2. Acclimation procedure

The purpose of this procedure is to acclimate the animal to the restraining system as well as 

the noisy and confined environment inside the MRI scanner. Details of the acclimation 

procedure can be found in our previous publications (Dopfel and Zhang, 2018; Gao et al., 

2017). Briefly, EMLA cream (2.5% lidocaine and 2.5% prilocaine) was applied topically to 

the nose, jaw, and ear areas to relieve any discomfort associated with the restrainer 20 min 

prior to the procedure. The animal was then briefly anesthetized with 2–4% isoflurane and 

placed in a head restrainer, in which the teeth and nose were secured by a bite bar and a nose 

bar, respectively, and ears were secured by adjustable ear pads. Forepaws and hindpaws were 

loosely taped to prevent the animal from accidental self-injury. After that, the body was 

placed in a Plexiglas body holder with the shoulders secured by a pair of shoulder bars. The 

whole system allowed unrestricted breathing. Isoflurane was discontinued after the setup. 
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The restrainer was then fixed to a body holder. After the animal woke up, the system was 

placed into a black opaque chamber where the prerecorded sound from various imaging 

sequences was played. The animal was acclimated for 7 days with an incremental exposure 

time up to 60 min (i.e. 15, 30, 45, 60, 60, 60 and 60 min from Day 1 to Day 7, respectively). 

This procedure has also been employed by several other groups for awake rodent fMRI 

(Bergmann et al., 2016; Chang et al., 2016; Yoshida et al., 2016).

2.3. Data acquisition

Data were acquired on a 7T Bruker 70/30 BioSpec running ParaVision 6.0.1 (Bruker, 

Billerica, MA) at the High Field MRI Facility at the Pennsylvania State University. Similar 

to the setup in the acclimation procedure, the animal was briefly anesthetized with 2–4% 

isoflurane and were placed in a head restrainer integrated with a birdcage head coil. The 

isoflurane was discontinued once the setup was finished. rsfMRI acquisition started when 

the animal was fully conscious (usually within 10–15 min). A single-shot gradient-echo 

echo-planar imaging (GE-EPI) sequence was used with the following parameters: repetition 

time (TR) = 1000 ms; echo time (TE) = 15 ms; matrix size = 64 × 64; field of view (FOV) = 

3.2 × 3.2 cm2; slice number = 20; slice thickness = 1 mm; slice gap = 0 mm; flip angle = 

60°, 600, 900, or 1200 volumes per scan, 2 to 4 scans per animal. A representative raw EPI 

image is shown in Fig. S1a. Anatomical images were also acquired with a rapid imaging 

with refocused echoes (RARE) sequence with the following parameters: TR = 1500 ms; TE 

= 8 ms; matrix size = 256 × 256; FOV = 3.2 × 3.2 cm2; slice number = 20; slice thickness = 

1 mm; slice gap = 0 mm.

2.4. Data preprocessing

The preprocessing procedures generally followed those commonly used in human rsfMRI 

data, but were adapted to optimize the performance for rat rsfMRI data. The preprocessing 

pipeline is outlined in Fig. 1, which included 9 steps:

1. Volumes with excessive motion were discarded (i.e. scrubbing).

2. rsfMRI images were manually co-registered to an anatomical template with 

rigid-body transformation.

3. Co-registered images were cropped by a dilated brain mask to facilitate motion 

correction.

4. Co-registered images were corrected for head motion and motion parameters 

were recorded.

5. Motion-corrected images were normalized to the anatomical template with 

deformable registration.

6. Non-neural artefacts were identified with independent component analysis (ICA) 

on smoothed normalized images (FWHM = 0.7 mm). Time courses of noise 

independent components (ICs) were recorded.

7. Unsmoothed normalized images were softly cleaned by regressing out noise IC 

time courses, motion parameters and the nuisance signals from the white matter 

(WM) and cerebral spinal fluid (CSF).
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8. Softly cleaned images were spatially smoothed (FWHM = 1 mm).

