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Abstract Anchoring molecules, like amphiphilic poly-
mers, are able to dynamically regulate membrane
morphology. Such molecules insert their hydrophobic
groups into the bilayer, generating a local membrane
curvature. In order to minimize the elastic energy
penalty, a dynamic shape instability may occur, as in
the case of the curvature-driven pearling instability or
the polymer-induced tubulation of lipid vesicles. We
review recent works on modeling of such instabilities
by means of a mesoscopic dynamic model of the phase-
field kind, which take into account the bending energy
of lipid bilayers.

Keywords Lipid bilayer · Morphological instability ·
Curvature · Bending phase-field models

Introduction

Lipid bilayers are the common framework that guaran-
tee a stable but flexible surrounding for cells and cell
organelles [2]. However, it is biologically necessary to
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provide every one of these membrane-enclosed entities
with very specific structural and functional properties.
For that reason, the biochemical composition of eu-
karyotic cell membranes has to be rather complex [107]
and differs from membrane to membrane. The basic
components of a cell membrane include several kinds
of lipids, some of which form the lipid bilayer, and
some others control its fluid behavior, and membrane
proteins, usually involved in both functional and struc-
tural membrane features. The typical thickness of a
lipid bilayer is ∼ 4 nm, while cell sizes are three to four
orders of magnitude larger.

Lipid bilayers are the most simple models of biolog-
ical membranes. By reconstituting model membranes
from a small number of lipids and proteins, a molecular-
level understanding of specific membrane properties
can be achieved. However, the complexity of biologi-
cal membranes also involves the possible existence of
phase-separated domains with different elastic proper-
ties [3, 7, 13, 16, 32, 61, 103], or the shaping effect of
membrane proteins [4, 21, 28, 36, 42, 44, 45, 51, 59, 68,
75, 76, 84, 89, 102, 115, 121].

Here, we deal with a specific minimal system to study
the basic morphological properties of biological mem-
branes. Such a system consists of a fluid monocompo-
nent lipid bilayer with anchored amphiphilic polymers,
mimicking the bending capability of some membrane
proteins [21, 76, 121]. It has been experimentally used
[29, 43, 92, 93, 105, 112–114] to understand and charac-
terize the effect of amphiphilic polymers on the shape
of lipid vesicles. We review recent theoretical results
on these shape instabilities. In addition, these mor-
phological instabilities may have a counterpart in cell
biology, being involved, for instance, in intracellular
transport phenomena [2]. A deep understanding of a
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simple system as the one we review here should be
the starting point to further address more complex
biological systems.

Mechanics of lipid bilayers and vesicles

Understanding the key mechanical aspects of lipid bi-
layers has been the subject of many studies [22, 35,
50, 70, 73, 98, 99]. The shape of lipid vesicles—that
is, of closed lipid bilayers—is due to the curvature of
the membrane considered as a regular two-dimensional
surface embedded in the Euclidean three-dimensional
space. The elastic free energy, f , of an infinitesimal
piece of membrane is expressed in terms of the two
curvature invariants: the total curvature J and the
Gaussian curvature K (see the Appendix). The free
energy is expressed as an expansion up to second order
in curvatures,

f = κ

2
(J− c0)

2 + κ̄K, (1)

where κ and κ̄ , named as the bending modulus and the
Gaussian rigidity, respectively, are two elastic parame-
ters that depend, for instance, on the lipid composition
of the bilayer and on the temperature. In addition, c0 is
the so-called spontaneous curvature, which takes into
account possible asymmetries between the two leaflets
of the bilayer. The total bending energy of a lipid vesi-
cle can be found by integrating the energy density Eq. 1
over the entire vesicle surface area, �, as F = ∫

�
f ds.

The Gauss–Bonnet theorem [23, 58] states that the
integral of the Gaussian curvature of a regular surface
over its whole area is a topological invariant, that is, it
takes a given value for a given topology regardless of
the surface shape. This theorem implies that, for homo-
geneous vesicles, the Gaussian part of the membrane
bending energy is a constant as long as topological
changes are not considered. Under such assumptions,
the bending energy of a lipid vesicle can be written as

F = κ

2

∫

�

(J− c0)
2 ds, (2)

which is usually referred to as the spontaneous curva-
ture model of bending energy [99]. For the situation
where symmetric bilayers are considered, such that the
spontaneous curvature vanishes, the resulting energy
model is normally referred to as the minimal model.

Understanding the shape of lipid vesicles is then
related to the specific election of an energy model. In

addition, one has to take into account some geometric
constraints for the vesicle shapes [99]. The surface area
of the vesicle remains constant if one assumes that there
is no exchange of lipids and that the lipid bilayer is
an incompressible fluid. Also, the inner volume of the
vesicle has to be kept fixed by osmotic regulation. The
stationary shapes of lipid vesicles have been found ac-
cording to different energy models by means of differ-
ent minimization techniques. The first approach, which
goes back to Helfrich’s seminal paper [50], uses varia-
tional calculus to work out the Euler–Lagrange equa-
tion for the shape of rotationally symmetric bilayers.
Shape equations such as Euler–Lagrange equations for
the energy functional under consideration have been
widely studied since then [31, 50, 56, 57, 62, 77, 100, 119,
120]. Although a general shape equation can be found
without assuming any symmetry of the resulting shapes,
it is usually of a practical reason to get an axisymmetric
parametrization of the vesicle shape. Such a simplifica-
tion results in a nonlinear ordinary differential equation
whose solution, under certain boundary conditions,
leads to the stationary shapes of vesicles. In addition
to this method, numerical minimization on triangulated
surfaces has been implemented to find nonaxisymmet-
ric shapes [118], and also in order to find red blood cell
shape transformations coupling the curvature model
with the cytoskeleton elasticity [72, 78]. Mesoscopic
simulations using dissipative particle dynamics have
been performed by Noguchi and Gompper [81–83] to
study hydrodynamic effects on lipid vesicles. Lattice
Boltzmann methods [71, 106] have also been used to
study vesicle shapes. Different phase-field models have
been implemented to study the stationary shapes of
vesicles [8, 17, 33].

