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Cutaneous leishmaniasis exhibits a wide spectrum of clinical presentations from self-
resolving infections to severe chronic disease. Anti-parasitic drugs are often ineffective in
the most severe forms of the disease, and in some cases the magnitude of the disease
can result from an uncontrolled inflammatory response rather than unrestrained parasite
replication. In these patients, host-directed therapies offer a novel approach to improve
clinical outcome. Importantly, there are many anti-inflammatory drugs with known safety
and efficacy profiles that are currently used for other inflammatory diseases and are readily
available to be used for leishmaniasis. However, since leishmaniasis consists of a wide
range of clinical entities, mediated by a diverse group of leishmanial species, host-directed
therapies will need to be tailored for specific types of leishmaniasis. There is now
substantial evidence that host-directed therapies are likely to be beneficial beyond
autoimmune diseases and cancer and thus should be an important component in the
armamentarium to modulate the severity of cutaneous leishmaniasis.
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INTRODUCTION

Cutaneous leishmaniasis is caused by several different species of protozoa transmitted by sand flies,
and has a variety of clinical forms, ranging from self-healing lesions to chronic disfiguring mucosal
disease (1, 2). There is no vaccine for the disease, and drug treatment is not always effective (3, 4).
Moreover, in some forms of leishmaniasis the magnitude of the disease appears to be due to the
uncontrolled inflammatory response at the cutaneous site of infection. It is clear that new
therapeutic approaches are needed, and host-directed therapies to either enhance protective
immune responses or to ameliorate excessive cutaneous inflammation represent novel
therapeutic strategies worthy of pursuit.

Host-directed therapies for infectious diseases are designed to either amplify protective immune
responses, divert non-protective immune responses towards protective responses, or block
pathologic immune responses (5). Fortunately, our in-depth understanding of both protective
and pathologic immune responses and identification of agents that can be used clinically to
influence immune responses has revolutionized treatment of a wide range of diseases. While many
of these new treatments are for non-communicable diseases, repurposing such treatments for
infectious diseases, such as cutaneous leishmaniasis is advantageous, as their safety and efficacy
profiles have often already been established.
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In order to be successful, host-directed therapies must not
overstimulate the immune response, or block protective immune
responses necessary to control the pathogen. These are not
theoretical possibilities. For example, checkpoint blockade has
revolutionized cancer treatment, but some patients develop
adverse events associated with these treatments, including
cytokine storms that can be lethal (6, 7). Similarly, anti-
inflammatory treatments run the risk of increased
susceptibility to infections. Thus, the key to using host-directed
therapy with infectious diseases is to lessen the chances of
adverse events by defining the mechanisms mediating
protection as well as those promoting immunopathologic
responses associated with the disease. In cutaneous
leishmaniasis there is a good understanding of the protective
mechanisms, and thus one strategy is to promote those
responses. Here we will review the host-directed therapies that
could be used to enhance protection in patients. Many of the
studies discussed focus on murine models where potential host-
directed therapies can be assessed prior to initiation of clinical
trials with patients.

We will also discuss what we know about destructive
inflammation seen in patients with chronic cutaneous
leishmaniasis and identify potential targets for therapies to
promote disease resolution.
SPECTRUM OF CLINICAL
PRESENTATIONS IN CUTANEOUS
LEISHMANIASIS

A challenging aspect in lessening disease in cutaneous
leishmaniasis is the variety of clinical presentations associated
with the infection. The type of clinical presentation is driven by
the nature of the immune response invoked, which is influenced
by both host genetics and the specific species or strain of the
parasite causing the infection (1, 2). Following infection by a
sand fly, patients develop a small nodule which progresses to an
ulcerated lesion that will eventually heal in several months.
However, in some cases, the lesions fail to resolve, or the
parasites spread to many cutaneous sites without any evidence
of control, a form of leishmaniasis known as diffuse cutaneous
leishmaniasis (DCL) (8–10). These patients fail to develop a
delayed-type hypersensitivity response or a strong IFN-g
response, and thus parasite burdens in the lesions are
extremely high (9, 10). Histologically, these lesions appear as
masses of macrophages with large numbers of intracellular
parasites, and few infiltrating lymphocytes (10). It is clear that
enhancing a protective immune response would be important for
this disease.