9. Spatially smoothed images were temporally bandpass filtered.

All source codes used for preprocessing can be downloaded from the GitHub repository: 

https://github.com/liu-yikang/rat_rsfmri_preprocessing. Details of each step were described 

below.

2.5. Motion scrubbing and co-registration

First, motion was evaluated by calculating the relative framewise displacement (FD) of each 

rsfMRI volume (Power et al., 2012). Specifically, the geometric transformation from each 

frame (i.e. 3D volume) to the first frame was evaluated by the built-in function imregtform 
in MATLAB (The Mathworks Inc., Natick, MA, USA) with six degrees of transformation 

considered (i.e. rigid-body transformation), including translations in the three orthogonal 

axes (translation distances for the frame i are denoted as xi, yi, and zi) and rotations around 

the three axes (rotation angles are denoted as αi, βi, and γi). Then FDi = ∣ Δxi ∣ + ∣ Δyi ∣ + ∣ 
Δzi ∣ + r · (∣ Δαi ∣ + ∣ Δβi ∣ + ∣ Δγi ∣), where r = 5 mm, which is approximately the distance 

measured from the cortex to the center of the rat head. Frames with FD > 0.2 mm and their 

neighbor frames were discarded. The first 10 frames of each scan were also discarded to 

ensure steady state of magnetization. Scans with less than 90% of the total number of frames 

left were excluded from further analysis. This procedure and parameters used can effectively 

minimize motion artefacts as confirmed in our previous studies (Liu and Zhang, 2019; Ma 

and Zhang, 2018). For the scans remained, 5.62 ± 2.39% (mean ± std) frames were 

scrubbed. The FD values of each scan were included in the corresponding .json file of the 

scan.

Next, the first frame of each rsfMRI scan was manually co-registered (i.e. aligned) to a T2-

weighted anatomical template using an in-house software written in MATLAB. To ensure 

the quality of alignment, voxels at brain boundaries, ventricles, and WM in the anatomical 

template were displayed as landmarks on a graphical-user interface (Fig. S2). After the 

coregistration of the first frame, the same geometric transformation was applied to the 

remaining frames.

Subsequently, head motions were corrected using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) 

with a dilated brain mask applied, in which each frame was co-registered to the first frame 

through a rigid-body transformation. Motion parameters were recorded for further use. The 

distribution of averaged FD across scans is displayed in Fig. 2 (mean: 0.0507 mm; median: 

0.0416 mm).

Lastly, the motion-corrected images were registered to the anatomical template with SyN 

diffeomorphic transformation (antsIntroduction.sh) using ANTS (Advanced Normalization 

Tools, http://picsl.upenn.edu/software/ants/) (Avants et al., 2008). A representative example 

of deformable registration is shown in Fig. S1d.

2.6. ICA-based artefact identification

We used ICA to remove non-neural artefacts potentially related to motion, breathing, 

heartbeats, and/or scanner instability from spatially co-registered data. ICA-based artefact 
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removal has been widely applied in human and rodent studies (Griffanti et al., 2015, 2014; 

Han et al., 2019; Salimi-Khorshidi et al., 2014; Smith et al., 2013). It leverages the 

independency between spatial and/or temporal patterns of the neural and non-neural 

components to separate them. In this method, users can manually identify each IC as real 

signal or noise based on their spatial, temporal, and spectral features. Standards of manually 

classifying ICs based on these features for the HCP data (Smith et al., 2013) were listed in 

Table 1 (Griffanti et al., 2017). Our specific procedure followed these guidelines, but was 

also adapted to the characteristics of rat data. We found one criterion not applicable to our 

rat data. In the HCP guideline, signal ICs tend to have a few large clusters, whereas noise 

ICs tend to have many small clusters. This criterion did not always hold true in rat data due 

to the relative portion of the cortex versus sub-cortex. The human brain is dominantly 

composed of the cortex, which contributes to most clustered structures in signal ICs. In 

contrast, 2/3 volume of the rat brain is sub-cortex that includes numerous heterogeneous 

nuclei. Thus, neural components in rats may not always display large clusters. Therefore, we 

grouped the HCP criteria into three categories: not applicable; applicable; confident, as 

listed in Table 1 and used the following criterion to label noise/signal ICs: an IC was 

classified as a noise component if it had one or two “confident” features or had at least two 

of the following three “applicable” features: 1) its spatial map is located predominately at 

white matters, ventricles, or brain boundaries; 2) its time course has sudden jumps; 3) the 

frequency spectrum is flat or dominated by very low or high frequency.