In this review, we present a derivation of a bending
phase-field model, a dynamic model to study different
morphological instabilities on membranes. We start in
the section “Bending phase-field model” by introducing
the main aspects of phase-field models and by giving a
derivation of a phase-field model for dealing with the
bending energy of lipid bilayers. Next, we review some
of the dynamic instabilities that have been observed
in a system consisting of a lipid vesicle and a certain
concentration of amphiphilic molecules anchored on it.
In particular, in the section “Pearling instability”, we
review the theoretical results on the curvature-induced
pearling instability and, in the section “Tubulation
instability”, on the tubulation instability. Finally, in the
section “Outlook and future perspectives”, we briefly
summarize the main aspects of the topic and point out
some of the questions that remain to be answered.
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Bending phase-field model

Phase-field models

Phase-field models are dynamic models of the
Ginzburg–Landau type [53] that have been broadly
used to study different interfacial problems in physics
[1, 14, 25, 37–40, 48, 52, 64–66, 87, 88, 104]. Generally,
one of the points making interfacial problems complex
is that it is necessary to track the interface during the
dynamic evolution. Phase-field models do not consider
only the interface as a sharp boundary between two
bulk phases but considers them as a single volume.

Which characteristics should one require to a phase
field? For a two-dimensional, two-phase problem, the
phase field, φ, has to be a smooth, well-behaved func-
tion that takes real values in the whole two-dimensional
domain, �. Besides, we require the constituent dynamic
equations to be such that the solution for the phase
field acquires two different plateaux, φA and φB, one for
each phase (see Fig. 1). Therefore, it will be possible to
know in which physical phase a given point belongs by
checking the value of the phase field at that point. The
values of these two plateaux are arbitrary, but in the
literature, they are mainly chosen to be ±1, or 0 and 1.
In the diffuse interface region, the phase field cannot
have any of these two bulk values, but it has to change
abruptly, albeit continuously, from one to the other
(Fig. 1). The width of this region is characterized by a
small parameter of the model, ε. The abrupt interface
can be recalled at any time by finding the level-set
{x ∈ � : φ(x) = φ0}, where, again, φ0 is an arbitrary

Fig. 1 Qualitative profile of a one-dimensional phase field, φ(x).
The values of the two plateaux, φA and φB, correspond to each of
the two stable phases, A and B, and the phase field continuously
interpolates from one to the other in a thin but finite region, the
diffuse interface (dark region)

position between the two bulk phases, but it is normally
taken to be φ0 = (φA + φB)/2.

Using a phase-field method, it is possible to substi-
tute a moving boundary condition by a partial differen-
tial equation for this auxiliary field. This new equation
has to be constructed in such a way that the interfacial
dynamics was as similar as possible to the free bound-
ary problem’s. Therefore, one asks that, in the so-
called sharp interface limit [34], i.e., the limit when the
width of the diffuse interface goes to zero, the resulting
physics will be the same as in the original problem.

This makes to whole thing simpler, but usually more
time-consuming, from a computational point of view. In
addition, phase-field models naturally allow for topo-
logical changes. On the contrary, a new length-scale,
the width of the diffuse interface, is introduced on the
model. Although the sharp-interface limit guarantees
equivalence between the free boundary problem and
the phase-field problem, in practice, one has to choose a
finite value for this small parameter, ε. This parameter
has to be smaller than all the other length scales in the
system, but it still needs to be resolved by the lattice, in
case the partial differential equations were discretized.

A lipid vesicle can be mathematically interpreted as
a boundary separating two media, the inner volume and
the outer volume. The shape of this surface changes
dynamically according to the hydrodynamics of the
aqueous solutions surrounding it, and also according
to its own energetics. Besides, additional destabilizing
effects can be included in the system, as, for instance,
proteins or polymers changing the morphology and/or
the properties of the membrane, and so on and so forth.
This problem is a free boundary problem. In this case,
the boundary is not a separation layer between two
different phases as in the oil–water example, but a phys-
ically differentiated region, the membrane, separating
two regions of the same phase. In the simplest case,
where no destabilizing effects are added to the system,
and hydrodynamics is not relevant, a phase-field model
can be used to study the morphology of vesicles given a
bending energy model [8, 17, 33, 74].

Phase-field implementation of the bilayer
bending energy

Here, we review the mathematical bases of a curvature
phase-field model [17, 19, 33]. We decided to give a
detailed derivation of the model in order to assem-
ble the different published parts in a logical order.
The membrane is considered to be a two-dimensional
surface embedded in the Euclidean three-dimensional
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space. In order to build a phase-field model that takes
into account the bending energy of fluid vesicles, the
surface geometric properties (the ones involved in
the bending energy) are expressed as a function of the
phase field. Also, as part of the physical constraints
needed to be taken into account, the vesicle surface
area and enclosed volume have to be included in the
phase-field description.