At the other end of the spectrum, parasites can spread to the
naso-oropharyngeal mucosa and cause extensive damage
mediated by an uncontrolled immune response. This disease,
termed mucosal leishmaniasis, is most often caused by L.
braziliensis parasites and is refractory to anti-parasitic
treatment. While the parasites are largely controlled by the
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immune response, there is a large infiltration of inflammatory
cells into the lesions, suggesting that the damage is due to an
overexuberant inflammatory response rather than uncontrolled
parasite growth (11). While mucosal leishmaniasis is the most
severe form of the disease at the inflammatory end of the
spectrum, single lesions in patients infected by L. braziliensis
can also be chronic, resistant to drug treatment, and associated
with a severe inflammatory response with a low parasite burden
in the lesions.

Patients who fail to develop a protective Th1 cell response
develop disease, often in spite of a strong antibody response.
This is most clearly observed in DCL patients (9). In contrast,
patients with a strong Th1 cell response also develop severe
disease, but in this case due to inflammation rather than
massive parasite numbers (11). This spectrum is not unique to
cutaneous leishmaniasis. For example, in another cutaneous
disease, leprosy, the disease ranges from lepromatous leprosy
in which there is an absence of a strong T cell response and no
control of the bacteria to tuberculoid leprosy in which bacteria
are scarce, and the immune response causes disease (12, 13).
Unfortunately, drug treatment for cutaneous leishmaniasis
patients with severe disease at either end of the spectrum
can be ineffective, which provides support for considering
alternative treatment strategies (8, 10, 14). However, what
is clearly evident is that any host-directed therapy will need
to take into consideration where a patient is on this
immunologic spectrum.

Experimental models of cutaneous leishmaniasis have been
critical for understanding the disease, and important in defining
the mechanisms associated with T cell subset development. For
example, infection of mice with Leishmania major helped define
the factors driving CD4 Th1 and CD4 Th2 cell development and
maintenance (15–17). These studies established the critical role
of IFN-g produced by CD4 T cells in protection, and the lack of a
protective role for antibodies. In contrast, infection of BALB/c
mice with L. major results in an uncontrolled infection, which is
in part due to the development of a Th2 response. While these
uncontrolled infections mimic some aspects of DCL (or visceral
leishmaniasis), the role of IL-4 in promoting increased disease in
patients is less clear than in murine models (18). Many studies
have been done with L. major, but these do not represent the
whole breadth of disease patterns that can be seen with other
species of Leishmania. For example, while C57BL/6 mice resolve
disease following infection with L. major, lesions induced by
either L. amazonensis or L. mexicana infections do not resolve
(19, 20). In these cases, susceptibility is linked with the failure to
develop a strong Th1 response, rather than a Th2 response.
Leishmania strain differences can also influence disease outcome.
For example, the L. major Seidman strain causes a non-healing
infection in C57BL/6 mice in spite of the development of a Th1
response (21, 22). Although all murine models have their
limitations, many of these different host-parasite models are
useful to assess host-directed therapies that can enhance immune
responses. In contrast, fewer models have been available that
mimic the excessive inflammatory responses associated with
patients infected with L. braziliensis parasites (see below).
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ENHANCING PROTECTION IN
CUTANEOUS LEISHMANIASIS BY HOST-
DIRECTED THERAPIES
Leishmania parasites replicate in myeloid cells, including
macrophages, monocytes and dendritic cells. Control of the
parasites is dependent upon activation of these cells by IFN-g,
leading to increased production of nitric oxide and/or reactive
oxygen species, although the role of these molecules may vary
depending upon the host and the parasite species (23–26). The
primary source of IFN-g that leads to protection in cutaneous
leishmaniasis is the CD4 T cell, although CD8 T cells and NK
cells can also contribute to protection (27–29). Once an infection
has resolved, resident memory CD4 Th1 cells in the skin, central
memory CD4 T cells and circulating effector CD4 Th1 cells
maintained by persistent parasites provide protection against a
secondary challenge (30, 31). Since resident memory Th1 cells
can be maintained in the absence of persistent parasites, they are
a good target for vaccine development. While we understand
how the immune response can control these parasites, there are
multiple mechanisms that can block or lessen the development of
protective responses, which is why lesions often take so long to
resolve. Defining these barriers to protection can provide targets
for host-directed therapies in patients in whom limited Th1
responses develop.

A reasonable first line approach to promote healing is
treatment with agents that directly increase protective
immunity (Figure 1). One can define protective immunity in
both experimental models and humans as the ability to protect
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against the development of disease, which may not lead to
complete elimination of the parasites. While this protection
may require IFN-g, as discussed above it is also clear that
IFN-g by itself does not always lead to lack of disease.