Prior to ICA, we spatially smoothed each frame with a Gaussian kernel (FWHM = 0.7 mm). 

The kernel size was empirically determined to improve the ICA performance, but still 

maintain the difference between neural and non-neural components. After that, spatial ICA 

was separately conducted on each scan using the GIFT ICA toolbox (Calhoun et al., 2009) 

with the number of ICs set at 50. Subsequently, we calculated the time courses of ICs by 

regressing their spatial maps against each frame.

We manually labeled ICs as signal or noise components for all scans of all animals based on 

the features of their spatial maps (z-scored, thresholded at z > 2), time courses, and spectra 

using the criteria mentioned above. 25.28 ± 9.32 (mean ± std) ICs were identified as noise 

components per scan. Two representative noise ICs are demonstrated in Fig. 3.

2.7. Soft cleaning, spatial smoothing, and temporal filtering

In the next step, we generated nuisance regressors from the signals in the WM and CSF 

regions using the CompCor method (Behzadi et al., 2007). The WM and CSF masks are 

shown in Fig. S3. We used the CSF mask in the SIGMA template, generated by thresholding 

the CSF probability map at 0.6, as it contains areas surrounding the pial surface (Barriere et 

al., 2019). The CompCor method used principal components (PCs), selected based on 

variance explained, of signals in WM and CSF voxels as regressors. First, 1000 datasets with 

the same data size were generated using Monte Carlo simulation (normally distributed). The 

p value of each PC in real data was determined by the portion of simulated datasets whose 

1st PC had greater variance explained than the real-data PC. PCs with significant variance 

explained were selected (p < 0.05). In our data, 22.66 ± 6.19 (mean ± std) components were 

selected per scan.
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Subsequently, we “softly” removed the noise ICs obtained using the method proposed by 

(Griffanti et al., 2014), and regressed out six motion parameters obtained in motion 

correction as well as the CompCor regressors from the rsfMRI data. In this method, only the 

unique parts of variance explained by the noise ICs were removed, whereas parts shared 

with the signal ICs were reserved. Briefly, first all ICA time courses and rsfMRI images 

were regressed by the corresponding motion parameters and CompCor regressors, resulting 

in regressed ICA time courses (ICAm) and regressed images (Ym). Second, we regressed 

ICAm against Ym to obtain the weight of unique contribution of each IC to the data: β = 

pinv(ICAm) · Ym. Third, we removed the unique contribution of the noise components from 

the data: Yclean = Ym - ICAm(noise) · β(noise).

Finally, all rsfMRI frames were spatially smoothed with a Gaussian kernel (FWHM = 1 

mm), and the signal of each voxel in each rsfMRI scan was temporally filtered with a 4th-

order bandpass Butterworth filter (0.01–0.1 Hz).

All raw and preprocessed data, the anatomical template, brain mask, and WM/CSF masks 

have been uploaded and can be freely downloaded (link: https://nitrc.org/projects/

rat_rsfmri). The folder structure of raw and preprocessed data is described in the Appendix.

3. Results

3.1. Image quality

A representative raw EPI frame is shown in Fig. S1a. We calculated both spatial and 

temporal signal-to-noise ratio (sSNR and tSNR) for each scan. The sSNR was voxelwise 

determined using the 10th frame of the scan, calculated by the rsfMRI value of the voxel 

divided by the standard deviation of 1000 voxels outside of the brain, defined by two 5 × 5 

voxel cubes at the left and right top corners in each slice. The tSNR was voxelwise 

calculated by the mean rsfMRI value divided by the standard deviation of the voxel’s time 

course. Both SNR maps were averaged across scans and displayed in Figs. S1b and S1c (left 

panels), respectively. In addition, sSNR and tSNR were averaged across all brain voxels, and 

the distributions of averaged within-brain SNRs across scans are shown in Figs. S1b and S1c 

(right panels), respectively.