Let us assume the existence of a field, φ : R3 → R,
in all the points of the Euclidean three-dimensional
space R3. This field is the so-called phase field. Since
phase fields are regular functions, they can, in general,
be written in terms of any smooth function of the
coordinates. In particular, the phase field can be written
as a function of the signed distance to the interface,
d(x),

φ(x) = f
(

d(x)√
2ε

)

= tanh

(
d(x)√

2ε

)

, (3)

where a tanh-like profile for the phase field was as-
sumed, and ε is the mesoscopic parameter of the phase
field, related to the finite width of the diffuse interface.
This parametrization is chosen because it involves the
signed distance to the interface, whose first derivative
is a unit normal vector to the interface,

∇d(x) = n̂, (4)

and whose second derivative is the curvature tensor [23]

∇ ∇ d(x) = Qij. (5)

The derivatives of the phase field with respect its
argument are

f ′
(

d(x)√
2ε

)

= 1 − f 2

(
d(x)√

2ε

)

, (6)

and

f ′′
(

d(x)√
2ε

)

= −2 f
(

d(x)√
2ε

) [

1 − f 2(
d(x)√

2ε
)

]

, (7)

where primes precisely denote the derivatives with
respect to the argument, in this case, with respect to
d(x)√

2ε
. Considering the derivatives of the phase field with

respect to the xi coordinates,

∂iφ = 1√
2ε

f ′∂id(x), (8)

∂
2

ij φ = 1

2ε2
f ′′∂id∂ jd + 1√

2ε
f ′∂ 2

ij d, (9)

where we used the notation ∂i ≡ d/dxi for the partial
derivatives with respect to the coordinates. From Eqs. 8
and 9, it is possible to express the second derivatives of

the signed distance as a function of the phase field and
its derivatives, as

∂
2

ij d =
√

2ε

1 − φ2

[

∂
2

ij φ + 2φ

1 − φ2
∂iφ∂ jφ

]

= Qij, (10)

which is the three-dimensional tensor of curvature Q
(see Appendix).

This tensor has remarkable properties. First of all,
it is a symmetric tensor, Qij = Q ji. Second, since the
gradient of the signed distance is a unitary vector (see
Eq. 4), the curvature tensor has a zero eigenvalue, with
∂id being the corresponding eigenvector:

∂
2

ij d ∂ jd = 1

2
∂i

[
(∂ jd)2

] = 0. (11)

Therefore, its determinant is zero.
An n × n tensor has, at most, n independent invari-

ant quantities under changes of coordinates [63]. These
invariants can be expressed by the coefficients of the
characteristic polynomial. In the case of a 3 × 3 tensor,
these coefficients correspond to the determinant, the
trace, and the sum of the principal minors of the tensor
matrix. Since the determinant of the curvature tensor
Q is always zero, there are only two nonvanishing in-
variants. These two invariants are related to the total
and Gaussian curvatures of the surface [97]. The total
curvature reads as

J = tr
[
∇ 2

ij d
]
. (12)

From the expression of the curvature tensor as a func-
tion of the phase field, Eq. 10, we can thus write it as a
function of the phase field and its derivatives as

J [φ] =
√

2ε

(1 − φ2)

(

∇2φ + 2φ

1 − φ2
|∇φ|2

)

=
√

2ε

(1 − φ2)

(

∇2φ + 1

ε2
φ

(
1 − φ2

)
)

= −
√

2

ε(1 − φ2)

(−φ + φ3 − ε2∇2φ
)
, (13)

where we used Eq. 6.

Minimal model It is now possible to express the min-
imal model for the bending energy as a function of the
phase field. There is a fundamental difference between
the Canham–Helfrich version of the free energy and
the one we seek in terms of the phase field: the former
is a surface integral, and the latter should be a volume
integral, since one does not want to track the interface
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position (the membrane location in our case) during the
time evolution. Therefore, one seeks for something of
the form

F[φ] =
∫

�

ρF [φ] dx, (14)

where � is the three-dimensional domain of the phase
field, and dx is the three-dimensional volume element.

One way to express a surface integral as a volume
integral is by using distributions [91]. In our case, an
obvious manner is by implementing a Dirac delta func-
tion on the interface, where the signed distance d(x)

vanishes,

ds = δ(d(x))dx. (15)

It is necessary to find a representation of the Dirac delta
in terms of the phase field. Phase-field functions are
continuous functions that only change substantially in a
neighborhood of size ∼ ε around the interface. In the
sharp-interface limit, a phase-field function becomes
a step function. For this reason, a first candidate for
a delta function would be the derivative of the phase
field. Rewriting Eq. 6, using the tanh-like profile for the
phase field Eq. 3,

f ′
(

d(x)√
2ε

)

= sech2
(

d(x)

ε
√

2

)

. (16)

Using the fact that

lim
ε→0

{
3

4
√

2ε
sech4

(
d(x)

ε
√

2

)}

= δ(d(x)), (17)

one can write that

ds= 3

4
√

2ε
sech4

(
d(x)

ε
√

2

)

dx= 3

4
√

2ε
(1 − φ2)2 dx. (18)

Now, using Eqs. 13 and 18, it is possible to explicitly
write the minimal model as a function of the phase field

FM[φ] = 3
√

2κ

8ε3

∫

�

(−φ + φ3 − ε2∇2φ)2 dx, (19)

or, in other words,

FM[φ] = κ̄

2

∫

�

(
[φ])2 dx, (20)

where


[φ] = −φ + φ3 − ε2∇2φ, (21)

and

κ̄ = 3
√

2

4ε3
κ. (22)

Note that the free energy density functional in
Eq. 20, 
2, is nothing other than the square of the

chemical potential (the functional derivative of the
free energy) associated with the Cahn–Hilliard problem
[15].

The minimum of the free energy Eq. 20 is ideally
obtained by setting Eq. 21 equal to 0. In one dimension,
this leads to the tanh-like solution φ(x) = tanh ( x√

2ε
),

given the usual boundary conditions φ(±∞) = ±1.
Therefore, we recover our original assumption on the
profile of the phase field Eq. 3.