As would be expected, treatment with IFN-g has shown
increased control in patients who are refractory to standard
treatment (32, 33), and experimentally, IL-12 can promote
healing even after lesions have developed when given in
conjunction with an anti-parasitic drug (34, 35). In addition,
clinical trials have been done with GM-CSF, in which topical
treatment was found to promote increased healing (36, 37).
Similarly, topical treatment with the TLR7 agonist imiquimod
has shown increased healing rates (38), although there have been
mixed results in clinical trials (39).

Alternatively, another potential therapeutic approach would
be to block pathways that downregulate protective immunity
(Figure 1). DCL patients fail to generate a protective IFN-g
response, and the pathology seen in these individuals is due to
uncontrolled parasite growth in macrophages in the skin. While
IL-4 blockade of protective responses can contribute to the
uncontrolled Leishmania replication in experimental models,
IL-4 appears to be less important in DCL patients (9) or
indeed in any form of human leishmaniasis. Instead, a recent
study suggests that DCL patients exhibit an overwhelming B cell
response, and little evidence of either a Th1 or Th2 response (9).
In contrast, IL-10 plays a critical role in promoting susceptibility
to L. major in BALB/c mice, suggesting that blocking IL-10 might
increase protective responses. Consistent with this possibility are
studies in visceral leishmaniasis patients who can also develop
FIGURE 1 | Host directed therapies that promote better parasite control. DCL- Diffuse cutaneous leishmaniasis; LCL- Localized cutaneous leishmaniasis.
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uncontrolled infections. In these patients IL-10, rather than
IL-4, has been linked with susceptibility. Importantly, a study
with splenic aspirates from visceral leishmaniasis (VL) patients
demonstrated that blockade of IL-10 enhanced control of the
parasites (40), which provides the experimental foundation
for a host-directed therapy where IL-10 would be blocked
in VL patients (41). Experimentally, other regulatory
cytokines have been shown to block protective Th1 responses
in cutaneous leishmaniasis. For example, TGF-b inhibits
protection in L. amazonensis infected mice (42), and IL-27
promotes IL-10 responses and increased susceptibility (43).
Thus, blocking these regulatory pathways might promote
better protective responses.

The role of inhibitory receptors in modulating the outcome of
infectious diseases is an area of active investigation, since
checkpoint blockade is effective in promoting control of cancer
(44). One might predict, therefore, that blocking this regulatory
pathway might be protective in cutaneous leishmaniasis as well.
However, to date the experimental results in leishmaniasis are
unclear. A study with arginase-deficient L. major in mice unable
to resolve their infections found that anti-PD-1 monoclonal
antibody promoted healing. However, blockade of PD-1 or
PD-L1 in L. amazonensis infected mice (45) or infection of
PD-L1 knockout mice with L. mexicana (46), had minimal effects
on parasite control. A recent study found that T cells with an
exhausted phenotype were present in the blood and lesions of L.
braziliensis patients, and blocking PD-1 signaling in circulating
T cells from patients enhanced their proliferation and
production of IFN-g (47). Clearly, more studies need to be
done to understand the role of PD-1/PD-L1, as well as other
checkpoint molecules, in cutaneous leishmaniasis.
CONTROLLING IMMUNOPATHOLOGY IN
CUTANEOUS LEISHMANIASIS BY HOST-
DIRECTED THERAPIES

Enhancing Th1 responses directly or blocking pathways that
lessen Th1 responses will not be effective for every type of
cutaneous leishmaniasis. This is particularly true for patients at
the immunopathologic end of the spectrum who develop chronic
lesions in spite of their ability to generate a strong Th1 response.
This clinical presentation is best exemplified by L. braziliensis
infections, where chronic lesions are associated with a strong Th1
response and few parasites. While IFN-g and TNF are important
for macrophage activation and parasite control, in excess both
cytokines can be associated with pathologic immune responses
and it is possible that a poorly regulated Th1 response leading to
high levels of IFN-g and TNF contributes to this chronic
inflammation. Moreover, since blocking TNF is a successful
host-directed therapy for patients with rheumatoid arthritis, it
is reasonable to consider its role in blocking pathology in
cutaneous leishmaniasis. In support, a recent study suggests
that TNF in L. mexicana infections promotes T cell exhaustion
(48). While clinical trials have not yet been done with humanized
monoclonal antibodies against TNF, the drug pentoxifylin,
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which blocks TNF, has been used in L. braziliensis, but with
mixed results (49–51).