3.2. Region-based correlational analysis

Fig. 4a shows the group-level pairwise FC between 180 unilateral regions of interest (ROIs) 

covering the whole brain. ROIs are defined based on Swanson atlas (Swanson, 2004), 

organized and color coded by the brain systems (i.e. color bars next to the FC matrix). The 

group-level FC (in t value) was calculated by fitting a linear mixed model (subject variability 

modeled as the random effect) to the FC of individual scans (i.e. one-sample t tests on the 

random effect), which was quantified by Fisher Z-transformed Pearson correlation 

coefficient of regionally averaged rsfMRI time courses between every two ROIs. To ensure 

the same degree of freedom of individual scans, scans with 600 or 900 vol were truncated 

into a 540-vol scan, and scans with 1200 vol were truncated into two 540-vol scans. This 

operation resulted in 181 scans for processing. The lower triangle shows entries (i.e. 

connections) with significant FC, thresholded by the familywise error rate (FWER) < 0.05 
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based on a permutation test, where ROI labels were independently shuffled for each scan in 

each permutation and the maximal t value of the resulting group-level ROI FC matrix was 

calculated. The permutation was repeated for 1000 times to form a null distribution of the 

maximal t value of each connection, and its FC was deemed significant when the real t value 

exceeded 95 percentile in the distribution. The density of significant FC was 10.35%.

We characterized our group-level FC matrix in several aspects. First, we compared cortical 

FC to cortical structural connectivity (SC) reported in (Swanson et al., 2017). ROIs in the SC 

matrix were merged to match ROIs in the FC matrix. Both matrices were shown in Fig. 4b, 

with the Jaccard index between supre-threshold cortical FC and cortical SC of 0.319 (p ≈ 0, 

permutation test). Fig. 4c shows a negative correlation (r = −0.139, p < 10−6) between FC 

and Euclidean ROI Distance, consistent with that reported in the mice brain connectome 

measured by rsfMRI (Grandjean et al., 2020). Fig. 4d shows the group-level reproducibility 

of FC, calculated by the similarity of FC matrices in two randomly divided subgroups. The 

correlation of the corresponding off-diagonal entries between the two matrices, after 

regressing out ROI distance, was 0.947 (p ≈ 0, Fig. 4e). The reproducibility of FC at the 

individual level was quantified by the correlation of off-diagonal entries between the FC 

matrix of each individual animal and that of the whole group (excluding the tested animal) 

after regressing out ROI distance. The averaged correlation value across animals was 0.430 

± 0.031 (mean ± std, p ≈ 0). Also to demonstrate the individual variability of FC, we show 

the distributions of FC between 12 ROIs across scans (Fig. S4), including unilateral anterior 

cingulate area (ACA), retrosplenial cortex (RSP), primary somatosensory cortex (SSp), 

dentate gyrus (DG), nucleus accumbens (ACB), and ventral anterio-lateral complex of 

thalamus (VAL).

Fig. 5 shows a few examples of group-level seed maps, revealed by seed-based correlational 

analysis (hypothesis driven) with the seeds of 3 × 3 × 2 voxel cubes in the visual cortex 

(VIS), primary motor cortex (MOp), SSp, ACA, RSP, and insular cortex, respectively. 

Voxel-wise FC (in t value) was calculated in the same manner. All ROI seed maps can be 

downloaded from the database.

We further demonstrate the specificity of FC between selected seeds (Fig. S5), using the 

method described in (Grandjean et al., 2020). Here we used two groups of seed/ROI 

definitions. One group used ACA, RSP, SSp as the seed, specific ROI, and non-specific ROI, 

respectively, and the other group used SSp, contralateral SSp, and RSP as the seed, specific 

ROI, and non-specific ROI, respectively. These selections were based on the observed 

segregation between the default-mode network regions and the sensory cortex (Grandjean et 

al., 2020), as well as strong bilateral connectivity in the sensory cortex. For the ACA seed, 

38.67%, 12.71%, 19.34%, and 29.28% of scans showed specific, unspecific, no, and 

spurious FC, respectively. For the SSp seed, 35.91%, 9.94%, 30.39%, and 23.76% of scans 

showed specific, unspecific, no, and spurious FC, respectively. These numbers are in line 

with the report in the literature (Grandjean et al., 2020).