Spontaneous curvature With the phase-field expres-
sions of the local geometric properties of the mem-
brane above, one can generalize the minimal model by
letting the membrane adopt a nonvanishing preferred
curvature. This model, first proposed by Helfrich [50],
is normally referred to in the literature as the sponta-
neous curvature model, Eq. 2. Proceeding as before, we
can write the spontaneous curvature free energy as a
function of the phase field [17]

FSC[φ] = κ̄

2

∫

�

(
 SC[φ])2 dx, (23)

where


 SC[φ] = 
[φ] − ε C0(1 − φ2), (24)

where C0 ≡ c0/
√

2 may, in general, be position-
dependent, or even φ-dependent.

Geometrical constraints

Lipid vesicle shapes are generally subject to the con-
straints that their enclosed volume and surface area
remain constant. There are different ways to impose
these constraints, some of which we review here.

Surface area To implement the constraint of constant
vesicle surface area, one can choose to add a penalty
to the energy to keep the vesicle surface from devi-
ating from a constant value [33]. This is, in a sense,
similar to choosing a Lagrange multiplier, being local
or global [17], ensuring the area conservation. To use a
Lagrangian method, it is needed to define an effective
free-energy functional

Feff[φ] = F[φ] +
∫

�

σ(x)a[φ]dx, (25)

where F[φ] is any bending free energy, σ is a Lagrange
multiplier (interpreted as a surface tension in this case),
and a[φ] is the local surface area functional,

a(x) = δ(d(x)), (26)
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which is expressed in terms of the parameter ε using the
representation of the delta, Eq. 17, as

a[φ] = 3

4
√

2ε
(1 − φ2)2 = 3

4
√

2ε
|∇φ|2 . (27)

Using Eq. 26, i.e., Eq. 27 in the sharp-interface limit, the
last expression integrated over the whole domain � is
equivalent to the surface area of the vesicle,

lim
ε→0

∫

�

a[φ]dx =
∫

�

ds. (28)

In addition, there is another way of dealing with the
area conservation, which requires the inclusion of the
hydrodynamics of the system [9, 55]. Then, imposing
the fact that the membrane has to be an incompressible
fluid, the local area conservation is guaranteed.

Enclosed volume An obvious way to implement the
condition of fixed inner vesicle volume in the free
energy would be, as explained before for the surface
area constraint, to introduce another Lagrange multi-
plier coupled to the volume term or a penalty in the
free energy, ensuring its conservation [33]. However,
there is a straightforward manner to implement this
constraint without the need of a Lagrange multiplier.
This is to introduce it through a dynamic equation. A
dynamic equation such as (see the section “Dynamic
equation” below)

∂φ

∂t
= ∇2

(
δFeff

δφ

)

(29)

ensures that
∫
�

φ(x)dx is constant in time, since it is
nothing other than the divergence of a flux. This inte-
gral is equal to the difference of the inner and outer
volumes (φ takes its stable values +1 and −1 inside and
outside the vesicle, respectively), as ε → 0. As the sum
of the inner and outer volumes is the volume of the
integration domain � (which is constant), then we can
write the inner volume as

Vinn = 1

2

(

V(�) +
∫

�

φ(x)dx
)

, (30)

which is conserved during the dynamic evolution.

Dynamic equation

Once a free-energy functional in terms of the phase
field has been obtained, and there is a way of dealing
with the geometrical constraints, the next step is to
find a minimization technique to find the stationary
shapes of vesicles. Here, we show a method based on
the derivation of a dynamic equation for the phase
field, in such a way that the time evolution follows
a conserved relaxational dynamics, Eq. 29 [17, 19].

Relaxational dynamics [41] have been used before, for
instance, to study phase-separation dynamics of two-
component vesicles [109]. In this phase-field approach,
the functional derivative in Eq. 29 has to be computed.
This calculation leads to the following dynamic equa-
tion for the phase field φ(x) of the minimal model [17],

∂φ

∂t
= κ̄∇2

{
(3φ2 − 1)
[φ] − ε2∇2
[φ] + ε2σ̄ (x)∇2φ

+ε2∇σ̄ (x) · ∇φ
}
, (31)

where σ̄ is defined as

σ̄ (x) =
√

2

6ε3κ̄
σ (x). (32)

The term proportional to ∇σ̄ (x) in the dynamic equa-
tion (the last term in Eq. 31) is shown numerically
to be small, and the Lagrange multiplier, σ̄ , can be
considered homogeneous [17].

Similarly, the dynamic equation for the spontaneous
curvature model is [19],

∂φ

∂t
= κ̄∇2

{
(3φ2 − 1 − 2εC0(x) φ)
sc[φ] − ε2∇2
sc[φ]

+ε2σ̄ (x)∇2φ
}
. (33)

Pearling instability

In this section, we review the curvature-driven pearling
instability in lipid vesicles induced by the anchorage
of amphiphilic polymers on the membrane [114] and
how it can be theoretically modelled [18]. Such am-
phiphilic polymers insert hydrophobic anchor groups
on the outer part of the bilayer, generating membrane
curvature. The phase-field model of the bilayer bending
energy reviewed in the section “Bending phase-field
model,” Eq. 23, is used [17] to understand the instabil-
ity, in which the formation of a homogeneous pearled
structure is achieved by consequent pearling of an ini-
tial cylindrical tube from the tip [114]. Both homoge-
neous and inhomogeneous size distributions of pearls
are found depending on the polymer concentration.
Theoretical and experimental results are compared. It
is important to remark that the pearling instability we
report here is driven by curvature, and not by tension,
as the classical Rayleigh–Plateau instability of liquid
jets [24].

Pearling instabilities in physics

The formation of pearled structures is ubiquitous in na-
ture [110]. For instance, the classical Rayleigh–Plateau



J Chem Biol (2009) 2:65–80 71

instability [85, 90], which explains how a falling stream
of fluid breaks up into smaller packets with the same
volume but less surface area, is responsible for the
pearling observed when water is dripping from a faucet.
When the free surface of a liquid cylinder undulates
with a wavelength λ, its area decreases [24], provided
that λ is larger than the circumference of the cylinder
(in the case of a liquid jet of radius R, larger than 2π R).