The optimal pathway to target in patients at the inflammatory
end of the spectrum would be one that is not associated with
protection. Notably, studies in L. braziliensis patients uncovered
a major pathway leading to disease that was independent of
protective immune responses. These studies found that cytolysis
by CD8 T cells correlated with increased pathology in cutaneous
leishmaniasis patients (23, 52–61). Importantly, these studies
were followed up with the demonstration that patients who
eventually fail drug therapy can be identified prior to
treatment based upon expression level of genes associated with
cytotoxicity (59).

The identification of CD8 T cells as drivers of disease was
initially confusing, since CD8 T cells were protective in models of
cutaneous leishmaniasis. For example, infection of CD8 deficient
mice with low doses of L. major leads to susceptibility (28). The
protective role of CD8 T cells appears to be mediated primarily
by promoting Th1 responses in the draining lymph nodes (27,
28). This paradox was resolved by the finding that CD8 T cells in
the lesions made little IFN-g, but were instead cytolytic (53, 54,
56). The mechanisms involved in the differential function of CD8
T cells in the draining lymph nodes and cutaneous lesions has yet
to be understood, although one factor may involve the lack of
local signals in the lesions that would promote IFN-g production
by CD8 T cells (62). These results raised the question of how
cytolytic CD8 T cells promote disease in cutaneous
leishmaniasis. Based upon other infections, one might predict
that killing of Leishmania-infected cells would lead to better
parasite control. However, the evidence suggests that instead of
killing the parasites, lysing the infected cell results in parasite
dissemination, which then go on to infect other cells (54). Thus,
cytolysis may be one mechanism that promotes metastasis
in patients.

As the pathologic role for CD8 T cells is difficult to ascertain
in standard experimental models of cutaneous leishmaniasis new
models to define the mechanisms leading to CD8 T cell mediated
pathology needed to be created. The most straightforward model
was the adoptive transfer of CD8 T cells into RAG mice followed
by infection with Leishmania (28, 54). Importantly, RAG mice
infected with L. braziliensis do not develop substantial lesions
over many weeks of infection, in spite of a large number of
parasites present at the site of infection (54). These results, and
previous studies in RAG mice (63), demonstrate the critical role
T cells play in developing ulcerated lesions. RAG mice receiving
CD4 and CD8 T cells developed small lesions and controlled
parasite replication. In contrast, RAG mice that received CD8
T cells alone and were infected with L. braziliensis developed
severe uncontrolled lesions (54). Surprisingly, the number of
parasites in infected RAGmice and RAG mice that received CD8
T cells was the same, highlighting the critical role for CD8 T cells
in immunopathology. This CD8 T cell dependent pathology
required the cytotoxic molecule perforin, but not IFN-g, since
transfer of perforin deficient T cells to RAG mice failed to
induce pathology, while IFN-g -/- CD8 T cells did (54). In a
complementary model, bystander cytolytic CD8 T cells were
March 2021 | Volume 12 | Article 660183
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also found to promote increased disease, as mice that had
resolved an infection with lymphocytic choriomeningitis virus
(LCMV) developed more severe disease than mice that had not
previously been infected with LCMV in response to Leishmania
challenge weeks after viral clearance (64, 65). In this model,
LCMV specific NKG2D expressing CD8 T cells were recruited to
the cutaneous lesions non-specifically and mediated killing of
targets expressing NKG2D ligands that were upregulated on cells
in the lesions due to inflammation. The relevance of bystander
CD8 T cells to human leishmaniasis is suggested by the finding
that lesions from patients who have been infected with
Toxoplasma contained Toxoplasma specific CD8 T cells (66).
Thus, studies in both experimental models, as well as gene
transcriptional analysis of lesions from patients, identified an
immunopathologic pathway dependent upon cytolysis in
cutaneous leishmaniasis.