3.3. ICA analysis

In this section, we demonstrate functional networks revealed by a data-driven method (ICA). 

Using the GIFT toolbox, we ran spatial group ICA on all preprocessed rsfMRI scans with 
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the number of components set at 30. Two components were pertaining to the WM and 

discarded. Fig. 6 shows the spatial patterns of all ICA components, thresholded at z > 7 (p < 

0.00001).

We also demonstrate the connectivity architecture between ICA components. FC between 

every two ICA components was determined by the Pearson correlation between their time 

courses for each rsfMRI scan. Group-level inference was determined using the same linear 

mixed model, resulting in a t value for each pair of ICA components, displayed in Fig. 6a. 

The lower triangle of the t matrix shows significant entries (i.e. between-component 

connections) thresholded at FWER <0.05 with the same permutation test. Subsequently, all 

components were hierarchically clustered with the Ward’s method (Murtagh and Legendre, 

2014) using the FC as the similarity. The dendrogram is shown in Fig. 7a (top), where we 

cut off the dendrogram with an empirical threshold, resulting in 3 modules (Fig. 7b). The red 

module mainly consists of the sensorimotor cortex and thalamus, the blue module mainly 

consists of the frontal-limbic system including the orbital cortex (ORB), prelimbic cortex 

(PL), infralimbic cortex (IL), ACA, and striatum, and the green module mainly consists of 

the RSP, hippocampus, hypothalamus, VIS, and dorsal midbrain and hindbrain.

3.4. Effects of nuisance signal regression

Finally, we examined the performance of different nuisance signal regression methods. All 

motion parameters were regressed out first before testing. We compared the effects of 

applying WM/CSF signal regression, CompCor, ICA cleaning, ICA cleaning with WM/CSF 

signal regression, and ICA cleaning with CompCor. Fig. 8 shows the FC matrix with the 

same ROI definition as in Fig. 4 (left column), and two seedmaps (right column) of the 

insula (upper) and ACA (lower). These data demonstrate that the preprocessing pipeline we 

used (i.e. ICA cleaning with CompCor) was able to remove artefacts, but also reveal specific 

FC in seedmaps.

4. Discussion

Neuroscience and psychiatric research have been substantially facilitated by open 

neuroimaging datasets (Poldrack and Gorgolewski, 2017; Thompson et al., 2014; Van Essen 

et al., 2013). Data sharing not only speeds up scientific discoveries by leveraging a high 

statistical power brought by large volumes of data, but also incentivizes researchers to 

develop new analysis methods that can be tested on these datasets. While a large number of 

open databases of human rsfMRI studies have been established, such database in rodents, 

particularly awake rodents is rare (Grandjean et al., 2020). Considering that rodent models 

are an important translational tool for clinical and basic neuroscience research, here we 

share an open rsfMRI database acquired in 90 awake rats, and describe the data acquisition 

protocol and preprocessing procedures.

There has been growing interest in studying brain function and organization in awake 

rodents using rsfMRI, which avoids interference of anesthesia and permits correlation to 

behavioral data (Bergmann et al., 2016; Brydges et al., 2013; Chang et al., 2016; Liang et 

al., 2011; Stenroos et al., 2018; Yoshida et al., 2016). One major challenge of awake rodent 

fMRI is to control motion and stress during data acquisition. We addressed the issue in three 
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aspects: first, we used a 3D-printed head restraint system to limit animals’ head motion; 

second, we adopted a 7-day acclimation routine prior to imaging, which has been shown to 

significantly reduce stress during image acquisition (King et al., 2005); third, we used 

stringent data preprocessing including scrubbing volumes with excessive motion, regressing 

out motion parameters, WM/CSF signals, and non-neural artefacts using ICA cleaning. The 