Besides this, pearling instabilities in lipid vesicles
have been reported due to different mechanisms.
Pearling was induced while perturbing cylindrical vesi-
cles with optical tweezers. This produced tension in
the membrane [5, 6]. Such an instability is also un-
derstood in the framework of the Rayleigh–Plateau
instability [47, 79], in the sense that it is a capillary
instability in which there exists a competition between
creating droplets that minimize the surface energy and
the kinetic cost of moving such quantities of water over
large distances. It has also been studied in charged
membrane tubes [80].

Pearled geometries are also found in Golgi tubules
[117]. Both pearling and prefission neck narrowing are
explained theoretically by lateral partitioning of diacyl-
glycerol, a membrane lipid with a large negative spon-
taneous curvature, using a fourth-order elastic energy
[101].

Experimental background

Experiments by Ringsdorf and collaborators [29, 92, 93]
revealed a pearling instability in tubular vesicles incu-
bated in a solution of amphiphilic polymers having a
certain number of hydrophobic anchors in a polysac-
charide hydrophilic backbone. This instability started
when the polymer concentration was high enough. This
critical concentration, above which the instability was
seen, decreased for increasing numbers of anchors per
backbone. The instability was nonexistent when the
polymers contained only the hydrophilic backbone,

suggesting that the curvature generated by the anchor-
age of the hydrophobic anchors was a possible mecha-
nism for the pearling of the vesicle.

Further experimental evidence for this claim was
brought by the group of Joel Stavans. They experi-
mentally studied the morphological changes of lipid
vesicles upon interaction with amphiphilic polymers
[111]. In particular, they observed pearling of tubular
vesicles [114]. The system they studied consisted
of monocomponent membranes made of stearoy-
loleoylphosphatdylcholine with C18 alkyl chains in a
liquid disordered state. Similar to Ringsdorf and col-
laborators, hydrophilic dextran was used as the poly-
mer backbone. This polymer, consisting of multiple
glucose units, was functionalized with dodecanoic ni-
trobenzoxadiazole chains as fluorescent markers, and
palmitoyl alkyl chains acting as hydrophobic anchor
groups (see [114] for further details).

By fluorescence imaging, they demonstrated first the
association of polymer with the membrane. They also
showed that there is a coupling between the polymer
concentration on the membrane and the local curva-
ture. The polymer hydrophobic backbones anchor to
the outer leaflet of the bilayer in order to minimize
its hydrophobic interaction [108], acting, thus, as a
wedge locally changing the curvature of the bilayer (see
Fig. 2).

Curvature-driven pearling instability

To incorporate the effect of curvature generation by
the anchored polymers, a linear coupling between the
spontaneous curvature and the polymer concentration
[21, 69] was assumed to model the pearling instability
[18],

C0(x, t) = C(1)
0 ρ(x, t), (34)

where C(1)
0 is the polymer-induced spontaneous curva-

ture, ρ(x, t) is the local density of polymer, and no bare

Fig. 2 Polymer wedge effect
inducing a spontaneous
curvature in a bilayer. A
bilayer formed by one kind of
lipid with zero spontaneous
curvature tends to be flat (a).
When a certain number of
anchor groups of an
amphiphilic polymer get
stuck in the outer leaflet of
the bilayer, a spontaneous
curvature is induced (b)

Hydrophilic group Hydrophobic anchor

(a) (b)

Amphiphilic polymerPhospholipid
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spontaneous curvature of the bilayer was assumed. Un-
der these conditions, the spontaneous curvature phase-
field model, Eq. 23, was numerically solved in order to
find the dynamics of the instability [18].

In the experiments by Tsafrir et al. [114], amphiphilic
polymers were introduced in the bulk outside the vesi-
cle, both globally and locally close to the tip of the tube.
Polymer molecules diffuse in the bulk until they come
across the membrane, where they get stuck in such a
way that their hydrophobic parts anchor in the bilayer
in order to satisfy the hydrophobic interaction. Once a
polymer is anchored, it diffuses superficially along the
membrane.

In [18], the situation of global application of the poly-
mer was considered, assuming that the polymer con-
centration almost immediately reaches a homogeneous
profile along the membrane. Under such assumptions,
the dynamic evolution is, thus, fully understood from
the shape dynamics, so there is no need for a dynamic
equation for the density field. In an alternate analy-
sis, Góźdź [49] studied how nonuniform distributions
of anchored molecules—causing a nonhomogeneous
spontaneous curvature profile on the vesicle—influence
and get influenced by the diffusion process.

Curvature-driven pearling instability theoretically
studied by means of a bending phase-field model re-
ported that, for small enough polymer concentration,
the onset of the instability was observed (see Fig. 3a),
in agreement with the experimental results (see Fig. 3b)
[18].

For intermediate values of the spontaneous curva-
tures, between C0 = 1/(2 λ) and C0 = 2/(3 λ)—where
λ = V/A is the volume-to-area ratio of the vesicle—,
Deuling and Helfrich [31] showed that there exist min-

(a) Phase-field numerical result (from Ref. [18])

(b) Experimental result (from Ref. [114])

Fig. 3 Onset of the pearling instability. Comparison of the phase-
field numerical result from [18] (a) and the experimental result
from [114] (b). Such a situation corresponds to a relatively small
concentration of anchoring molecules globally applied to the
tubular liposome. In the numerical results, there is no fitting
parameter in the numerical integration and the spontaneous
curvature is taken to be homogeneous and equal to C0 = 0.48,
below the pearling instability limit

imal surfaces, called Delaunay surfaces, that are global
minima of the bending energy Eq. 2, for axial symmet-
rical shapes. These shapes range from a cylinder to a set
of spheres connected by infinitesimal necks, through a
whole range of unduloids. However, the dynamics of
the pearling instability does not occur following a set
of Delaunay shapes, but, as seen both experimentally
[114] and theoretically [18], through a subsequent for-
mation of spheres beginning from the tip of the tube.
Eventually, for large enough polymer concentrations,
beyond a certain critical concentration, tubes formed
by a set of pearls of different sizes are the energetically
favorable shapes.