The transcriptional analysis of lesions from patients provided
clues as to how cytolysis might promote increased disease (23,
67). Not only were genes associated with cytolysis upregulated in
lesions, but those associated with inflammasome activation,
including NLRP3, Caspase 1 and IL-1b, were similarly
upregulated. The immunopathologic pathway hypothesized
from gene transcriptional analysis of lesions was confirmed
using the experimental models of CD8 T cell mediated disease
described above. Thus, CD8 T cell mediated disease could be
blocked by inhibitors of NLRP3, such as MCC950 and glyburide,
or blockade of IL-1b with the IL-1 receptor antagonist anakinra
or with anti- IL-1b antibody treatment (56) (Figure 2). The
pathologic role for IL-1b is not limited to situations where there
is uncontrolled CD8 T cell mediated cytolysis. Others have
shown that inflammasome-dependent IL-1b mediates the
severe disease seen with a virulent L. major strain, and IL-1b
Frontiers in Immunology | www.frontiersin.org 5
administration can exacerbate disease following L. major and
L. amazonensis infection (22, 68, 69). In addition, IL-1 serum
levels correlate with increased disease severity in L. mexicana
patients (70), and more serious disease was reported in mice
lacking the natural inhibitor of IL-1b signaling (IL-1RA) (71).
In the L. amazonensis model IL-1b was found to promote
resistance, although these mice fail to resolve with or without
IL-1b (72). IL-1b has many roles in the immune response,
but the pathologic role of IL-1b in cutaneous leishmaniasis
appears to be when the cytokine is in excess. Notably, because
both the inflammasome and IL-1b are associated with many
chronic diseases, including autoimmune diseases, cancer and
cardiovascular diseases, a number of inhibitors designed to block
this pathway are in clinical use or are in clinical trials that can be
tested in cutaneous leishmaniasis.

Blocking CD8 T cell cytotoxicity, an initiator of this pathway,
could be another important target in lessening pathology. IL-15
is a potential target for such treatment, as it is highly expressed in
lesions of human cutaneous leishmaniasis patients and promotes
the expression of granzyme B dependent CD8 T cell cytotoxicity.
Tofacitinib is a small molecule inhibitor of janus kinase (Jak)3
which is required for IL-15 signaling (73). It is currently being
used clinically to treat certain types of arthritis under the trade
name Xeljanz, and experimentally treats alopecia areata by
blocking NKG2D dependent cytolysis (74). In experimental
Leishmania models of CD8 T cell mediated pathology,
systemic and topical treatment with tofacitinib blocked
pathology (75). Notably, tofacitinib did not alter protective
Th1 responses or parasite control. Thus, local targeting of
CD8 T cell-mediated cytotoxicity can be a safe strategy to
block immunopathologic responses locally while sparing
protective responses.
FIGURE 2 | Host directed therapies that block immunopathologic mediated cytolysis. ML, mucosal leishmaniasis; LCL, Localized cutaneous leishmaniasis.
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CONCLUSIONS

Host-directed therapies hold great promise for lessening the
more severe forms of cutaneous leishmaniasis. The ease of
monitoring the efficacy of host-directed therapies in cutaneous
diseases is a significant advantage to such treatments, and
particularly important is the potential to develop topical
treatments that may reduce untoward systemic responses.
While in many diseases host-directed therapies are
administered systemically, for those that might be used in
cutaneous leishmaniasis it will be important to test whether
topical application might be effective. One successful
experimental example is the treatment with tofacitinib, which
we found was as effective at controlling disease given topically as
given systemically (75).

It is evident that care must be taken in the development of
such therapies, as there remains the potential for blocking a
pathway critical for control of Leishmania. Importantly, all of
these therapies should be used in conjunction with standard anti-
parasite drug treatment which lessens the risk of unchecked
Leishmania multiplication. While increased susceptibility to
other pathogens might remain, the short treatment period
required would also lessen this risk. Finally, a practical
consideration for developing therapies for neglected tropical
diseases, such as cutaneous leishmaniasis, is the cost of
treatment. Clearly the utility of any new host-directed therapy
will depend on cost. However, identification of the targets for a
successful host-directed therapy is the first step and can provide
the rationale for a search for cheaper alternative treatments
targeting the same immunologic pathways.

With the seeming endless development of new approaches to
modulate the immune response with cytokines, small molecule
inhibitors, humanized monoclonal antibodies, and drugs
Frontiers in Immunology | www.frontiersin.org 6
directed against immune targets, there is a growing interest in
applying host-directed therapies to infectious diseases.
Cutaneous diseases, such as leishmaniasis, can clearly benefit
from such treatments. However, the key to success will be a
continued focus on understanding the mechanisms leading to
protective and pathologic responses in the skin, where many
unanswered questions remain to be addressed. Most studies of
cutaneous leishmaniasis have focused on systemic responses, or
those occurring in local lymph nodes, and have ignored the
unique aspects of the skin. Differences in cell types, metabolism,
oxygen levels, and temperature can influence the outcome of
cutaneous leishmaniasis, but have been little studied in this
disease. Further, the skin directly interacts with the external
environment and the skin microbiome can have significant
effects on the outcome of infection (76, 77). It is fair to say
that the success of host-directed therapies for cutaneous
leishmaniasis will depend upon a better understanding of the
skin, and for leishmaniasis we have just “scratched the surface” in
that arena.
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