preprocessing toolbox developed for this database has been open sourced and made publicly 

available. Our data demonstrate high inter-subject reproducibility in the whole-brain FC 

matrix both at the group level and the individual level. We showcase inter-regional FC and 

functional networks calculated from the database. In our library we included seed maps from 

all individual anatomical ROIs. Taken together, the database shared should provide a 

resource for comprehensively studying circuit- and network-level function and organization 

in the awake rodent brain. Such information will not only help us understand the rat brain 

function, but also be valuable for studies of comparative neuroanatomy. In addition, when 

linking to information obtained using other tools such as tract tracing, gene expression 

association, and diffusion tensor imaging, our dataset will open a new avenue to investigate 

the function-anatomy relationship and perhaps the genetic basis of rsfMRI data. 

Furthermore, the dataset can potentially provide information to guide the design of studies 

involving electrophysiology, optogenetics, and behavioral tests in rodents. As more datasets 

of rodent rsfMRI, potentially collected in different animal models of brain disorders or under 

different physiological conditions (e.g. anesthesia), become available, these data can be 

integrated for further investigations of circuit- and network-level changes in these models.

There are a couple of notable limitations in this dataset. First, physiological signals such as 

respiration and heartbeat were lacking. These signals are useful for removing non-neural 

noise in the rsfMRI signal, and could also reflect the status of the animal. Second, even 

though the acclimation procedure has been shown to facilitate the adaptation to the 

restrainer, the stress response during imaging is always a factor that needs to be considered. 

It also needs to be recognized that imaging animals in the anesthetized state remains to be a 

very important method. The choice between these different imaging methods should solely 

depend on the scientific question asked.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Folder structure of the database

Fig. 9 shows the folder structure of the database. Data of each subject are placed in a single 

folder named ‘rat’ followed by the subject index ‘xxx’. In each folder, raw data, unprocessed 

rsfMRI scans, preprocessed scans, and intermediate files from preprocessing are separately 
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placed in the folders named ‘raw’, ‘rfmri_unprocessed’, ‘rfmri_processed’, and 

‘rfmri_intermediate’, respectively. All image files are in the NIfTI (Neuroimaging 

Informatics Technology Initiative) format. Also, the sequence name and acquisition time of 

each scan, as well as their names in each folder are stored in the file named 

‘ratxxx_info.json’ in the JSON (Java-Script Object Notation) format. In the 

‘rfmri_intermediate’ folder, despiked, rigid-body registered, motion-corrected, and images 

obtained using deformable registration (warped) are provided, as well as framewise 

displacement values and scrubbed frame indices from the despiking step (in the files ended 

with ‘_despiked.json’), transformation matrix for the rigid-body registration (in the files 

ended with ‘_registered.json’), motion parameters (in the files ended with ‘_motion.txt’), 

deformation field for the deformable registration (in the files ended with ‘_warp_field.nii.gz’ 

and ‘_warp_affine.txt’), the average and principal components (selected by the CompCor 

method) of WM/CSF signals (in the files ended with ‘_WMCSF_timeseries.txt’) from 

warped images. Results from single-scan ICA cleaning and IC labels are placed in the folder 

ended with ‘.gift_ica’. Each image file in the ‘rfmri_intermediate’ and ‘rfmri_processed’ 

folders is accompanied with a JSON file containing the processing steps completed and 

parameters used.
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Fig. 1. 
rsfMRI data preprocessing pipeline.
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Fig. 2. 
Distribution of averaged frame-wise displacement across scans.
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Fig. 3. 
Two representative noise ICs from ICA-based cleaning.
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Fig. 4. 
Pair-wise FC between ROIs. (a) FC matrix of all animals. The lower triangle shows entries 

(i.e. connections) with significant FC thresholded at FWER <0.05. (b) Cortical FC (upper 

panel) and cortical SC (lower panel) matrices. (c) The relationship between FC and ROI 

distance. (d) FC matrices of two randomly divided subgroups. (e) Correlation of the 

corresponding off-diagonal entries in the two matrices in (d) after regressing out ROI 

distance.
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Fig. 5. 
Representative seed maps. The seed regions are in (a) the visual cortex (VIS), (b) primary 

motor cortex (MOp), (c) primary somatosensory cortex (SSp), (d) anterior cingulate cortex 