Tubulation instability

In this section, we review the formation of long mem-
brane tubes and short buds out of oblate vesicles, due to
the existence of a concentration profile of amphiphilic
polymer molecules [112]. The formation and extrusion
of lipid membrane tubes has been extensively studied
both experimentally and theoretically. Here, we focus
on the mechanism by which tubes are extruded not
by applying a directed force, but due to the existence
of a polymer concentration profile outside the mother
vesicle. As in the case of the curvature-driven pearling
instability, anchor groups of the amphiphilic polymers
insert on the outer part of the lipid bilayer, inducing
curvature. Assuming a linear coupling between the
polymer concentration and the capability of inducing
spontaneous curvature to the membrane, it is possible
to explain [20] the formation of long tubes and short
buds as reported experimentally [112].

Experimental background

As part of cellular dynamic processes, membranes
adopt different shapes in order to exchange matter
with their surroundings. Many possibilities appear here,
from budding and eventual fission of small transport
vesicles [36] to formation of large tethers connecting
distant organelles, as in the Golgi apparatus and the en-
doplasmic reticulum (ER) [115, 116], or even between
different cells [96]. Actually, the ER is a huge network
of interconnected tubules, vesicles, and cisternae, which
act as transport carriers for proteins and other func-
tional entities to be transported to other parts of the
cell [2].

The formation of these tethers can be driven by
the application of a point-like force to the membrane
[30, 86]. Understanding the nature of this force is of ma-
jor importance, and we will review the main theoretical
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aspects of such a mechanism in the section “Tubulation
by applying a directed force.”

There are different mechanisms leading to such a
tubulation phenomenon in cells as, for instance, the
growing of microtubules pushing the membrane from
inside [46] and the extrusion from vesicles due to a
hydrodynamic shear flow [11, 12, 94]. Other works have
experimentally studied the force generated by molecu-
lar motors pulling membrane tubes in vitro [67, 95] and
by optical tweezers [26, 27, 60].

Besides this, Tsafrir et al. studied the tubulation
induced in highly oblate vesicles by the anchoring of
amphiphilic polymers without any directed force [112].
In those experiments, macromolecules containing hy-
drophobic groups were administered in the surround-
ings of a giant oblate vesicle. Those molecules diffused
in the bulk and eventually anchored the membrane
inducing a local spontaneous curvature by the mecha-
nism of hydrophobic insertion [21, 121], leading to the
formation of one or several buds. Under certain circum-
stances, buds may grow into long tubular structures.

Tubulation by applying a directed force

When a force is applied on a small spot of a vesicle,
deformation occurs. Depending on the conditions of
this force, a membrane tube can be extruded from a
mother vesicle. There are many works in the literature,
both experimental and theoretical, about the physics of
membrane tube extraction by a directed force. Here,
we review a theoretical explanation of tube extraction
by a localized force, based on [30, 86].

Given a fluid vesicle with fixed tension, σ , and pres-
sure, p, on which a force, f , is locally applied nor-
mally outwards the vesicle, the energy can be written,
according to the minimal model (Eq. 2 with vanishing
spontaneous curvature),

E =
∫

S

κ

2
(2H)

2 dS + σ A − pV − f L, (35)

where A and V are, respectively, the area and volume
of the vesicle and L is the end-to-end distance in the
direction defined by the force vector. For a cylindrical
tube of length L, radius R, at vanishing osmotic pres-
sure, since the pressure effects are misleading (see [86]
for a discussion on this issue), the energy reads

Etube =
( κ

2R2
+ σ

)
2π RL − f L, (36)

from where one can see that the bending term favors
the radial growth of the tube (since it decreases the
bending energy), and the tension term favors the tube
shrinkage. Therefore, the competition between these

two terms leads to an equilibrium intermediate solution
that can be easily found by minimizing Eq. 36 with
respect to the radius and length of the tube,

∂Etube

∂ R
= 0, (37)

∂Etube

∂L
= 0, (38)

from where one obtains

R0 =
√

κ

2σ
, (39)

f0 = 2π
√

2κσ . (40)

This has been done for the minimal model. However,
a membrane bare spontaneous curvature can also be
straightforwardly introduced and proceed analogously
(see [121]).

Typical values for the force and the optimal radius
are f0 ∼ 10 pN and R0 ∼ 20 nm, respectively. Actually,
the value of the force needed to extract a membrane
tube is of the order of the force generated by a few
molecular motors [54, 121], meaning that these motors
are plausible candidates to extract and form intracellu-
lar carriers.

Polymer-induced tubulation

Here, we review a mechanism of tube extraction not
caused by the application of a directed force [20].
This mechanism is based on the assumption that a
gradient in the polymer concentration profile in the
extravesicular medium can cause a free energy pro-
file favoring tubulation. This assumption was studied
in the framework of the Canham–Helfrich curvature
model, initially in a simplified geometry allowing for
an analytical treatment. Under such conditions, and
depending on the length of an initially preformed tube
(or bud) and on a parameter linked to the slope of
polymer concentration profile (assumed to be linear
in that approximation), tubes of a finite length can be
steadily formed.

To study the complete situation, no assumption is
made on the tube geometry during the dynamics, and
a more general profile (a Gaussian decay) for the poly-
mer concentration gradient is assumed. In that case,
there is no possibility to analytically solve the problem,
due to the nonlinearities of the shape equations [62].
Therefore, a bending phase-field model was used. Then,
numerically solving the corresponding phase-field dy-
namic equation for different parameters, two kinds of
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shapes were found [20]: long tubes and shorter bud-like
shapes (Fig. 4). These results are in very good qual-
itative agreement with the experimental results [112],
showing that the tubulation mechanism due to the ex-
istence of a nonhomogeneous concentration profile of
amphiphilic molecules is a plausible mechanism.

Outlook and future perspectives

Biological membranes are complex entities formed by
several kinds of biochemical molecules. Their basic
structure is that of a lipid bilayer that can, however,
consist of dozens of different kinds of lipid molecules.
In addition, such a purely lipidic membrane can have
phase-separated domains, some of them being liquid-
disordered, some of them being in the more condensed
liquid-order phase, and some others being in a solid-
like gel phase. Biological membranes are believed to
present such a richness, albeit a liquid-disordered state
is known to be the predominant phase. Moreover, bio-
membranes include different kinds of associated pro-
teins. These proteins are not only functional in order
to communicate with other cells or cell organelles, but
they are also involved in membrane shaping.

In this review, we studied a simple model mem-
brane, consisting of monocomponent fluid lipid bilay-
ers, closed to form vesicles. These are, perhaps, the
most simple models for biological membranes. Obvi-
ously, they cannot include all the phenomenology of
actual membranes, but they indeed grasp some essence
of their behavior. Such lipid bilayers are mathemati-
cally described as two-dimensional surfaces embedded
in a three-dimensional space. From a purely geomet-

ric description, they can be characterized by giving,
at each point, the value of the radii of curvature in
two perpendicular directions. From there, and using
symmetry considerations, it is possible to describe the
bilayer energy in terms of those curvatures, in the so-
called Canham–Helfrich model [22, 50].

The aim of this paper was to review the theoretical
approaches to study the membrane dynamics in differ-
ent circumstances due to the anchoring of amphiphilic
polymers on the membrane surface. We focused on the
explanation of a class of dynamic models for interfaces,
the phase-field models, which have been used to study
membrane dynamics. Further, such a model has been
used to explain both the curvature-driven pearling in-
stability and the polymer-induced tubulation of lipid
vesicles.

As far as we are concerned, hydrodynamic effects
have not been introduced to study these instabilities,
although it would be interesting to study the whole
model coupling the phase-field model (or any other
dynamic model) for the membrane shape to the proper
hydrodynamics of both the membrane and the aqueous
media surrounding it.

The systems where morphological transitions oc-
cur, due to the insertion of amphiphilic polymers in
monocomponent lipid membranes that are studied, are
simple models to unravel some of the physical phe-
nomena underlying other more complex biological sys-
tems. Thus, intracellular transport mechanisms in the
ER or the Golgi are due to the generation of large-
curvature intermediates by proteins anchored on their
membranes [76]. In this review, we presented results
that can shed some light on these mechanisms, from
a physical point of view and by taking the minimal
essential ingredients.

Fig. 4 Tubes extruded from a
vesicle by a nonhomogeneous
polymer profile. Comparison
between the experimental
results from [112] (a, b) and
the phase-field integrations
from [20] (c, d). For short
time periods, long tubes are
obtained (a, c), and for long
time periods, buds appear (b,
d). The resulting profile for
the spontaneous curvature is
shown for the phase-field
integrations

(c) (d)
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Appendix

Differential geometry of surfaces

A two-dimensional, well-behaved surface embedded in
Euclidean three-dimensional space, R3, is mathemati-
cally defined univocally by a vector field R

R : � ⊂ R2 −→ R3

σ = (σ 1, σ 2) ∈ R2 �−→ R(σ ) ∈ R3, (41)

which maps a two-dimensional coordinate system, σ =
(σ 1, σ 2) ∈ �, onto a surface embedded in the three-
dimensional space. This way of defining a surface is
called the parametric form, since one needs a two-
dimensional coordinate system to parametrize the sur-
face. A surface can also be described by the so-called
implicit form, i.e., by all the points in R3 that satisfy the
surface equation F(x, y, z) = 0 [10].

Parametric form

Assume a surface defined in the parametric form. At
each point P of this surface, a tangent plane is defined
by two tangent vectors (see Fig. 5) as

ti = ∂i R(σ ) = ∂ R
∂σ i

, i = 1, 2. (42)

The scalar product of these tangent vectors defines the
covariant metric tensor,

gik(σ ) = ti · tk = ∂i R · ∂k R. (43)

The contravariant metric tensor is defined as

gik = (g−1)ik, (44)

which implies that

gikgkl = δi
l, (45)

where δ is the Kronecker delta, and the Einstein sum-
mation convention, cixi ≡ ∑

i cixi, is used. From the
metric tensor, the Euclidean distance between two in-
finitesimally close points on the surface, ds, can be
calculated as

ds2 = [R(σ + dσ ) − R(σ )]2 = gik(σ )dσ idσ k. (46)

Fig. 5 Differential geometry of a surface. In the point P, two
tangent vectors, t1 and t2, are defined. From them, a unit normal
vector n̂ is constructed, pointing outwards. Also, two radii of
curvature, R1 and R2, are geometrically traced at each point

Also, the infinitesimal area element can be found

dS = ∣
∣t1dσ 1 × t2dσ 2

∣
∣ = √

det (gik)dσ 1dσ 2. (47)

At any point P on the surface, a unit normal vector per-
pendicular to the tangent plane can be defined (Fig. 5).
Due to the properties of the cross product, it is given by

n̂ = t1 × t2

|t1 × t2| , (48)

where the sign is arbitrarily chosen; so is the election
of which coordinate is named σ 1 and which σ 2. The
unit normal vector has remarkable properties in our
context, since its changes along the surface define the
so-called curvature tensor, K,

∂in̂ = Kiktk = Kikgkl tl = Kk
i tk. (49)

The sign of the curvature tensor is, again, arbitrary.
In this thesis, we choose it in such a way that sphere-
like curvatures are positive, as it is a normal convention
in physics. In mathematical literature, the sign is most
often taken in the opposite way.