(ACA), (e) retrosplenial cortex (RSP), and (f) insular cortex. The seed regions are marked 

with black boxes. 1. Entorhinal cortex (EnT); 2. Superior colliculus (SC); 3. Dorsolateral 

geniculate nucleus (DLG); 4. Dorsal hippocampus (dHC); 5. SSp; 6. ACA; 7. Insular cortex; 

8. Dorsal striatum; 9. Parietal association area (PTA); 10. Auditory cortex (AUD); 11. 

Piriform cortex (PIR); 12. Dorsal thalamus; 13. Septum; 14. RSP; 15. Anterior thalamus; 16. 

MOp; 17. Ventral striatum; 18. Prelimbic cortex (PL); 19. Infralimbic cortex (IL); 20. 

Amygdala; 21. Secondary somatosensory cortex (SSs); 22. Orbital cortex (ORB); 23. 

Periaqueductal gray (PAG).
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Fig. 6. 
Spatial maps of 28 ICs generated by spatial group ICA, arranged by brain systems. All maps 

are thresholded at z = 7 (p < 0.00001). (a) Sensorimotor cortex. (b) Polymodal association 

cortex. (c) Thalamus and hypothalamus. (d) Amygdala. (e) Striatum. (f) Hippocampus. (g) 

Midbrain.
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Fig. 7. 
Connectional structure between all ICA components. (a) Hierarchical clustering of ICs 

(upper panel), and between-IC FC matrix (lower panel). The dendrogram was cut off with an 

empirical threshold, resulting into 3 modules. The lower triangle shows connections with 

significant FC thresholded at FWER <0.05. (b) Community structures revealed by color 

coded ICs based on their corresponding communities (z > 7).
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Fig. 8. 
Comparison among different nuisance regression methods. For each subfigure, the left 

column shows the FC matrix with the same ROI definition as in Fig. 4; The right column 

shows two seedmaps of the insula (upper) and ACA (lower). (a) WM/CSF signal regression. 

(b) CompCor. (c) ICA cleaning. (d) ICA cleaning with WM/CSF signal regression. (e) ICA 

cleaning with CompCor.
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Fig. 9. 
Folder structure of the database.
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Table 1

Features of signal- and noise-related independent components.

Human standards Adaptation
for rats

Features Signal Noise Noise

Spatial features Number and 
dimension of clusters

Low number of large clusters Large number of small clusters Not applicable

Overlap with GM Clusters’ peaks in GM and overall good 
overlap of the clusters with GM.

Indiscriminate overlap with non-GM tissues, 
or clusters’ peaks in WM/CSF

Applicable

Overlap with WM, CSF, blood 
vessels

Very low or on overlap with WM, CSF, 
blood vessels

High overlap with WM, CSF and/or blood 
vessels

Applicable

Overlap with brain 
boundaries or areas close to 
the edges of the FOV

Very low or no overlap with brain 
boundaries. Clusters follow known 
anatomical (e.g. structural/ histological) 
boundaries.

Ring-like or crescent shape or stripes near the 
edges of the field-of-view

Applicable

Location near area of 
susceptibility induced signal 
loss

Generally located away from these areas Located within the region of signal loss (e.g. 
areas of air-tissue interface)

Confident

Non-biological, acquisition-
related patterns

Patterns have no relation to acquisition 
parameters

Often show banding patterns in slice direction 
or streaks along the phase encoding direction, 
accelerated sequences may have centrally 
located artefacts

Confident

Temporal (and spectral) features

Overall aspect of the time 
series

Fairly regular/oscillatory time course Large jumps and/or sudden change of 
oscillation pattern.

Applicable

Distribution of power in 
frequency domain

Predominantly low frequency (at least 
one strong peak within 0.01–0.1 Hz)

Predominantly high frequency, very low 
frequency, or pan frequency

Applicable
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