The curvature tensor is symmetric and diagonaliz-
able. The two eigenvalues are the so-called principal
curvatures, c1 = 1/R1 and c2 = 1/R2 (see Fig. 5). These
curvatures correspond to the inverse of the two princi-
pal radii of curvature of the surface at the given point.
The two invariants of the curvature tensor, K, are its
trace, J, and its determinant, K. The trace is called total
curvature of the surface, J, and is represented by

J ≡ tr Kk
i = c1 + c2 = 1

R1
+ 1

R2
. (50)

Usually, the so-called mean curvature, H is also used to
refer to this invariant, and is defined as the arithmetic
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mean of the principal curvatures, corresponding to half
the total curvature,

H = 1

2
(c1 + c2) = 1

2

(
1

R1
+ 1

R2

)

. (51)

The other invariant, the determinant, is called the
Gaussian curvature of the surface, K, and is given by
the product of the principal curvatures,

K = det Kk
i = c1 c2 = 1

R1 R2
. (52)

For a discussion on the signs of the curvatures depend-
ing on the different kinds of shapes, see Fig. 6.

Monge parametrization All the definitions in the pre-
vious section are general for any surface defined by
a parametric form. A simple but useful example of a
parametrization is one where the σ coordinates are
nothing other than the x, y Cartesian coordinates, and
the vector field describing the surface is

R(x, y) = (x, y, h(x, y)), (53)

where the third Cartesian coordinate, the height, is
z = h(x, y). This is called the Monge parametriza-
tion, named after the French mathematician Gaspard
Monge. Under this parametrization, which is definitely
valid for almost planar surfaces (the height function
h(x, y) has to be univaluated), the tangent vectors
Eq. 42 are

t1(x, y) = ∂x R(x, y) =
(

1, 0,
∂h(x, y)

∂x

)

,

t2(x, y) = ∂y R(x, y) =
(

0, 1,
∂h(x, y)

∂y

)

, (54)

Fig. 6 Different kinds of surfaces classified by their curvatures.
Depending on the sign of the two principal curvatures, different
kinds of surfaces have positive–zero–negative combinations of
the total and Gaussian curvatures, as written in the figure

and the covariant metric tensor

gik =
⎛

⎜
⎝

1 +
(

∂h(x,y)

∂x

)2
∂h(x,y)

∂x
∂h(x,y)

∂y

∂h(x,y)

∂x
∂h(x,y)

∂y 1 +
(

∂h(x,y)

∂y

)2

⎞

⎟
⎠ , (55)

with determinant

det(gik) = 1 + [∇h(x, y)]2. (56)

The normal vector Eq. 48 is

n̂ =
(
− ∂h(x,y)

∂x , − ∂h(x,y)

∂y , 1
)

√
1 + (∇h)2

. (57)

Wherefrom the total and Gaussian curvatures can be
calculated:

J = −
(
1 + h2

x

)
hyy +

(
1 + h2

y

)
hxx − 2hxhyhxy

(
1 + h2

x + h2
y

)3/2 , (58)

K = hxx hyy − h2
xy

(
1 + h2

x + h2
y

)2 . (59)

In the limit of nearly flat surface, where hx � 1, and
hy � 1, the curvature invariants read

J ≈ −(hxx + hyy) = −∇2h(x, y), (60)

and

K ≈ hxxhyy − h2
xy. (61)

Implicit form

In the case where a two-dimensional surface is implic-
itly defined by a function F such as

F(x, y, z) = 0, (62)

we can also find the curvature tensor and all the geo-
metric properties of such a surface. First, we have to
note that, since the surface is defined by the level-set
of a function, this function is constant on the surface;
therefore,

dF(x, y, x) = dr · ∇F = 0, (63)

where dr is a vector that connects any two points in this
surface, being tangent to a certain direction in the sur-
face. Because of this fact, from Eq. 63, we infer that the
vector ∇F is normal to the surface at the point (x, y, z).
The unit normal vector is found by normalizing it,

n̂ = ∇F
|∇F| . (64)
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Once the normal vector is known, the curvature tensor,
Q, can be defined by the changes of this vector along
the tangent directions, namely,

dn̂ = dr : Q, (65)

where the colon symbolizes tensor contraction. By dif-
ferentiating Eq. 64, we can write the curvature tensor as
a function of the derivatives of the implicit function as

Qik = 1

ϒ
[Fik − Fi ϒk

ϒ
], (66)

where ϒ = |∇F| and Fi = ∇F|i. Note that this curva-
ture tensor Q differs from the curvature tensor Kik

(Eq. 49) we used in the previous section, the former
being represented by a 3 × 3 matrix and the latter by
a 2 × 2 matrix. Here, the tensor has three invariants,
although one of them is a trivial one (the determinant
of the tensor is zero [97]). The other two, the trace and
the sum of the principal minors, define the total and
Gaussian curvatures, respectively. They read as

J = 1

ϒ3

[
Fii(F2

k + F2
l ) − 2Fi Fk Fik

]
ε̃ikl, (67)

where ε̃ikl is a modified Levi-Civita symbol, such as
ε̃ikl = 1 for all even permutations of the indices, and
zero otherwise. The Gaussian curvature is, similarly,
given by

K= 1

ϒ4

[
Fii Fkk F2

l −F2
ik F2

l +2Fil Fi(Fk Fkl −Fl Fkk)
]

ε̃ikl.

(68)

The Monge representation can also be implemented
by using an implicit form of the surface, by defining the
function

F(x, y, z) = z − h(x, y). (69)
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